JP2014065635A - Low thermal expansion ceramics and manufacturing method thereof - Google Patents

Low thermal expansion ceramics and manufacturing method thereof Download PDF

Info

Publication number
JP2014065635A
JP2014065635A JP2012212678A JP2012212678A JP2014065635A JP 2014065635 A JP2014065635 A JP 2014065635A JP 2012212678 A JP2012212678 A JP 2012212678A JP 2012212678 A JP2012212678 A JP 2012212678A JP 2014065635 A JP2014065635 A JP 2014065635A
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
less
average
expansion ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012212678A
Other languages
Japanese (ja)
Other versions
JP6179026B2 (en
Inventor
Motohiro Umetsu
基宏 梅津
Masahito Iguchi
真仁 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2012212678A priority Critical patent/JP6179026B2/en
Publication of JP2014065635A publication Critical patent/JP2014065635A/en
Application granted granted Critical
Publication of JP6179026B2 publication Critical patent/JP6179026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide low thermal expansion ceramics in which a size of cracks can be miniaturized and changes of flatness of surfaces processed with high accuracy can be prevented even under circumstance having temperature changes, and to provide its manufacturing method.SOLUTION: Low thermal expansion ceramics contains β-eucryptite and one or more kinds selected from silicon carbide and silicon nitride, and has a relative density of 99% or more, an average particle diameter of a sintered body of 0.5 μm or less, and an average thermal expansion coefficient at 20°C or higher and 30°C or lower of -1×10/°C or more and 1×10/°C or less. In the low thermal expansion ceramics, a size of microcracks can be miniaturized and changes of flatness of surfaces processed with high accuracy can be prevented because its sintered body has the average particle diameter of 0.5 μm or less. Therefore, it is suitably used for example as a mirror for positioning of a semiconductor manufacturing apparatus.

Description

本発明は、β−ユークリプタイトと炭化珪素および窒化珪素から選ばれる1種以上の材料とからなる低熱膨張セラミックスおよびその製造方法に関する。   The present invention relates to a low thermal expansion ceramic comprising β-eucryptite and one or more materials selected from silicon carbide and silicon nitride, and a method for producing the same.

従来、低熱膨張セラミックスは、低熱膨張性に加え高剛性を有することから、半導体製造装置の位置決め用のミラーやステージ部材として使用されている。低熱膨張セラミックスとしては、ユークリプタイトと、炭化珪素、窒化珪素等から選ばれる1種以上の材料とからなるものが知られている(特許文献1参照)。特許文献1記載の低熱膨張セラミックスは、20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃である。 Conventionally, low thermal expansion ceramics have high rigidity in addition to low thermal expansion, and are therefore used as positioning mirrors and stage members for semiconductor manufacturing equipment. As the low thermal expansion ceramics, one made of eucryptite and one or more materials selected from silicon carbide, silicon nitride and the like is known (see Patent Document 1). The low thermal expansion ceramic described in Patent Document 1 has an average thermal expansion coefficient at 20 to 30 ° C. of −1 × 10 −6 to 1 × 10 −6 / ° C.

一方で、βユークリプタイトとβウォラストナイトが配合されて形成されたセラミックスで、平均結晶粒径が2μm以下のものが開示されている(特許文献2参照)。特許文献2記載のセラミックスは、加工性を高めることを目的に開発されている。   On the other hand, ceramics formed by blending β-eucryptite and β-wollastonite with an average crystal grain size of 2 μm or less are disclosed (see Patent Document 2). The ceramic described in Patent Document 2 has been developed for the purpose of improving workability.

特開2004−224607号公報JP 2004-224607 A 特開2000−1386号公報JP 2000-1386 A

上記のように、低熱膨張セラミックスは、低熱膨張性および高剛性に優れており、ミラー部材等にも用いられるが、特に複合材料系のセラミックスでは、高精度に加工された平面が経時変化を起こし易いという事情がある。   As described above, low thermal expansion ceramics are excellent in low thermal expansion properties and high rigidity, and are used for mirror members, etc., but in particular, in composite material ceramics, a plane processed with high accuracy causes a change over time. There are circumstances that make it easy.

複合材料系の低熱膨張セラミックスを構成するユークリプタイトは、負膨張セラミックスであり、負膨張性を発現する一つの要因として、焼結体組織の粒子内に存在するマイクロクラックが挙げられる。上記のような低熱膨張セラミックスは、負膨張であるユークリプタイトに正膨張である炭化珪素および窒化珪素を添加し、その配合を調整することで、23±3℃でゼロ膨張を実現している。   Eucryptite constituting a composite material-based low thermal expansion ceramic is a negative expansion ceramic, and one factor that develops negative expansion is microcracks existing in the particles of the sintered body structure. The low thermal expansion ceramic as described above achieves zero expansion at 23 ± 3 ° C. by adding silicon carbide and silicon nitride which are positive expansion to eucryptite which is negative expansion and adjusting the blending thereof. .

しかしながら、5℃以下の環境下では、焼結体粒子中に存在するマイクロクラックが要因となって、高精度に加工した面の平面度が変化する場合がある。例えば、φ300の円盤ミラー部材のミラー部の平面度を0.060μmに加工した場合、−5℃の環境下に一定期間曝されると、ミラー部の平面度が0.200μmまで変化してしまう。この精度変化は、半導体製造装置の位置決め用のミラーとしては、致命的となる。また、素材の運搬や保管方法においても、厳密な温度管理が必要となる。   However, in an environment of 5 ° C. or lower, the flatness of the surface processed with high accuracy may change due to microcracks present in the sintered particles. For example, when the flatness of the mirror part of a φ300 disk mirror member is processed to 0.060 μm, the flatness of the mirror part changes to 0.200 μm when exposed to an environment of −5 ° C. for a certain period of time. . This change in accuracy becomes fatal for a positioning mirror of a semiconductor manufacturing apparatus. In addition, strict temperature control is required also in the transportation and storage methods of materials.

本発明は、このような事情に鑑みてなされたものであり、クラックの大きさを微小化し、温度変化のあるような環境下でも高精度に加工した面の平面度の変化を防止できる低熱膨張セラミックスおよびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and has a low thermal expansion capable of minimizing the size of a crack and preventing a change in flatness of a surface processed with high accuracy even in an environment where there is a temperature change. An object of the present invention is to provide ceramics and a method for producing the same.

(1)上記の目的を達成するため、本発明の低熱膨張セラミックスは、β−ユークリプタイトと炭化珪素および窒化珪素から選ばれる1種以上の材料とからなる低熱膨張セラミックスであって、相対密度が99%以上、焼結体の平均粒子径が0.5μm以下であり、20℃以上30℃以下における平均の熱膨張係数が−1×10−6/℃以上1×10−6/℃以下であることを特徴としている。 (1) In order to achieve the above object, the low thermal expansion ceramic of the present invention is a low thermal expansion ceramic composed of β-eucryptite and one or more materials selected from silicon carbide and silicon nitride, and has a relative density. Is 99% or more, the average particle diameter of the sintered body is 0.5 μm or less, and the average thermal expansion coefficient at 20 ° C. or more and 30 ° C. or less is −1 × 10 −6 / ° C. or more and 1 × 10 −6 / ° C. or less. It is characterized by being.

このように本発明の低熱膨張セラミックスは、焼結体の平均粒子径が0.5μm以下であるため、マイクロクラックの大きさを微小化し、高精度に加工した面の平面度の変化を防止できる。したがって、たとえば半導体製造装置の位置決め用のミラーに好適に応用できる。   Thus, since the low thermal expansion ceramic of the present invention has an average particle size of 0.5 μm or less of the sintered body, the size of the microcrack can be reduced and the flatness of the surface processed with high precision can be prevented. . Therefore, it can be suitably applied to, for example, a positioning mirror of a semiconductor manufacturing apparatus.

(2)また、本発明の低熱膨張セラミックスは、電子顕微鏡で500倍の視野で観察したとき、10μm以上のポアの数が、10視野の平均で1個/視野以下であることを特徴としている。このように大きいポアの数が低減されているため、高精度に加工した面の平面度の変化を防止できる。   (2) In addition, the low thermal expansion ceramic of the present invention is characterized in that the number of pores of 10 μm or more is 1 per field or less on average in 10 fields when observed with a 500 × field of view with an electron microscope. . Since the number of large pores is reduced as described above, it is possible to prevent a change in flatness of a surface processed with high accuracy.

(3)また、本発明の低熱膨張セラミックスは、電子顕微鏡で3000倍の視野で観察したとき、10μm以上の長さのマイクロクラックの数が、10視野の合計で1個以下であることを特徴としている。これにより、大きなクラックの数が低減されているため、高精度に加工した面の平面度の変化を防止できる。   (3) Further, the low thermal expansion ceramic of the present invention is characterized in that the number of microcracks having a length of 10 μm or more is 1 or less in total in 10 fields when observed with an electron microscope at a magnification of 3000 times. It is said. Thereby, since the number of large cracks is reduced, a change in flatness of the surface processed with high accuracy can be prevented.

(4)また、本発明の低熱膨張セラミックスは、ヤング率が140GPa以上であることを特徴としている。これにより、高剛性を有する低熱膨張セラミックスとして半導体製造装置の部材等に好適に使用できる。   (4) Further, the low thermal expansion ceramic of the present invention is characterized in that the Young's modulus is 140 GPa or more. Thereby, it can use suitably for the member of a semiconductor manufacturing apparatus, etc. as a low thermal expansion ceramics which has high rigidity.

(5)また、本発明の低熱膨張セラミックスは、3点曲げ強度が250MPa以上であることを特徴としている。これにより、高強度を有する低熱膨張セラミックスを実現できる。   (5) Further, the low thermal expansion ceramic of the present invention is characterized in that the three-point bending strength is 250 MPa or more. Thereby, low thermal expansion ceramics having high strength can be realized.

(6)また、本発明の低熱膨張セラミックスの製造方法は、β−ユークリプタイトと炭化珪素および窒化珪素から選ばれる1種以上の材料とからなる低熱膨張セラミックスの製造方法であって、β−ユークリプタイトの原料粉と炭化珪素および窒化珪素から選ばれる1種以上の材料の原料粉とを混合粉砕し平均一次粒子径で0.25μm以下にする粉砕工程と、前記粉砕工程で得られた粉末を加圧成形する成形工程と、前記成形工程で得られた成形体を1200℃以上1315℃以下で焼成する焼成工程と、100MPa以上、1150℃以上1300℃以下でHIP処理を実施するHIP処理工程と、を含むことを特徴としている。   (6) The method for producing a low thermal expansion ceramic of the present invention is a method for producing a low thermal expansion ceramic comprising β-eucryptite and one or more materials selected from silicon carbide and silicon nitride, A pulverization step in which a raw powder of eucryptite and a raw material powder of one or more materials selected from silicon carbide and silicon nitride are mixed and pulverized to have an average primary particle size of 0.25 μm or less, and obtained by the pulverization step. A molding step for pressure-molding the powder, a firing step for firing the molded body obtained in the molding step at 1200 to 1315 ° C., and an HIP treatment for performing HIP processing at 100 MPa or more and 1150 to 1300 ° C. And a process.

このように、本発明の低熱膨張セラミックスの製造方法は、混合粉砕し平均一次粒子径で0.25μm以下にしているため、焼結体のクラックの大きさを微小化することで高精度に加工した面の平面度の変化を防止できる。   As described above, since the method for producing the low thermal expansion ceramic of the present invention is mixed and pulverized to have an average primary particle diameter of 0.25 μm or less, it is processed with high accuracy by reducing the size of cracks in the sintered body. The change in flatness of the surface can be prevented.

本発明によれば、クラックの大きさを微小化し、温度変化のあるような環境下でも高精度に加工した面の平面度の変化を防止できる。   According to the present invention, it is possible to reduce the size of a crack and prevent a change in flatness of a surface processed with high accuracy even in an environment where there is a temperature change.

(a)、(b)それぞれ実施例および比較例の500倍のSEM写真である。(A), (b) is a 500 times SEM photograph of an Example and a comparative example, respectively. (a)、(b)それぞれ実施例の1500倍および比較例の3000倍のSEM写真である。(A), (b) It is the SEM photograph of 1500 times of an Example and 3000 times of a comparative example, respectively.

(低熱膨張セラミックスの構成)
本発明の低熱膨張セラミックス(以下、低熱膨張セラミックス)は、β−ユークリプタイトと炭化珪素および窒化珪素から選ばれる1種以上の材料とから構成されている。β−ユークリプタイトが温度上昇に対して収縮する負膨張の特性を有しており、炭化珪素および窒化珪素から選ばれる1種以上の材料が温度上昇に対して膨張する正膨張の特性を有している。
(Configuration of low thermal expansion ceramics)
The low thermal expansion ceramic (hereinafter, low thermal expansion ceramic) of the present invention is composed of β-eucryptite and one or more materials selected from silicon carbide and silicon nitride. β-eucryptite has the characteristic of negative expansion that contracts with increasing temperature, and one or more materials selected from silicon carbide and silicon nitride have the characteristic of positive expansion that expands with increasing temperature. doing.

これらが互いの膨張を打ち消し合う配合で複合材料を構成することで低熱膨張な材料として構成されている。このように構成された低熱膨張セラミックスの20℃以上30℃以下における平均の熱膨張係数は、−1×10−6/℃以上1×10−6/℃以下となる。 By constituting a composite material with a composition in which these cancel each other's expansion, they are configured as low thermal expansion materials. The average coefficient of thermal expansion of the low thermal expansion ceramics thus configured at 20 ° C. or higher and 30 ° C. or lower is −1 × 10 −6 / ° C. or higher and 1 × 10 −6 / ° C. or lower.

また、低熱膨張セラミックスは、相対密度99%以上に緻密化され、焼結体の平均粒子径が0.5μm以下である。低熱膨張セラミックスを構成するβ−ユークリプタイトは、マイクロクラックを有し、マイクロクラックが機能することで負膨張の特性を生じさせている。   Further, the low thermal expansion ceramic is densified to a relative density of 99% or more, and the average particle size of the sintered body is 0.5 μm or less. The β-eucryptite constituting the low thermal expansion ceramic has microcracks, and the microcracks function to cause negative expansion characteristics.

しかし、一方でマイクロクラックの存在により加工面の平面度が変化しやすくなっている。これに対し、本発明の低熱膨張セラミックスでは、焼結体の組織を制御し、粒径を小さくしている。具体的には、焼結体の焼結粒子を微細化することで(粒子径:0.5μm以下)、粒子内に存在するマイクロクラックそのものの数を低減し、さらにはそのクラックの大きさを微小化している。これにより、高精度に加工した面の平面度の変化を防止できる。これを例えば半導体製造装置の位置決め用のミラーとして好適に応用できる。   However, on the other hand, the flatness of the processed surface is likely to change due to the presence of microcracks. On the other hand, in the low thermal expansion ceramic of the present invention, the structure of the sintered body is controlled to reduce the particle size. Specifically, by reducing the size of the sintered particles of the sintered body (particle diameter: 0.5 μm or less), the number of microcracks themselves existing in the particles is reduced, and further the size of the cracks is reduced. It is miniaturized. Thereby, the change of the flatness of the surface processed with high precision can be prevented. This can be suitably applied, for example, as a positioning mirror of a semiconductor manufacturing apparatus.

低熱膨張セラミックスは、電子顕微鏡で3000倍の視野で観察したとき、10μm以上の長さのマイクロクラックの数が、10視野の合計で1個以下であることが好ましい。これにより、大きなクラックの数を低減できていることから、高精度に加工した面の平面度の変化を防止できる。   When the low thermal expansion ceramic is observed with an electron microscope in a 3000-fold field of view, the number of microcracks having a length of 10 μm or more is preferably 1 or less in total for 10 fields of view. Thereby, since the number of large cracks can be reduced, a change in the flatness of the surface processed with high accuracy can be prevented.

また、低熱膨張セラミックスは、電子顕微鏡で500倍の視野で観察したとき、10μm以上のポアの数が、10視野の平均で1個/視野以下であることが好ましい。マイクロクラックの数が低減している場合には、ポアの数も低減されており、加工面の平面度の変化を防止できる。   Further, when the low thermal expansion ceramic is observed with an electron microscope in a field of magnification of 500 times, the number of pores of 10 μm or more is preferably 1 per field or less on average in 10 fields of view. When the number of microcracks is reduced, the number of pores is also reduced, and a change in flatness of the processed surface can be prevented.

低熱膨張セラミックスは、ヤング率が140GPa以上であることが好ましい。これにより、高剛性を有する低熱膨張セラミックスとして半導体製造装置の部材等に好適になる。また、3点曲げ強度が250MPa以上であることが好ましい。これにより、高強度を有する低熱膨張セラミックスに応用できる。   The low thermal expansion ceramic preferably has a Young's modulus of 140 GPa or more. Thereby, it becomes suitable for the member of a semiconductor manufacturing apparatus etc. as a low thermal expansion ceramics which has high rigidity. Further, the three-point bending strength is preferably 250 MPa or more. This can be applied to low thermal expansion ceramics having high strength.

(低熱膨張セラミックスの製造方法)
上記のように構成される低熱膨張セラミックスの製造方法を説明する。まず、β−ユークリプタイトの粉末と炭化珪素および窒化珪素から選ばれる1種以上の材料の粉末とを、混合粉砕する。その際の配合比は、熱膨張係数が低くなるよう設計された所定の配合比である。このようにして平均一次粒子径で0.25μm以下の粉末を得る(粉砕工程)。
(Production method of low thermal expansion ceramics)
A method for producing the low thermal expansion ceramics configured as described above will be described. First, β-eucryptite powder and powder of one or more materials selected from silicon carbide and silicon nitride are mixed and ground. The blending ratio at that time is a predetermined blending ratio designed so that the thermal expansion coefficient is low. In this way, a powder having an average primary particle size of 0.25 μm or less is obtained (pulverization step).

そして、粉砕工程で得られた粉末を加圧成形する(成形工程)。次に、成形工程で得られた成形体を1200℃以上1315℃以下の焼成温度で焼成する(焼成工程)。最後に、100MPa以上、1150℃以上1300℃以下でHIP処理を実施する(HIP処理工程)。   And the powder obtained at the crushing process is pressure-molded (molding process). Next, the molded body obtained in the molding step is fired at a firing temperature of 1200 ° C. or higher and 1315 ° C. or lower (firing step). Finally, the HIP treatment is performed at 100 MPa or higher and 1150 ° C. or higher and 1300 ° C. or lower (HIP processing step).

上記のように、混合粉砕のとき原料を平均一次粒子径で0.25μm以下にしているため、焼結体のクラックの大きさを微小化し、高精度に加工した面の平面度の変化を防止できる。微細な粉末を用いることが焼結体の焼結粒子を微細化する一つのポイントになるが、それ以外に可能な限り低温で焼結させることもポイントである。   As mentioned above, the average primary particle size of the raw material is 0.25 μm or less during mixing and grinding, so the size of the cracks in the sintered body is miniaturized and changes in the flatness of the surface processed with high precision are prevented. it can. The use of fine powder is one point for reducing the size of the sintered particles of the sintered body, but it is also a point to sinter at the lowest possible temperature.

原料粉末の一次粒子径が1.0μmであれば、1280〜1380℃の範囲で相対密度98%以上に緻密化できる。しかし、高温領域では、粒成長するため、焼結粒子径が3〜4μm程度となる。   If the primary particle diameter of the raw material powder is 1.0 μm, it can be densified to a relative density of 98% or more in the range of 1280 to 1380 ° C. However, since the grains grow in the high temperature region, the sintered particle diameter is about 3 to 4 μm.

原料粉末の一次粒子径を0.25μm以下に制御することで、焼成温度を低温化することが可能となり、1250〜1380℃で相対密度98%となる。さらには、緻密化範囲を相対密度95%以上まで拡大すると1200〜1380℃となる。但し、原料粉末を微粒化しても、高温領域で焼成すると、焼結体の粒子径が0.5μm以上となってしまう。   By controlling the primary particle diameter of the raw material powder to 0.25 μm or less, the firing temperature can be lowered, and the relative density becomes 98% at 1250 to 1380 ° C. Furthermore, when the densification range is expanded to a relative density of 95% or more, the temperature becomes 1200 to 1380 ° C. However, even if the raw material powder is atomized, if sintered in a high temperature region, the particle size of the sintered body becomes 0.5 μm or more.

したがって、1200〜1315℃が、焼結体粒子の粒子径が0.5μm以下となり、且つ、相対密度が95%以上となる焼成温度であることが分かる。その後、Ar中、100MPa以上の雰囲気圧力で、1150〜1300℃でHIP処理することで、焼結体粒子の粒子径が0.5μm以下を維持しつつ、相対密度99%まで緻密化させることができる。   Therefore, it can be seen that 1200 to 1315 ° C. is a firing temperature at which the particle diameter of the sintered body particles is 0.5 μm or less and the relative density is 95% or more. After that, by carrying out HIP treatment at 1150 to 1300 ° C. at an atmospheric pressure of 100 MPa or higher in Ar, the sintered compact particles can be densified to a relative density of 99% while maintaining the particle diameter of 0.5 μm or less. it can.

(実施例の作製条件)
上記の製造方法で、実施例の低熱膨張セラミックスを作製した。β−ユークリプタイト粉末77質量%に対し炭化珪素粉末22質量%および窒化珪素1質量%を添加し、これをエタノール溶媒とアルミナボールと共にボールミル内に投入し、5〜48時間湿式にて混合粉砕を行なった。
(Production conditions of the examples)
The low thermal expansion ceramic of the example was produced by the above production method. Add 22% by mass of silicon carbide powder and 1% by mass of silicon nitride to 77% by mass of β-eucryptite powder, add this together with ethanol solvent and alumina balls into a ball mill, and mix and pulverize for 5 to 48 hours in a wet manner. Was done.

このようにして得られた混合粉砕粉末を乾燥、解砕した後に、レーザー散乱式粒度分布測定機を用いて一次粒子径を測定した。その結果、平均一次粒子径で0.22〜0.24μmの原料粉末が得られた。得られた混合粉砕粉末を100kg/cmで1分間、一軸加圧成形した後、1200kg/cmで1分間、冷間静水圧成形することにより、成形体を作製した。成形体は、窒素雰囲気中で1200〜1315℃の焼成温度で焼成した。焼成体は、さらにAr中、100MPa以上の雰囲気圧力で、1150〜1300℃でHIP処理した(試料No.1〜4)。 The mixed pulverized powder thus obtained was dried and pulverized, and then the primary particle size was measured using a laser scattering particle size distribution analyzer. As a result, a raw material powder having an average primary particle size of 0.22 to 0.24 μm was obtained. The obtained mixed pulverized powder was uniaxially pressed at 100 kg / cm 2 for 1 minute, and then subjected to cold isostatic pressing at 1200 kg / cm 2 for 1 minute to produce a molded body. The molded body was fired at a firing temperature of 1200 to 1315 ° C. in a nitrogen atmosphere. The fired body was further subjected to HIP treatment at 1150 to 1300 ° C. under an atmospheric pressure of 100 MPa or more in Ar (Sample Nos. 1 to 4).

(比較例の作製条件)
比較例としてβ−ユークリプタイトと炭化珪素とを混合粉砕し平均一次粒子径2μmの原料粉末を得て、それを上記の実施例と同じ条件で成形し、窒素雰囲気中で1200℃の焼成温度で焼成した。さらにAr中、100MPa以上の雰囲気圧力で、1150℃でHIP処理した(試料No.5)。
(Production conditions for the comparative example)
As a comparative example, β-eucryptite and silicon carbide were mixed and pulverized to obtain a raw material powder having an average primary particle diameter of 2 μm, which was molded under the same conditions as in the above examples, and a firing temperature of 1200 ° C. in a nitrogen atmosphere. Baked in. Furthermore, HIP treatment was performed at 1150 ° C. in Ar at an atmospheric pressure of 100 MPa or more (Sample No. 5).

また、上記の実施例と同様の条件で混合粉砕し、平均一次粒子径0.25μmの原料粉末を用い、それを上記の実施例と同じ条件で成形し、窒素雰囲気中で1320℃の焼成温度で焼成した。さらにAr中、100MPa以上の雰囲気圧力で、1300℃でHIP処理した(試料No.6)。   In addition, the mixture was pulverized under the same conditions as in the above example, and a raw material powder having an average primary particle size of 0.25 μm was molded under the same conditions as in the above example, and the firing temperature was 1320 ° C. in a nitrogen atmosphere. Baked in. Further, HIP treatment was performed at 1300 ° C. under an atmospheric pressure of 100 MPa or more in Ar (sample No. 6).

また、上記の実施例と同様の条件で混合粉砕し、平均一次粒子径0.25μmの原料粉末を用い、それを上記の実施例と同じ条件で成形し、窒素雰囲気中で1150℃の焼成温度で焼成した。さらにAr中、100MPa以上の雰囲気圧力で、1100℃でHIP処理した(試料No.7)。以下の表は、実施例および比較例の試料の作製条件を示している。
In addition, the mixture was pulverized under the same conditions as in the above example, a raw material powder having an average primary particle size of 0.25 μm was used, and it was molded under the same conditions as in the above example. Baked in. Furthermore, HIP treatment was performed at 1100 ° C. under an atmospheric pressure of 100 MPa or more in Ar (sample No. 7). The following table shows the production conditions of the samples of the examples and comparative examples.

(評価結果)
このようにして得られたそれぞれの焼結体の相対密度をアルキメデス法により測定した。また、それぞれのセラミックス焼結体の表面を加工し、走査型電子顕微鏡(SEM)でその表面を観察し、焼結体の平均粒子径、500倍で表面を顕微鏡観察したときのポア数、3000倍で表面を顕微鏡観察したときのマイクロクラック数を測定した。
(Evaluation results)
The relative density of each sintered body thus obtained was measured by the Archimedes method. Also, the surface of each ceramic sintered body is processed, the surface is observed with a scanning electron microscope (SEM), and the number of pores when the surface is observed with a microscope at an average particle diameter of 500 times, 3000 times. The number of microcracks when the surface was observed with a microscope was measured.

(SEM観察)
図1(a)、(b)は、それぞれ実施例の試料No.1および比較例の試料No.5の500倍のSEM写真である。図1(a)に示すように、実施例の低熱膨張セラミックスの表面は一様であり、その視野からポアは見つからなかった。10視野の平均では1個/視野以下であった。また、図1(b)に示すように、比較例のセラミックスの表面には、直径約10μmのポア10が2個見つかった。10視野の平均では2.2個/視野であった。
(SEM observation)
1 (a) and 1 (b) show sample Nos. Of Examples. 1 and Comparative Sample No. 5 is an SEM photograph 500 times as large as 5; As shown to Fig.1 (a), the surface of the low thermal expansion ceramic of the Example was uniform, and the pore was not found from the visual field. The average of 10 fields was 1 per field or less. Further, as shown in FIG. 1B, two pores 10 having a diameter of about 10 μm were found on the surface of the ceramic of the comparative example. The average of 10 fields was 2.2 / field.

図2(a)、(b)は、それぞれ実施例の1500倍および比較例の3000倍のSEM写真である。図2(a)に示すように、実施例の低熱膨張セラミックスは、平均粒径0.5μmの粒子で構成されており、10視野の合計でも、数μm程度のマイクロクラックは見つからなかった。また、図2(b)に示すように、比較例のセラミックスは、平均粒径5μmの粒子で構成されており、約10μmのクラック20が2個見つかった。また、10視野の合計では12個見つかった。   2 (a) and 2 (b) are SEM photographs of 1500 times of the example and 3000 times of the comparative example, respectively. As shown in FIG. 2 (a), the low thermal expansion ceramic of the example is composed of particles having an average particle diameter of 0.5 μm, and no microcracks of about several μm were found even in a total of 10 fields of view. Further, as shown in FIG. 2B, the ceramic of the comparative example is composed of particles having an average particle diameter of 5 μm, and two cracks 20 of about 10 μm were found. In addition, a total of 12 fields were found.

その他、各試料について熱膨張係数、ヤング率、曲げ強度および精度変化を評価した。ヤング率は、「JISR1602ファインセラミックスの弾性率試験方法」に準拠し、曲げ共振法にて、測定装置(常温ヤング率測定機/JE-RT3 日本テクノプラス社製)を用いて評価した。曲げ強度は、「JISR1601ファインセラミックスの室温曲げ強さ試験方法」に基づき、測定装置(オートグラフAG-2000B/島津製作所社製)を用いて評価した。精度変化の評価は、以下の手順で行った。すなわち、各焼結体試料からφ200×10tの素材を作製し、上下面の平面研削後、上面をラップ加工し、その平面度を0.05μmに仕上げた。そして、−5℃の環境下に、24時間保管し、上面の平面度を光学式表面性状測定機(zygo)で測定した。以下の表は、評価結果をまとめて示している。
In addition, the thermal expansion coefficient, Young's modulus, bending strength, and accuracy change were evaluated for each sample. The Young's modulus was evaluated by a bending resonance method using a measuring device (room temperature Young's modulus measuring machine / JE-RT3 manufactured by Nippon Techno Plus Co., Ltd.) in accordance with “JISR1602 Fine Ceramic Elasticity Test Method”. The bending strength was evaluated using a measuring device (Autograph AG-2000B / manufactured by Shimadzu Corporation) based on “JIS R1601 Fine Ceramics Room Temperature Bending Strength Test Method”. The accuracy change was evaluated according to the following procedure. That is, a φ200 × 10t material was prepared from each sintered body sample, and the upper surface was lapped after surface grinding of the upper and lower surfaces, and the flatness was finished to 0.05 μm. And it preserve | saved for 24 hours in -5 degreeC environment, and measured the flatness of the upper surface with the optical surface property measuring machine (zygo). The following table summarizes the evaluation results.

以上の評価の結果、実施例の試料No.1〜4は、いずれの項目においても十分に規定値をクリアしていた。精度変化も平面度変化が±0.02μm以下であり、問題なかった。一方、試料No.5は、相対密度が99%未満で、焼結体の平均粒子径が0.5μmより大きく、ポア数が1個/視野より多く、マイクロクラックが1個より多く、精度変化も+0.100μm以上変化があり、規定値を満たさなかった。   As a result of the above evaluation, sample No. 1 to 4 sufficiently cleared the specified values in all items. There was no problem with the change in accuracy, with a change in flatness of ± 0.02 μm or less. On the other hand, sample No. 5 has a relative density of less than 99%, an average particle diameter of the sintered body is larger than 0.5 μm, the number of pores is greater than 1 / field of view, the number of microcracks is greater than 1, and the accuracy changes. Also, there was a change of +0.100 μm or more, and the prescribed value was not satisfied.

試料No.6は、相対密度が99%以上であるが、焼結体の平均粒子径が0.5μmより大きかった。また、ポア数が1個/視野以下であるが、マイクロクラックが1個より多く、精度変化も+0.100μm以上の変化が測定され、規定値を満たさなかった。   Sample No. 6 had a relative density of 99% or more, but the average particle size of the sintered body was larger than 0.5 μm. Further, although the number of pores was 1 / viewing field or less, the number of microcracks was more than 1, and the change in accuracy was +0.100 μm or more, and the specified value was not satisfied.

試料No.7は、相対密度が99%より小さく、焼結体の平均粒子径が0.5μmより小さかった。また、ポア数が1個/視野より多く、マイクロクラックが1個より多く、精度変化も+0.100μm以上変化が測定され、規定値を満たさなかった。   Sample No. 7 had a relative density of less than 99% and an average particle size of the sintered body of less than 0.5 μm. Further, the number of pores was greater than 1 per field of view, the number of microcracks was greater than 1, and the change in accuracy was measured by +0.100 μm or more, and the prescribed value was not satisfied.

以上のように、比較例のセラミックス焼結体では、加工表面にポアやクラックが生じており、その平面度が変化しやすい状態であることが分かった。   As described above, in the ceramic sintered body of the comparative example, it was found that pores and cracks were generated on the processed surface, and the flatness thereof was easily changed.

これに対し、実施例の低熱膨張セラミックス焼結体では、平均粒径が0.5μm以下であり、数μmのポアやクラックが無く、加工表面の平面度の変化を防止できることが分かった。   In contrast, the low thermal expansion ceramic sintered body of the example has an average particle size of 0.5 μm or less, no pores or cracks of several μm, and it has been found that changes in flatness of the processed surface can be prevented.

10 ポア
20 マイクロクラック
10 pore 20 micro crack

Claims (6)

β−ユークリプタイトと炭化珪素および窒化珪素から選ばれる1種以上の材料とからなる低熱膨張セラミックスであって、
相対密度が99%以上、焼結体の平均粒子径が0.5μm以下であり、
20℃以上30℃以下における平均の熱膨張係数が−1×10−6/℃以上1×10−6/℃以下であることを特徴とする低熱膨張セラミックス。
A low thermal expansion ceramic comprising β-eucryptite and one or more materials selected from silicon carbide and silicon nitride,
The relative density is 99% or more, the average particle size of the sintered body is 0.5 μm or less,
A low thermal expansion ceramic characterized in that an average thermal expansion coefficient at 20 ° C. or higher and 30 ° C. or lower is −1 × 10 −6 / ° C. or higher and 1 × 10 −6 / ° C. or lower.
電子顕微鏡で500倍の視野で観察したとき、10μm以上のポアの数が、10視野の平均で1個/視野以下であることを特徴とする請求項1記載の低熱膨張セラミックス。   2. The low thermal expansion ceramic according to claim 1, wherein the number of pores of 10 μm or more is 1 per field or less on average in 10 fields when observed with an electron microscope at a magnification of 500 times. 電子顕微鏡で3000倍の視野で観察したとき、10μm以上の長さのマイクロクラックの数が、10視野の合計で1個以下であることを特徴とする請求項1または請求項2記載の低熱膨張セラミックス。   3. The low thermal expansion according to claim 1, wherein the number of microcracks having a length of 10 μm or more is 1 or less in total when viewed with an electron microscope at a magnification of 3000 times. Ceramics. ヤング率が140GPa以上であることを特徴とする請求項1から請求項3のいずれかに記載の低熱膨張セラミックス。   The low thermal expansion ceramic according to any one of claims 1 to 3, wherein Young's modulus is 140 GPa or more. 3点曲げ強度が250MPa以上であることを特徴とする請求項1から請求項4のいずれかに記載の低熱膨張セラミックス。   The low thermal expansion ceramic according to any one of claims 1 to 4, wherein a three-point bending strength is 250 MPa or more. β−ユークリプタイトと炭化珪素および窒化珪素から選ばれる1種以上の材料とからなる低熱膨張セラミックスの製造方法であって、
β−ユークリプタイトの原料粉と炭化珪素および窒化珪素から選ばれる1種以上の材料の原料粉とを混合粉砕し平均一次粒子径で0.25μm以下にする粉砕工程と、
前記粉砕工程で得られた粉末を加圧成形する成形工程と、
前記成形工程で得られた成形体を1200℃以上1315℃以下で焼成する焼成工程と、
100MPa以上、1150℃以上1300℃以下でHIP処理を実施するHIP処理工程と、を含むことを特徴とする低熱膨張セラミックスの製造方法。
A method for producing a low thermal expansion ceramic comprising β-eucryptite and one or more materials selected from silicon carbide and silicon nitride,
a crushing step of mixing and crushing a raw powder of β-eucryptite and a raw material powder of one or more materials selected from silicon carbide and silicon nitride so as to have an average primary particle size of 0.25 μm or less;
A molding step of pressure-molding the powder obtained in the pulverization step;
A firing step of firing the molded body obtained in the molding step at 1200 ° C. or higher and 1315 ° C. or lower;
And a HIP processing step of performing HIP processing at 100 MPa or higher and 1150 ° C. or higher and 1300 ° C. or lower.
JP2012212678A 2012-09-26 2012-09-26 Low thermal expansion ceramics and method for producing the same Active JP6179026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012212678A JP6179026B2 (en) 2012-09-26 2012-09-26 Low thermal expansion ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212678A JP6179026B2 (en) 2012-09-26 2012-09-26 Low thermal expansion ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014065635A true JP2014065635A (en) 2014-04-17
JP6179026B2 JP6179026B2 (en) 2017-08-16

Family

ID=50742412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212678A Active JP6179026B2 (en) 2012-09-26 2012-09-26 Low thermal expansion ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP6179026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013266A1 (en) * 2018-07-12 2020-01-16 京セラ株式会社 Complex

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116358A (en) * 1997-10-14 1999-04-27 Taiheiyo Cement Corp Processing of superplastic ceramic
JP2001302340A (en) * 2000-04-24 2001-10-31 Taiheiyo Cement Corp High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
JP2002133943A (en) * 2000-10-24 2002-05-10 Nippon Steel Corp Conductive low thermal expansion ceramic sintered compact
JP2010111559A (en) * 2008-11-10 2010-05-20 Taiheiyo Cement Corp Ceramic joint and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116358A (en) * 1997-10-14 1999-04-27 Taiheiyo Cement Corp Processing of superplastic ceramic
JP2001302340A (en) * 2000-04-24 2001-10-31 Taiheiyo Cement Corp High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
JP2002133943A (en) * 2000-10-24 2002-05-10 Nippon Steel Corp Conductive low thermal expansion ceramic sintered compact
JP2010111559A (en) * 2008-11-10 2010-05-20 Taiheiyo Cement Corp Ceramic joint and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013266A1 (en) * 2018-07-12 2020-01-16 京セラ株式会社 Complex
KR20210016040A (en) * 2018-07-12 2021-02-10 교세라 가부시키가이샤 Complex
CN112368431A (en) * 2018-07-12 2021-02-12 京瓷株式会社 Composite body
CN112368431B (en) * 2018-07-12 2022-09-16 京瓷株式会社 Composite body
KR102545364B1 (en) 2018-07-12 2023-06-20 교세라 가부시키가이샤 complex

Also Published As

Publication number Publication date
JP6179026B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP4854482B2 (en) Boron carbide sintered body and manufacturing method thereof
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
JPS6168373A (en) Silicon nitride sintered body and manufacture
US20120309609A1 (en) Composite material with controlled coefficient of thermal expansion with oxidic ceramics and process for obtaining same
US8871139B2 (en) Manufacturing transparent yttrium aluminum garnet by spark plasma sintering
WO2017030360A1 (en) Silicon nitride sintered compact with high thermal conductivity, and method for manufacturing same
WO2014122865A1 (en) Light transmitting metal oxide sintered body manufacturing method and light transmitting metal oxide sintered body
JP5830439B2 (en) Rolling element and manufacturing method thereof
WO2019235593A1 (en) Plate-like silicon nitride sintered body and production method thereof
US20120107585A1 (en) Ceramic Composite Based on Beta-Eucryptite and an Oxide, and Process of Manufacturing Said Composite
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
KR20210119009A (en) Ceramic composite and method of fabricating thereof
US20130337994A1 (en) Lithium aluminosilicate-based materials with negative thermal expansion coefficient in a broad temperature range, preparation process and use
JP6035938B2 (en) Low thermal expansion ceramic, exposure apparatus stage, and method of manufacturing low thermal expansion ceramic
JP2011195395A (en) Method for producing silicon nitride-based ceramic
JP2013100216A (en) Oxide ceramic sintered compact and method of manufacturing the same
JP6179026B2 (en) Low thermal expansion ceramics and method for producing the same
JPWO2013008697A1 (en) AlN substrate and manufacturing method thereof
JP7201103B2 (en) Plate-like silicon nitride sintered body and manufacturing method thereof
JP2019011216A (en) Ceramic composition and its sintered body
JP2021095317A (en) Silicon nitride sintered compact and bearing using the same
KR101722652B1 (en) A composite ceramic material having ultra high temperature stability in atmosphere and manufacturing method of the composite ceramic material
JP2007031269A (en) Machinable glass ceramic and process for production thereof
JP6952392B2 (en) Ceramic manufacturing method and low thermal expansion ceramics
JP2006027986A (en) Member for semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170628

R150 Certificate of patent or registration of utility model

Ref document number: 6179026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250