JPH11114716A - Machining method of die - Google Patents

Machining method of die

Info

Publication number
JPH11114716A
JPH11114716A JP30656397A JP30656397A JPH11114716A JP H11114716 A JPH11114716 A JP H11114716A JP 30656397 A JP30656397 A JP 30656397A JP 30656397 A JP30656397 A JP 30656397A JP H11114716 A JPH11114716 A JP H11114716A
Authority
JP
Japan
Prior art keywords
cutting
milling tool
machining
die
milling cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30656397A
Other languages
Japanese (ja)
Inventor
Masahiro Yamakawa
昌宏 山川
Hiroaki Otsuka
宏明 大塚
Hideyuki Ekusa
秀幸 江草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP30656397A priority Critical patent/JPH11114716A/en
Publication of JPH11114716A publication Critical patent/JPH11114716A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately and quickly machine a die blank into the specified form while checking load against a milling cutter of an end mill or the like, reducing an amount of unmachining allowance, and to facilitate its finishing at the next process by installing this milling cutter where each cutting edge is installed in an outer boundary and a bottom face, and an easement means easing the load in time of machining contact of this milling cutter with the die blank, and cutting this machining contact part through a spiral milling process spirally shifting this milling cutter along the machining form. SOLUTION: This die machining method is for machining a die blank 3 by moving a milling cutter to form this die, and it is equipment with the milling cutter where each of cutting edges 6 and 7 is installed in an outer boundary and a bottom face, and an easement means easing any load against the milling cutter in time of machining contact of this milling cutter with a die blank 3, and in this constitution, this machining contact part is cut by a spiral milling process spirally shifting the milling cutter along a curve 10 of machining form. In this case, it is set in an obliquely upward point b0, and then a deep cutting part is machined with a constant infeed rate while shifting it downward aslant along a spiral path (b) as rotating, it about 600 to 1000 rpm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金型を形成する
ためにフライス工具を移動させて金型素材を切削するよ
うな金型の切削加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of cutting a mold by moving a milling tool to form a mold to cut a mold material.

【0002】[0002]

【従来の技術】従来、上述例の金型の切削加工方法とし
ては例えば、特開平8−243827号公報に記載の方
法がある。すなわち、ガス溶接後のブランク(素材)か
ら突き加工によって余肉が除去された金型素材91(図
10参照)を設け、この金型素材91に対し少なくとも
一方向の輪郭が曲線である型面92を形成するためにフ
ライス工具をその切削面と直交する方向に突き出し移動
しつつ切削をする突き加工を、金型素材91の一方向に
順次繰返して行なう。
2. Description of the Related Art Conventionally, as a method of cutting a mold of the above-described example, there is a method described in Japanese Patent Application Laid-Open No. H8-2443827. That is, a mold material 91 (see FIG. 10) is provided in which the excess thickness has been removed from the blank (material) after gas welding by a punching process, and a mold surface having at least one direction contour in the mold material 91 is a curve. In order to form the mold 92, the punching process of cutting while moving the milling tool in a direction orthogonal to the cutting surface is repeatedly performed in one direction of the mold material 91.

【0003】上述の突き加工を、図10に軌跡線93で
示すように、金型素材91の一方向でその型面92が最
も深くなる箇所より始めると共に、それ以後の突き加工
毎ににそのストロークエンドにてスライス工具を、一回
前の突き加工で切削した位置まで型面92の輪郭に沿っ
て斜め下方に移動して切削する所謂斜め突き加工を実行
し、突き加工の終了後において型面92に対して仕上げ
加工を施して、金型を形成する方法である。
[0003] The above-described punching process is started from a position where the mold surface 92 becomes deepest in one direction of the mold material 91 as shown by a locus line 93 in FIG. At the stroke end, the so-called oblique punching is performed, in which the slice tool is moved obliquely downward along the contour of the mold surface 92 to the position cut by the previous punching, and cut. This is a method in which the surface 92 is subjected to finish processing to form a mold.

【0004】この従来の金型の切削加工方法(いわゆる
斜め突き加工方法)によれば、従前の突き加工に見られ
る如き階段状の削り残しがなくなり、仕上げ加工に要す
る時間短縮と切削加工の効率化を図ることができる利点
がある反面、次のような問題点があった。つまり上述の
突き加工に用いられるフライス工具、特にバーチカルミ
ルは本来、上下方向に動かすことを目的に開発された刃
物であるため、斜め突き加工時の加工負荷に対抗すべく
バーチカルミルの軸を太くして、その剛性を上げてい
る。
According to the conventional die cutting method (so-called oblique punching method), there is no step-like uncut portion as seen in the conventional punching process, so that the time required for the finishing process is reduced and the efficiency of the cutting process is reduced. Although there is an advantage that it can be achieved, there are the following problems. In other words, the milling tool used for the above-mentioned punching, especially the vertical mill, is originally a blade developed for the purpose of moving vertically, so that the vertical mill has a thicker axis to counter the processing load during oblique punching. And it has increased its rigidity.

【0005】このため、図11に示すコーナ部94や溝
形状部95に対する切削加工には不向きとなり、仮りに
該部94,95への切削に上述のバーチカルミルを用い
ると、削り残しが発生する問題点があった。
For this reason, it is unsuitable for cutting the corner portions 94 and the groove portions 95 shown in FIG. 11, and if the above-mentioned vertical mill is used for cutting the portions 94 and 95, uncut portions will be left. There was a problem.

【0006】[0006]

【発明が解決しようとする課題】この発明の請求項1記
載の発明は、外周および底面に切削刃が設けられたフラ
イス工具と、このフライス工具の金型素材への切削当接
時にその負荷を緩和する緩和手段とを備え、上述のフラ
イス工具を加工形状に沿って螺旋移動させるスパイラル
加工にて切削当接部分を切削することで、エンドミル等
のフライス工具への負荷を抑制しつつ、確実かつ素早く
所定形状に切削加工でき、削り残し(残し代)が少なく
なって、次工程での仕上げ加工が容易となる金型の切削
加工方法の提供を目的とする。
According to the first aspect of the present invention, there is provided a milling tool having a cutting blade provided on an outer periphery and a bottom surface, and a load applied when the milling tool is brought into contact with a mold material during cutting. Equipped with a mitigation means for relaxing, by cutting the cutting contact portion by spiral machining of the above-mentioned milling tool spirally moving along the machining shape, while suppressing the load on the milling tool such as an end mill, reliably and An object of the present invention is to provide a die cutting method capable of quickly cutting into a predetermined shape, reducing uncut portions (remaining allowance), and facilitating finishing in the next step.

【0007】この発明の請求項2記載の発明は、上記請
求項1記載の発明の目的と併せて、輪郭が曲線である金
型形状に加工する時、この曲線形状に沿って上述のフラ
イス工具を螺旋移動させてスパイラル加工することで、
削り残しをより一層少なくすることができる金型の切削
加工方法の提供を目的とする。
According to a second aspect of the present invention, in addition to the object of the first aspect of the present invention, when machining into a mold having a curved contour, the milling tool is formed along the curved shape. By spirally moving
It is an object of the present invention to provide a method for cutting a mold, which can further reduce the uncut portion.

【0008】この発明の請求項3記載の発明は、上記請
求項1または2記載の発明の目的と併せて、フライス工
具を斜め上方から斜め下方へ移動させて切削を開始する
ことで、フライス工具の軸に対する曲げ方向の負荷付勢
が小さく、切削開始時におけるフライス工具への抵抗の
低減を図ることができる金型の切削加工方法の提供を目
的とする。
[0008] According to a third aspect of the present invention, in addition to the object of the first or second aspect, the milling tool is moved obliquely from above to obliquely downward to start cutting. The present invention has an object to provide a method of cutting a die, in which the load bias in the bending direction with respect to the axis of the die is small, and the resistance to the milling tool at the start of cutting can be reduced.

【0009】この発明の請求項4記載の発明は、上記請
求項1または2記載の発明の目的と併せて、フライス工
具による切削を曲率の大きい箇所(カーブの緩やかな部
位)から開始することで、切削開始時におけるフライス
工具への負荷低減を図ることができる金型の切削加工方
法の提供を目的とする。
According to a fourth aspect of the present invention, in addition to the object of the first or second aspect of the present invention, cutting by a milling tool is started from a portion having a large curvature (a portion having a gentle curve). Another object of the present invention is to provide a die cutting method capable of reducing the load on a milling tool at the start of cutting.

【0010】この発明の請求項5記載の発明は、上記請
求項1または2記載の発明の目的と併せて、切削当接時
においてフライス工具の移動速度をその他切削時に比し
て低減することで、切削開始時におけるフライス工具へ
の負荷軽減を図ることができる金型の切削加工方法の提
供を目的とする。
According to a fifth aspect of the present invention, in addition to the object of the first or second aspect of the present invention, the moving speed of the milling tool during cutting contact is reduced as compared with other cutting times. Another object of the present invention is to provide a die cutting method capable of reducing the load on a milling tool at the start of cutting.

【0011】この発明の請求項6記載の発明は、上記請
求項1または2記載の発明の目的と併せて、上述のフラ
イス工具の螺旋移動における一周回中で、斜め上方への
移動を加工形状に沿う軌跡と成すことで、斜め下方への
移動に対して斜め上方への移動の方が移動軌跡勾配が緩
やかとなり、フライス工具の軸に対する曲げ方向の負荷
付勢が可及的小さくなって、円滑な切削加工を実行する
ことができる金型の切削加工方法の提供を目的とする。
According to a sixth aspect of the present invention, in addition to the object of the first or second aspect of the present invention, the above-described movement of the milling tool in the spiral movement in one round is performed by obliquely upward movement. By making the trajectory along, the inclination of the movement trajectory in the diagonally upward movement becomes gentler in the diagonally downward movement, and the load bias in the bending direction with respect to the axis of the milling tool becomes as small as possible. It is an object of the present invention to provide a die cutting method capable of performing smooth cutting.

【0012】この発明の請求項7記載の発明は、上記請
求項1または2記載の発明の目的と併せて、フライス工
具による最終の切削は加工形状に沿って一周回すること
で、削り残し(残し代)をさらに僅少とすることがで
き、後加工の容易化を達成することができる金型の切削
加工方法の提供を目的とする。
According to a seventh aspect of the present invention, in addition to the object of the first or second aspect of the present invention, the final cutting by the milling tool is performed by making one round along the machined shape, thereby leaving uncut ( It is another object of the present invention to provide a method of cutting a metal mold, which can further reduce the remaining margin and facilitate the post-processing.

【0013】[0013]

【課題を解決するための手段】この発明の請求項1記載
の発明は、金型を形成するためにフライス工具を移動さ
せて金型素材を切削する金型の切削加工方法であって、
外周および底面に切削刃が設けられたフライス工具と、
上記フライス工具の金型素材への切削当接時、該フライ
ス工具への負荷を緩和する緩和手段とを備え、上記フラ
イス工具を加工形状に沿って螺旋移動させるスパイラル
加工にて切削当接部分を切削する金型の切削加工方法で
あることを特徴とする。
According to a first aspect of the present invention, there is provided a method of cutting a mold by moving a milling tool to form a mold and cutting a mold material.
A milling tool provided with cutting blades on the outer and bottom surfaces,
At the time of the cutting contact of the milling tool with the mold material, the cutting tool has a relief means for reducing the load on the milling tool, and the cutting contact portion is formed by a spiral process in which the milling tool is spirally moved along the processing shape. It is a cutting method of a die to be cut.

【0014】この発明の請求項2記載の発明は、上記請
求項1記載の発明の構成と併せて、輪郭が曲線である金
型形状に加工する金型の切削加工方法であって、該曲線
形状に沿って上記フライス工具を螺旋移動させてスパイ
ラル加工する金型の切削加工方法であることを特徴とす
る。
According to a second aspect of the present invention, there is provided a method of cutting a die for processing into a die shape having a curved outline, in addition to the configuration of the first aspect of the present invention. It is a cutting method of a die for spirally moving the milling tool along a shape to perform spiral processing.

【0015】この発明の請求項3記載の発明は、上記請
求項1または2記載の発明の構成と併せて、上記緩和手
段はフライス工具を斜め上方から斜め下方へ移動させて
切削を開始する金型の切削加工方法であることを特徴と
する。
According to a third aspect of the present invention, in addition to the configuration of the first or second aspect of the present invention, the relief means moves the milling tool from diagonally upward to diagonally downward to start cutting. It is a cutting method of a mold.

【0016】この発明の請求項4記載の発明は、上記請
求項1または2記載の発明の構成と併せて、上記緩和手
段はフライス工具による切削を曲率の大きい箇所から開
始する金型の切削加工方法であることを特徴とする。
According to a fourth aspect of the present invention, in addition to the configuration of the first or second aspect of the present invention, the relief means starts the cutting of the mold by starting the cutting by the milling tool from a location having a large curvature. The method is characterized by:

【0017】この発明の請求項5記載の発明は、上記請
求項1または2記載の発明の構成と併せて、上記緩和手
段は切削当接時においてフライス工具の移動速度をその
他切削時に比して低減する金型の切削加工方法であるこ
とを特徴とする。
According to a fifth aspect of the present invention, in addition to the configuration of the first or second aspect of the present invention, the relieving means sets the moving speed of the milling tool at the time of cutting abutment as compared with that at the time of other cutting. It is a method of cutting a mold to be reduced.

【0018】この発明の請求項6記載の発明は、上記請
求項1または2記載の発明の構成と併せて、上記フライ
ス工具の螺旋移動における一周回中で、斜め上方への移
動を加工形状に沿う軌跡と成した金型の切削加工方法で
あることを特徴とする。
According to a sixth aspect of the present invention, in addition to the structure of the first or second aspect of the present invention, the diagonally upward movement of the milling tool in a spiral movement of the milling tool is formed into a machining shape. The method is characterized in that it is a method of cutting a die formed along a locus along the path.

【0019】この発明の請求項7記載の発明は、上記請
求項1または2記載の発明の構成と併せて、上記フライ
ス工具による最終の切削は加工形状に沿って一周回する
金型の切削加工方法であることを特徴とする。
According to a seventh aspect of the present invention, in addition to the configuration of the first or second aspect of the present invention, the final cutting by the milling tool is performed by cutting a die which makes one round along a machining shape. The method is characterized by:

【0020】[0020]

【発明の作用及び効果】この発明の請求項1記載の発明
によれば、外周および底面に切削刃が設けられたフライ
ス工具の金型素材への切削当接時(なかんずくファース
トタッチ時前後)に上述の緩和手段は該フライス工具へ
の負荷を緩和する。しかも上述のフライス工具を加工形
状に沿って切り込みながら螺旋移動させるスパイラル加
工により切削するので、切削当接時以降におけるフライ
ス工具の切削刃と金型素材との当たりが均一化した状態
つまりフライス工具への負荷が低減した状態で切削を継
続でき、エンドミル等のフライス工具への負荷を抑制し
つつ、確実かつ素早く所定形状に切削加工を行なうこと
ができ、削り残し(残し代)が少なくなって、次工程で
の仕上げ加工が容易となる効果がある。また上述のスパ
イラル加工によりフライス工具としては小径のエンドミ
ルを用いることが可能となるので、突き加工に用いられ
るバーチカルミルと異なり、コーナ部や溝形状部に対す
る切削加工をも容易に行なうことができる。
According to the first aspect of the present invention, when the milling tool having the cutting blades provided on the outer periphery and the bottom surface is brought into contact with the die material (particularly before and after the first touch). The relieving means described above relieves the load on the milling tool. In addition, since the above-mentioned milling tool is cut by spiral processing in which it is spirally moved while cutting along the processing shape, the contact between the cutting blade of the milling tool and the die material after the cutting contact is uniform, that is, to the milling tool Cutting can be continued in a state where the load of the end mill is reduced, cutting can be reliably and quickly performed to a predetermined shape while suppressing the load on a milling tool such as an end mill, and the uncut portion (remaining allowance) is reduced. This has the effect of facilitating finishing in the next step. Further, since the end mill having a small diameter can be used as a milling tool by the above-mentioned spiral machining, unlike a vertical mill used for a punching process, a cutting process for a corner portion or a groove-shaped portion can be easily performed.

【0021】この発明の請求項2記載の発明によれば、
上記請求項1記載の発明の効果と併せて、輪郭が曲線で
ある金型形状に加工する時、この曲線形状に沿って上述
のフライス工具を螺旋移動させてスパイラル加工するの
で、削り残しをより一層少なくすることができる効果が
ある。
According to the second aspect of the present invention,
In addition to the effect of the first aspect of the present invention, when machining into a mold shape having a curved contour, the above-mentioned milling tool is spirally moved along this curved shape to perform spiral machining. There is an effect that can be further reduced.

【0022】この発明の請求項3記載の発明によれば、
上記請求項1または2記載の発明の効果と併せて、上述
の緩和手段はフライス工具を斜め上方から斜め下方へ移
動させて切削を開始するので、フライス工具の軸に対す
る曲げ方向の負荷付勢が小さくなり、切削開始時におけ
るフライス工具への抵抗の低減を図ることができる効果
がある。因に、フライス工具を上述の逆に斜め下方から
斜め上方に移動させて切削を開始した場合には、フライ
ス工具の軸に対して曲げ方向の負荷付勢が大きくなる
が、上記方法によりフライス工具の軸に対する曲げ応力
発生を大幅に低減することができる。
According to the third aspect of the present invention,
In addition to the effect of the first or second aspect of the present invention, the above-described relaxation means starts the cutting by moving the milling tool from obliquely upward to diagonally downward, so that the load bias in the bending direction with respect to the axis of the milling tool is reduced. This has the effect of reducing the resistance to the milling tool at the start of cutting. In contrast, when the milling tool is moved from diagonally downward to diagonally upward to start cutting, the load bias in the bending direction becomes large with respect to the axis of the milling tool. Generation of bending stress with respect to the axis can be greatly reduced.

【0023】この発明の請求項4記載の発明によれば、
上記請求項1または2記載の発明の効果と併せて、上述
の緩和手段はフライス工具による切削を曲率の大きい箇
所(カーブの緩やかな部位)から開始するので、切削開
始時におけるフライス工具への負荷低減を図ることがで
きる効果がある。
According to the invention described in claim 4 of the present invention,
In addition to the effect of the first or second aspect of the present invention, the above-mentioned mitigation means starts the cutting by the milling tool from a location having a large curvature (a portion with a gentle curve), so that the load on the milling tool at the start of cutting is increased. There is an effect that reduction can be achieved.

【0024】この発明の請求項5記載の発明によれば、
上記請求項1または2記載の発明の効果と併せて、上述
の緩和手段は切削当接時においてフライス工具の移動速
度をその他の切削時と比較して低減するので、切削開始
時におけるフライス工具への負荷軽減を図ることができ
る効果がある。
According to the invention described in claim 5 of the present invention,
In addition to the effect of the first or second aspect of the present invention, the above-mentioned relaxation means reduces the moving speed of the milling tool at the time of cutting abutment as compared with other cutting times. This has the effect of reducing the load on the device.

【0025】この発明の請求項6記載の発明によれば、
上記請求項1または2記載の発明の効果と併せて、上述
のフライス工具の螺旋移動における一周回中で、斜め上
方への移動を加工形状に沿う軌跡と成したので、一定の
切り込み量で切削加工を行なう場合、斜め下方への移動
に対して斜め上方への移動の方が移動軌跡の勾配が緩や
かになる。このため、フライス工具の軸に対して付勢さ
れる曲げ方向の負荷が可及的小さくなって、円滑な切削
加工を実行することができる効果がある。
According to the sixth aspect of the present invention,
In addition to the effect of the first or second aspect of the present invention, in the above-mentioned spiral movement of the milling tool, the diagonally upward movement is a locus along the machining shape. When performing machining, the inclination of the movement trajectory becomes gentler when moving diagonally upward than when moving diagonally downward. For this reason, the load in the bending direction urged against the axis of the milling tool is reduced as much as possible, and there is an effect that a smooth cutting process can be performed.

【0026】この発明の請求項7記載の発明によれば、
上記請求項1または2記載の発明の効果と併せて、上述
のフライス工具による最終の切削は加工形状に沿って一
周回するので、削り残し(残し代)をさらに僅少とする
ことができて、後加工の容易化を達成することができる
効果がある。
According to the seventh aspect of the present invention,
In addition to the effect of the first or second aspect of the present invention, since the final cutting by the milling tool makes one round along the machined shape, the uncut portion (remaining allowance) can be further reduced. This has the effect of facilitating post-processing.

【0027】[0027]

【実施例】この発明の一実施例を以下図面に基づいて詳
述する。図面は金型の切削加工方法の一例として車両の
プラスチックバンパを成形するために用いられる金型の
切削加工方法を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. The drawings show a method of cutting a mold used for molding a plastic bumper of a vehicle as an example of a method of cutting a mold.

【0028】まず図1に示す如く鋼材をガス溶断した金
型素材1を設ける。図面では図示の便宜上、その一部分
を示すが、この金型素材1はプラスチックバンパの車幅
方向に延びる中央部と対応する水平部1aと、プラスチ
ックバンパの左右両端部に対応した垂直部1b,1bと
を備えて、その全体形状が略U字状に形成されたもので
ある。次に図1に示す金型素材1をフライス工具として
のバーチカルミルを用いて同図の矢印A,B方向から突
き加工し、図2に示すような第1の大荒加工終了後の金
型素材2に切削加工する。
First, as shown in FIG. 1, a mold material 1 obtained by gas-melting a steel material is provided. In the drawings, a part of the mold material 1 is shown for convenience of illustration, but this mold material 1 includes a horizontal portion 1a corresponding to a central portion extending in the vehicle width direction of the plastic bumper, and vertical portions 1b, 1b corresponding to both left and right end portions of the plastic bumper. And the entire shape is formed in a substantially U-shape. Next, the die blank 1 shown in FIG. 1 is pierced from the directions of arrows A and B in FIG. 1 using a vertical mill as a milling tool, and the die blank after the first large rough machining as shown in FIG. Cut to 2

【0029】次に図2に示す金型素材2をフライス工具
としてのバーチカルミルを用いて、主として同図の矢印
C方向から突き加工し、図3に示すよう第2の大荒加工
終了後の金型素材3に切削加工する。ここまでの段階で
大半(例えば90%)の余肉が除去される。
Next, using a vertical mill as a milling tool, the die blank 2 shown in FIG. 2 is mainly punched in the direction of arrow C in FIG. 2 to form a die after completion of the second roughing as shown in FIG. The mold material 3 is cut. At this stage, most (for example, 90%) excess material is removed.

【0030】次に図3に示す金型素材3を本発明の金型
の切削加工方法(形状沿いスパイラル加工)により切削
加工する。なお、以下の説明においては図3のE部(図
11の溝形状部95に相当する深掘り部分)の突き残し
加工について詳述するが、図3の他の部分にあっても本
発明の金型の切削加工方法が適用できることは勿論であ
る。
Next, the die material 3 shown in FIG. 3 is cut by the die cutting method (spiral processing along the shape) of the present invention. Note that, in the following description, the remaining portion of the portion E in FIG. 3 (a deep portion corresponding to the groove portion 95 in FIG. 11) will be described in detail, but the present invention can be applied to other portions in FIG. It goes without saying that a die cutting method can be applied.

【0031】図4、図5は本発明の金型の切削加工方法
に用いられるフライス工具としてのエンドミル4を示
し、このエンドミル4は軸5の下部に主刃6と副刃7と
を備え、これらの各切削刃6,7はその外周および底面
が刃面に設定されると共に、切屑排出用の逃げ部8,8
を備えている。つまり主刃6は半径にわたって延びる底
面をもち、副刃7は軸心からの所定間隔をあけて外周ま
で延びる底面をもっている。このため切削波の熱逃げが
困難な加工においても上述の所定間隔をあけることで、
熱逃げにより熱負荷の低減を図ることができる。
FIGS. 4 and 5 show an end mill 4 as a milling tool used in the die cutting method of the present invention. The end mill 4 has a main blade 6 and a sub-edge 7 below a shaft 5. Each of these cutting blades 6 and 7 has its outer periphery and bottom surface set to a blade surface, and has a clearance 8 and 8 for chip discharge.
It has. That is, the main blade 6 has a bottom surface extending over the radius, and the sub blade 7 has a bottom surface extending to the outer periphery at a predetermined interval from the axis. For this reason, even in processing in which heat escape of the cutting wave is difficult,
The heat load can be reduced by the heat release.

【0032】図3に示すE部のうち深掘り部eは図6に
示すように最終的に極小かつ均一な残し代aを残して輪
郭が曲線である型面9(金型形状)に仕上げ加工される
ものである。
As shown in FIG. 6, the deeply digged portion e of the portion E shown in FIG. 3 is finally finished into a mold surface 9 (mold shape) having a curved outline, leaving a very small and uniform remaining allowance a. It will be processed.

【0033】そこで、上述のエンドミル4を図6、図7
に示す螺旋軌跡bに沿って移動させるスパイラル加工に
より主刃6と副刃7とが当接する切削当接部分を切削す
るが、この場合、上述の型面9上の曲線10の形状に沿
ってエンドミル4を一定の切り込み量で螺旋移動させて
スパイラル加工する。換言すれば、上述のエンドミル4
を螺旋軌跡bに沿って移動させながら常に角度をもった
アプローチなしの加工を行なう。
Therefore, the above-mentioned end mill 4 is shown in FIGS.
The cutting contact portion where the main blade 6 and the sub-blade 7 are in contact with each other is cut by the spiral processing for moving along the spiral locus b shown in FIG. 5, but in this case, along the shape of the curve 10 on the mold surface 9 described above. The end mill 4 is spirally moved at a fixed cutting amount to perform spiral processing. In other words, the above-mentioned end mill 4
While always moving along the spiral locus b, machining without an approach with an angle is always performed.

【0034】NC制御される上述のエンドミル4は約6
00〜1000rpm で回転しながら、螺旋軌跡bに沿っ
て移動速度約200〜300mm/minで移動するが、切削
当時においてはエンドミル4の移動速度をその他切削時
に比して低速に設定すると共に、エンドミル4を図6、
図7、図8に示すように斜め上方から斜め下方へ移動さ
せて切削を開始する。なお、切削当接時(なかんずくフ
ァーストタッチ時前後)において低速に設定されたエン
ドミル4はその加工が安定した後、通常の移動速度(約
200〜300mm/min)で移動する。
The above-mentioned end mill 4 controlled by NC is about 6
While rotating at 00 to 1000 rpm, it moves at a moving speed of about 200 to 300 mm / min along the spiral locus b. At the time of cutting, the moving speed of the end mill 4 is set lower than at the time of other cutting. 4 to FIG.
As shown in FIGS. 7 and 8, the cutting is started by moving from obliquely upward to obliquely downward. The end mill 4 set to a low speed at the time of cutting contact (especially before and after the first touch) moves at a normal moving speed (about 200 to 300 mm / min) after its processing is stabilized.

【0035】つまり、切削当接時において図8に示すよ
うに斜め上方から斜め下方へエンドミル4を移動させて
切削を開始すると、主刃6および副刃7の外周と底面と
が深掘り部eに接触し、エンドミル4の軸5に対する曲
げ方向の負荷付勢力が小さくなって、切削開始時におけ
るエンドミル4への抵抗の低減を図ることができる。
That is, when cutting is started by moving the end mill 4 from obliquely upward to obliquely downward as shown in FIG. 8 at the time of cutting abutment, the outer periphery and the bottom surface of the main blade 6 and the sub-blade 7 are deeply dug e. , And the load urging force in the bending direction of the end mill 4 with respect to the shaft 5 is reduced, so that the resistance to the end mill 4 at the start of cutting can be reduced.

【0036】因に、切削当時において図9に示すように
斜め下方から斜め上方へエンドミル4を移動させて切削
を開始すると、主刃6および副刃7の外周のみが深掘り
部eに接触し、エンドミル4の軸5に対する曲げ方向の
負荷付勢力が大となるので、これを解消するために切削
当接時においては図8の構成を採用する。
When cutting is started by moving the end mill 4 from obliquely downward to obliquely upward as shown in FIG. 9 at the time of cutting, only the outer peripheries of the main blade 6 and the sub-blade 7 come into contact with the deep dug portion e. Since the load biasing force in the bending direction of the end mill 4 with respect to the shaft 5 becomes large, the configuration shown in FIG.

【0037】しかも、上述のエンドミル4を図6、図7
に示す螺旋軌跡bに沿って螺旋移動させる時、この螺旋
移動における一周回中で、斜め上方への移動(図6、図
7、図9の左方から右方へのスラント移動)を加工形状
の曲線10と平行になる軌跡に設定している。
In addition, the end mill 4 described above is used in FIGS.
When the helical movement is made along the helical locus b shown in FIG. 7, the upward movement (slant movement from the left to the right in FIGS. 6, 7, and 9) in one round of the helical movement is processed. The locus is set to be parallel to the curve 10 of FIG.

【0038】つまり、斜め上方への移動を加工形状に沿
う軌跡と成すことで、一定の切り込み量にて切削加工を
行なう場合、斜め下方への移動(図6、図7、図8の右
方から左方へのスラント移動)に対して斜め上方への移
動の方が移動軌跡の勾配が緩やかになり、このため、図
9にも示すようにエンドミル4の軸5に対して付勢され
る曲げ方向の負荷が可及的小さくなって、円滑な切削加
工を実行することができる。
In other words, by making the movement obliquely upward as a trajectory along the processing shape, when cutting is performed with a constant cutting depth, the movement diagonally downward (rightward in FIGS. 6, 7 and 8). (Left slant movement), the inclination of the movement trajectory becomes gentler when moving obliquely upward, and therefore, it is urged against the shaft 5 of the end mill 4 as shown in FIG. The load in the bending direction is reduced as much as possible, and smooth cutting can be performed.

【0039】そこで、図3に示す第2の大中荒加工終了
後の金型素材3において上述の深掘り部eを切削加工す
る場合、NC制御されるエンドミル4を図6、図7の斜
め上方のポイントb0にセットし、約600〜1000
rpm で回転させつつ螺旋軌跡bに沿って斜め下方へ移動
させながら一定の切り込み量で深掘り部eを切削する。
Therefore, when the above-described deep digging portion e is cut in the die blank 3 after the completion of the second large / medium roughing shown in FIG. 3, the NC-controlled end mill 4 is obliquely shown in FIGS. Set at the upper point b0, about 600-1000
The deep excavation part e is cut at a constant cutting amount while being moved obliquely downward along the spiral locus b while rotating at rpm.

【0040】エンドミル4が斜め下方の軌跡端b1に達
すると、深掘り部eの形状に対応してエンドミル4を横
方向に移動させた後に、このエンドミル4の緩勾配の軌
跡に沿って斜め下方から斜め上方へ移動させながら一定
の切り込み量で深掘り部eを再び切削し、この螺旋移動
における一周回で、加工形状に対応する螺旋エリア全域
(1つの加工部位の全域)を切削する。
When the end mill 4 reaches the end b1 of the trajectory obliquely downward, the end mill 4 is moved in the lateral direction in accordance with the shape of the deep digging portion e, and then is moved obliquely downward along the trajectory of this end mill 4. While moving obliquely upward from above, the deep digging portion e is cut again with a constant cutting amount, and the entire spiral area (the entire area of one processing portion) corresponding to the processing shape is cut by one round of the spiral movement.

【0041】エンドミル4が斜め上方の軌跡端b2に達
し、このエンドミル4の螺旋移動における一周回が終了
すると、以下、上述と同様の操作を繰返して、螺旋軌跡
bに沿う一定の切込みを複数周回実行し、エンドミル4
による最終の切削は加工形状の曲線10に沿って一周回
する。なお、上述のような形状沿いスパイラル加工が終
了した金型素材は、次工程において残し代aを完全に除
去する仕上げ加工が施されて、プラスチックバンパ成形
用の金型となる。
When the end mill 4 reaches the end b2 of the trajectory diagonally above and completes one round of the spiral movement of the end mill 4, the same operation as described above is repeated to make a constant cut along the spiral trajectory b a plurality of times. Run and end mill 4
The final cutting according to makes a round along the curve 10 of the processing shape. In addition, the mold material which has been subjected to the spiral processing along the shape as described above is subjected to finish processing for completely removing the remaining margin a in the next step, and becomes a mold for plastic bumper molding.

【0042】このように上記実施例の金型の切削加工方
法によれば、外周および底面に切削刃(主刃6、副刃7
参照)が設けられたフライス工具(エンドミル4参照)
の金型素材3への切削当接時に上述の緩和手段は該フラ
イス工具(エンドミル4参照)への負荷を緩和する。し
かも上述のフライス工具(エンドミル4参照)を螺旋軌
跡bに沿って切り込みながら移動させるスパイラル加工
により切削当接部分を切削するので、フライス工具(エ
ンドミル4参照)への負荷を抑制しつつ、確実かつ素早
く所定形状に切削加工を行なうことができ、削り残し
(残し代)が少なくなって、次工程での仕上げ加工が容
易となる効果がある。また上述のスパイラル加工により
フライス工具としては小径のエンドミル4を用いること
が可能となるので、突き加工に用いられるバーチカルミ
ルと異なり、コーナ部や溝形状部に対する切削加工をも
容易に行なうことができる。
As described above, according to the die cutting method of the above embodiment, the cutting blades (the main blade 6 and the sub-
Milling tool (see end mill 4)
The above-described relieving means relieves the load on the milling tool (see the end mill 4) at the time of the cutting abutment on the die blank 3. Moreover, since the cutting contact portion is cut by the spiral processing in which the above-mentioned milling tool (see the end mill 4) is moved while being cut along the spiral locus b, the load on the milling tool (see the end mill 4) is surely and securely reduced. Cutting can be quickly performed to a predetermined shape, and the uncut portion (remaining allowance) is reduced, so that the finishing process in the next step is facilitated. Further, since the end mill 4 having a small diameter can be used as a milling tool by the above-mentioned spiral machining, unlike the vertical mill used for thrust machining, cutting of a corner portion or a groove portion can be easily performed. .

【0043】さらに、輪郭が曲線である金型形状(型面
9参照)に加工する時、この曲線形状(型面9上の曲線
10の形状参照)に沿って上述のフライス工具(エンド
ミル4参照)を螺旋移動させてスパイラル加工するの
で、削り残しをより一層少なくすることができる効果が
あるうえ、製品形状の曲面に対応して一定の切り込み量
で螺旋状に加工できるため、エアカットが少なく、加工
効率の向上を図ることができる。
Further, when processing into a mold shape having a curved contour (see the mold surface 9), the above-mentioned milling tool (see the end mill 4) along this curved shape (see the shape of the curve 10 on the mold surface 9). ) Is spirally moved and spirally processed, which has the effect of further reducing the uncut portion. In addition, since it can be processed spirally with a constant cutting amount corresponding to the curved surface of the product shape, air cut is reduced. In addition, processing efficiency can be improved.

【0044】加えて、上述の緩和手段はフライス工具
(エンドミル4参照)を図8に示す如く斜め上方から斜
め下方へ移動させて切削を開始するので、フライス工具
(エンドミル4参照)の軸5に対する曲げ方向の負荷付
勢が小さくなり、切削開始時におけるフライス工具(エ
ンドミル4参照)への抵抗の低減を図ることができる効
果がある。因に、エンドミル4を上述の逆に斜め下方か
ら斜め上方に移動させて切削を開始した場合には、エン
ドミル4の軸5に対して曲げ方向の負荷付勢が大きくな
るが、上記方法によりエンドミル4の軸5に対する曲げ
応力発生を大幅に低減することができる。
In addition, the above-mentioned relaxation means moves the milling tool (see end mill 4) obliquely downward from above as shown in FIG. 8 to start cutting. There is an effect that the load bias in the bending direction is reduced, and the resistance to the milling tool (see the end mill 4) at the start of cutting can be reduced. When cutting is started by moving the end mill 4 obliquely downward from above in the opposite direction, the load bias in the bending direction with respect to the shaft 5 of the end mill 4 increases. The generation of bending stress on the shaft 5 of 4 can be greatly reduced.

【0045】また、上述の緩和手段は切削当接時におい
てフライス工具(エンドミル4参照)の移動速度をその
他の切削時と比較して低減するので、切削開始時におけ
るフライス工具(エンドミル4参照)への負荷軽減を図
ることができる効果がある。
Further, the above-mentioned relaxation means reduces the moving speed of the milling tool (see the end mill 4) at the time of cutting contact as compared with the other cutting operations. This has the effect of reducing the load on the device.

【0046】さらに、上述のフライス工具(エンドミル
4参照)の螺旋移動における一周回中で、斜め上方への
移動(図9参照)を加工形状に沿う軌跡と成したので、
一定の切り込み量で切削加工を行なう場合、斜め下方へ
の移動(図8参照)に対して斜め上方への移動(図9参
照)の方が移動軌跡の勾配が緩やかになる。このため、
フライス工具(エンドミル4参照)の軸5に対して付勢
される曲げ方向の負荷が可及的小さくなって、円滑な切
削加工を実行することができる効果がある。
Further, since the above-mentioned movement (see FIG. 9) of the milling tool (see end mill 4) moves obliquely upward during the spiral movement of the milling tool (see FIG. 9), the path follows the machining shape.
When cutting is performed with a constant cutting amount, the inclination of the movement trajectory becomes gentler when moving obliquely upward (see FIG. 9) than when moving obliquely downward (see FIG. 8). For this reason,
The load in the bending direction urged against the shaft 5 of the milling tool (see the end mill 4) is reduced as much as possible, so that there is an effect that a smooth cutting process can be performed.

【0047】さらにまた、上述のフライス工具(エンド
ミル4参照)による最終の切削は加工形状に沿って一周
回するので、削り残し(残し代)をさらに僅少とするこ
とができて、中荒加工の容易化を達成することができる
効果がある。
Furthermore, since the final cutting by the above-mentioned milling tool (see the end mill 4) makes one round along the machining shape, the uncut portion (remaining allowance) can be further reduced, and the medium roughing can be performed. There is an effect that simplification can be achieved.

【0048】一方、上述の緩和手段としてはフライス工
具(エンドミル4参照)による切削を曲率の大きい箇所
(カーブの緩やかな部位)から開始する手段を用いても
よく、このように構成しても切削開始時におけるフライ
ス工具(エンドミル4参照)への負荷低減を図ることが
できる効果がある。
On the other hand, as the above-mentioned relaxing means, means for starting cutting with a milling tool (see the end mill 4) from a place having a large curvature (a part with a gentle curve) may be used. There is an effect that the load on the milling tool (see the end mill 4) at the start can be reduced.

【0049】この発明の構成と、上述の実施例との対応
において、この発明の金型は、実施例のプラスチックバ
ンパ成形用の金型に対応し、以下同様に、切削刃は、主
刃6および副刃7に対応し、フライス工具は、エンドミ
ル4に対応するも、この発明は上記実施例の構成のみに
限定されるものではない。
In the correspondence between the structure of the present invention and the above-described embodiment, the mold of the present invention corresponds to the plastic bumper molding mold of the embodiment. The milling tool corresponds to the end mill 4, and the present invention is not limited to the configuration of the above embodiment.

【0050】例えば上記実施例においては深掘り部eを
形状沿いスパイラル加工するのに適した螺旋軌跡bを例
示したが、この螺旋軌跡bのパターンは切削加工部位に
適した任意のパターンに選定することができる。
For example, in the above-described embodiment, the spiral locus b suitable for spirally processing the deeply dug portion e along the shape has been exemplified. However, the pattern of the spiral locus b is selected as an arbitrary pattern suitable for the cutting portion. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の金型の切削加工方法に用いられるガ
ス溶断後の金型素材の斜視図。
FIG. 1 is a perspective view of a die material after gas fusing used in the die cutting method of the present invention.

【図2】 第1の大荒加工終了後の金型素材の概略斜視
図。
FIG. 2 is a schematic perspective view of a mold material after a first rough machining is completed.

【図3】 第2の大荒加工終了後の金型素材の概略斜視
図。
FIG. 3 is a schematic perspective view of a mold material after completion of a second rough working.

【図4】 本発明の金型の切削加工方法に用いるエンド
ミルの部分正面図。
FIG. 4 is a partial front view of an end mill used in the die cutting method of the present invention.

【図5】 エンドミルの底面図。FIG. 5 is a bottom view of the end mill.

【図6】 本発明の金型の切削加工方法を示す説明図。FIG. 6 is an explanatory view showing a cutting method for a mold according to the present invention.

【図7】 エンドミルの螺旋軌跡を示す説明図。FIG. 7 is an explanatory view showing a spiral locus of an end mill.

【図8】 斜め上方から斜め下方への移動を示す説明
図。
FIG. 8 is an explanatory diagram showing a movement from diagonally above to diagonally below.

【図9】 斜め下方から斜め上方への移動を示す説明
図。
FIG. 9 is an explanatory view showing a movement from diagonally lower to diagonally upper.

【図10】 従来の斜め突き加工方法を示す説明図。FIG. 10 is an explanatory view showing a conventional oblique punching method.

【図11】 従来方法による削り鋸視を示す断面図。FIG. 11 is a sectional view showing a saw saw by a conventional method.

【符号の説明】[Explanation of symbols]

3…金型素材 4…エンドミル(フライス工具) 6…主刃(切削刃) 7…副刃(切削刃) b…螺旋軌跡 3: Mold material 4: End mill (milling tool) 6: Main blade (cutting blade) 7: Secondary blade (cutting blade) b: Spiral locus

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金型を形成するためにフライス工具を移動
させて金型素材を切削する金型の切削加工方法であっ
て、外周および底面に切削刃が設けられたフライス工具
と、上記フライス工具の金型素材への切削当接時、該フ
ライス工具への負荷を緩和する緩和手段とを備え、上記
フライス工具を加工形状に沿って螺旋移動させるスパイ
ラル加工にて切削当接部分を切削する金型の切削加工方
法。
1. A method for cutting a mold material by moving a milling tool to form a mold, comprising: a milling tool provided with a cutting blade on an outer periphery and a bottom surface; When the tool abuts on the mold material, the milling tool is provided with mitigation means for reducing the load on the milling tool, and the cutting abutment portion is cut by spiral machining in which the milling tool is spirally moved along the machining shape. Die cutting method.
【請求項2】輪郭が曲線である金型形状に加工する金型
の切削加工方法であって、該曲線形状に沿って上記フラ
イス工具を螺旋移動させてスパイラル加工する請求項1
記載の金型の切削加工方法。
2. A method for cutting a mold for machining into a mold shape having a curved contour, wherein the milling tool is spirally moved along the curved shape to perform spiral machining.
The cutting method of the described mold.
【請求項3】上記緩和手段はフライス工具を斜め上方か
ら斜め下方へ移動させて切削を開始する請求項1または
2記載の金型の切削加工方法。
3. The die cutting method according to claim 1, wherein the relaxing means starts the cutting by moving the milling tool from obliquely upward to obliquely downward.
【請求項4】上記緩和手段はフライス工具による切削を
曲率の大きい箇所から開始する請求項1または2記載の
金型の切削加工方法。
4. The method according to claim 1, wherein said relaxing means starts cutting with a milling tool from a location having a large curvature.
【請求項5】上記緩和手段は切削当接時においてフライ
ス工具の移動速度をその他切削時に比して低減する請求
項1または2記載の金型の切削加工方法。
5. The die cutting method according to claim 1, wherein said relaxing means reduces the moving speed of the milling tool at the time of cutting contact as compared with other cutting.
【請求項6】上記フライス工具の螺旋移動における一周
回中で、斜め上方への移動を加工形状に沿う軌跡と成し
た請求項1または2記載の金型の切削加工方法。
6. The die cutting method according to claim 1, wherein, during one round of the helical movement of the milling tool, the upward movement of the milling tool is a locus along a processing shape.
【請求項7】上記フライス工具による最終の切削は加工
形状に沿って一周回する請求項1または2記載の金型の
切削加工方法。
7. The method according to claim 1, wherein the final cutting by the milling tool makes one round along the machining shape.
JP30656397A 1997-10-20 1997-10-20 Machining method of die Pending JPH11114716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30656397A JPH11114716A (en) 1997-10-20 1997-10-20 Machining method of die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30656397A JPH11114716A (en) 1997-10-20 1997-10-20 Machining method of die

Publications (1)

Publication Number Publication Date
JPH11114716A true JPH11114716A (en) 1999-04-27

Family

ID=17958569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30656397A Pending JPH11114716A (en) 1997-10-20 1997-10-20 Machining method of die

Country Status (1)

Country Link
JP (1) JPH11114716A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210743A (en) * 2001-01-17 2002-07-30 Honda Motor Co Ltd Manufacturing method for molding die of resin product
JP2007175823A (en) * 2005-12-28 2007-07-12 Hitachi Metals Ltd Machining method of long member and machining jig
JP2009129263A (en) * 2007-11-26 2009-06-11 Argo Graphics Inc Method and program for machining press die, program for generating machining program, and machining device
US20110188959A1 (en) * 2008-07-15 2011-08-04 Open Mind Technologies Ag Method for producing a prefabricated part from an unmachined part by means of a milling tool
CN103157842A (en) * 2011-12-16 2013-06-19 贵州永红航空机械有限责任公司 Five-shaft milling method for complex curved surface
CN104400092A (en) * 2014-11-28 2015-03-11 湖北三江航天险峰电子信息有限公司 Milling finish machining method for three-dimensional profile with composite inclined surface on outline
CN107335847A (en) * 2017-06-21 2017-11-10 华中科技大学 A kind of processing method for cutting efficiency constraint cutter-orientation
CN107662011A (en) * 2016-07-28 2018-02-06 深圳光启高等理工研究院 Combined type Grinder and combined type milling method
CN113123177A (en) * 2019-12-31 2021-07-16 比亚迪股份有限公司 Antiskid steel plate, machining method thereof and track beam

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210743A (en) * 2001-01-17 2002-07-30 Honda Motor Co Ltd Manufacturing method for molding die of resin product
JP4562291B2 (en) * 2001-01-17 2010-10-13 本田技研工業株式会社 Manufacturing method of resin product molding mold
JP2007175823A (en) * 2005-12-28 2007-07-12 Hitachi Metals Ltd Machining method of long member and machining jig
JP2009129263A (en) * 2007-11-26 2009-06-11 Argo Graphics Inc Method and program for machining press die, program for generating machining program, and machining device
US20110188959A1 (en) * 2008-07-15 2011-08-04 Open Mind Technologies Ag Method for producing a prefabricated part from an unmachined part by means of a milling tool
CN103157842A (en) * 2011-12-16 2013-06-19 贵州永红航空机械有限责任公司 Five-shaft milling method for complex curved surface
CN103157842B (en) * 2011-12-16 2016-05-11 贵州永红航空机械有限责任公司 Complex-curved five axle milling methods
CN104400092A (en) * 2014-11-28 2015-03-11 湖北三江航天险峰电子信息有限公司 Milling finish machining method for three-dimensional profile with composite inclined surface on outline
CN107662011A (en) * 2016-07-28 2018-02-06 深圳光启高等理工研究院 Combined type Grinder and combined type milling method
CN107335847A (en) * 2017-06-21 2017-11-10 华中科技大学 A kind of processing method for cutting efficiency constraint cutter-orientation
CN113123177A (en) * 2019-12-31 2021-07-16 比亚迪股份有限公司 Antiskid steel plate, machining method thereof and track beam
CN113123177B (en) * 2019-12-31 2023-03-14 比亚迪股份有限公司 Antiskid steel plate, machining method thereof and track beam

Similar Documents

Publication Publication Date Title
JP2008279547A (en) Groove working method and formed rotary cutting tool
CN102137729B (en) Method for producing a prefabricated part from an unmachined part by means of a milling tool
JPH11114716A (en) Machining method of die
EP1087277B1 (en) Methods for machining workpieces
JP2647261B2 (en) Rotating disk cutter and manufacturing method thereof
JP2008279548A (en) Cutting working method and formed rotary cutting tool
KR101220899B1 (en) Three edge drill manufacture method and three edge drill
JPH08243827A (en) Metal mold cutting work process
CN114260475A (en) Narrow groove turning method
JP2993224B2 (en) Punching method of contour shape
JPH10151509A (en) Burr removing method
JP3209495B2 (en) R attaching cutter and R attaching processing method
JP4099835B2 (en) Method for forming hole shape of mold by CAM
JP2021030346A (en) Helical broach
Chu A systematic approach to avoid exit burrs in milling
JP3082232B2 (en) Axial feed cutting method
EP2897749B1 (en) Milling cutter and method of use
JPH0810865A (en) Device for finishing circumferential face of press article and method therefor
JPS6322216A (en) Spline broach
CN110039126B (en) Method for gear cutting bevel gear workpieces
JP2001113411A (en) Surface broach
JP3545070B2 (en) Roughing method for mold material
JP2004034208A (en) Cutting method of thin wall member
JP2002361513A (en) Tamping work method
JP2007229839A (en) Broach and broaching method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041022

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051011

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A02