JPH11113166A - Current limiter - Google Patents

Current limiter

Info

Publication number
JPH11113166A
JPH11113166A JP9266963A JP26696397A JPH11113166A JP H11113166 A JPH11113166 A JP H11113166A JP 9266963 A JP9266963 A JP 9266963A JP 26696397 A JP26696397 A JP 26696397A JP H11113166 A JPH11113166 A JP H11113166A
Authority
JP
Japan
Prior art keywords
superconducting wire
current limiting
current
limiting device
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9266963A
Other languages
Japanese (ja)
Inventor
Takeshi Okuma
武 大熊
Shoichi Honjo
昇一 本庄
Yoshihiro Iwata
良浩 岩田
Shiyunji Nomura
俊自 野村
Eriko Yoneda
えり子 米田
Nobuhisa Takezawa
伸久 竹澤
和行 ▲鶴▼永
Kazuyuki Tsurunaga
Masami Urata
昌身 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP9266963A priority Critical patent/JPH11113166A/en
Publication of JPH11113166A publication Critical patent/JPH11113166A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make small the loss of to generate quenching over the whole length of a superconducting wire with a small loss without specifying its quenching position when it limits a current, by fastening only its both end to a fastening member via fastening fixtures, and by keeping the other parts noncontacting. SOLUTION: In a superconducting wire 1 constituting a current limiter element, applying longitudinally a constant tension to the wire 1, only its both ends are fastened to a fastening member 3 made of an insulation material via fastening fixtures 2a, 2b to keep noncontacting its portions other than both its end portions. Therefore, even though the superconducting wire 1 receives a magnetic field change by an AC current application in a stationary time, since the superconducting wire 1 has no portion contacted frictionally with other members, no heat generating phenomenon is caused by the friction to make small the loss of the current limiting element itself generated by the AC current application. Also, even when a large faulty current flows in the wire 1 by a shorting fault, etc., since such an unstable phenomenon as to break its superconducting state is not generated, the whole of the superconducting wire 1 is quenched in its critical current value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流電路に生じる
事故電流を抑制するための限流装置に係り、特に超電導
線を限流素子として用いる限流装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current limiting device for suppressing a fault current generated in an AC circuit, and more particularly to a current limiting device using a superconducting wire as a current limiting element.

【0002】[0002]

【従来の技術】周知のように、配電線路等の交流電路に
短絡事故や地絡事故が発生すると、数10kAにも及ぶ
事故電流が流れる。この事故電流は、系統や機器の設備
費を増大させる。このようなことから、事故電流の最大
値を一定以下に抑制するための限流装置を配電線路に挿
設することが注目され、各研究機関で研究が行われてい
る。
2. Description of the Related Art As is well known, when a short circuit fault or a ground fault fault occurs on an AC power line such as a distribution line, a fault current of several tens of kA flows. This fault current increases the equipment cost of the system and equipment. For this reason, attention has been paid to the insertion of a current limiting device for suppressing the maximum value of the fault current to a certain value or less in the distribution line, and research is being conducted by various research institutions.

【0003】このような限流装置には種々のタイプがあ
り、最近では超電導技術を応用したものが提案されてい
る。すなわち、超電導線は、自身に臨界電流を超える電
流が流れようとすると、瞬時に常電導転移(クエンチ)
し、その抵抗値を増大させる。この抵抗値増加現象を利
用し、超電導線そのものを限流素子として用いている。
[0003] There are various types of such current limiting devices, and recently, devices using superconducting technology have been proposed. In other words, the superconducting wire instantaneously transitions to the normal conduction transition (quenching) when a current exceeding the critical current flows through itself.
To increase the resistance value. Utilizing this resistance value increasing phenomenon, the superconducting wire itself is used as a current limiting element.

【0004】超電導線がクエンチしたときの抵抗値は、
超電導線の長さに比例する。例えば配電系統用の限流素
子を設計する場合には、数10メートルから数100メ
ートルの超電導線を用いる必要がある。このように長い
超電導線を必要としているため、通常は、超電導線をコ
イル状に巻回して形成された限流素子を組み込むことに
よって、限流装置の小型化を図るようにしている。
The resistance value when the superconducting wire is quenched is
It is proportional to the length of the superconducting wire. For example, when designing a current limiting element for a distribution system, it is necessary to use a superconducting wire of several tens of meters to several hundreds of meters. Since such a long superconducting wire is required, a current limiting device formed by winding the superconducting wire in a coil shape is usually incorporated to reduce the size of the current limiting device.

【0005】ところで、超電導線をコイル状に巻回して
限流素子を形成する場合、全体の小型化を図るために
は、多層巻き構造を採用する必要がある。この場合、超
電導線を液体ヘリウムで代表される冷煤によって常に良
好に冷却する必要があるので、常電導コイルの場合とは
違った工夫が必要となる。
When a current limiting element is formed by winding a superconducting wire in a coil shape, it is necessary to adopt a multilayer winding structure in order to reduce the overall size. In this case, it is necessary to always cool the superconducting wire with cold soot typified by liquid helium, so a device different from the case of the normal conducting coil is required.

【0006】このようなことから、従来は、巻き芯を中
心にして超電導線を巻回して第1層目を形成した後、そ
の外側に捧状のスペーサを多数配置し、この外側に超電
導線を巻回して第2層目を形成した後、以下同様に第3
層目、第4層目、を形成する手法が採用されている。
For this reason, conventionally, after a superconducting wire is wound around a winding core to form a first layer, a large number of dedicated spacers are arranged outside the first layer, and the superconducting wire is arranged outside this. Is wound to form a second layer, and then the third layer is formed in the same manner.
A method of forming a fourth layer and a fourth layer is employed.

【0007】しかしながら、このような構成であると、
巻き線過程において多数のスペーサを配置しなければな
らないので、製作に長時間を要するばかりか、機械的強
度性に富んだものを製作できないという問題があった。
However, with such a configuration,
Since a large number of spacers must be arranged in the winding process, there is a problem that not only a long time is required for manufacturing, but also a material having high mechanical strength cannot be manufactured.

【0008】そこで、このような問題を解消し、冷却特
性、機械的強度性、製作性、高耐圧性、安定性を満足さ
せ得る方法として、特公平7−118410号公報に開
示されている超電導コイル構成を採用することが提案さ
れている。
As a method for solving such problems and satisfying cooling characteristics, mechanical strength, manufacturability, high pressure resistance and stability, a superconducting method disclosed in Japanese Patent Publication No. 7-118410 is disclosed. It has been proposed to employ a coil configuration.

【0009】すなわち、この超電導コイルでは、基本的
には円筒状の巻枠の外周面に超電導線を巻回してなる層
コイル要素を同心的に複数層重ねた構造を採用してお
り、各巻枠は外周面に超電導線を保持するための螺旋状
溝および該螺旋状溝と交差する上記螺旋状溝より深い複
数の冷媒通路溝を備えるとともに少なくとも最内層に位
置するもの以外のものが周方向に分割されたものとなっ
ている。
In other words, this superconducting coil basically adopts a structure in which a plurality of layer coil elements formed by winding a superconducting wire around the outer peripheral surface of a cylindrical bobbin are concentrically stacked. Has a spiral groove for holding the superconducting wire on the outer peripheral surface and a plurality of refrigerant passage grooves deeper than the spiral groove intersecting with the spiral groove, and at least ones other than those located at the innermost layer in the circumferential direction. It has been split.

【0010】このような構成であると、超電導線を巻き
込む時には、単に巻枠の外周面に形成された螺旋状溝内
に超電導線を装着しながら巻回すればよく、巻き線作業
の容易化が可能となる。また、螺旋状溝は、超電導線の
巻きピッチを一定に保持した状態で超電導線を確実に固
定する。したがって、超電導線の固定も充分に確保され
る。また、冷媒通路溝は、螺旋状溝より深く、しかも螺
旋状溝と交差する関係に複数形成されているので、巻き
線後であっても超電導線近傍の冷媒の流れを充分確保で
き、これによって良好な冷却が可能となる。さらに、巻
枠を周方向に複数に分割しているので、分割片同志の境
界部分から層コイル要素間の渡り線部を、いわゆる立ち
上げることができ、多層構造とはいえ全体的にすっきり
としたコンパクト構成が可能となる。また、巻枠を周方
向に複数に分割しているので、巻枠を円筒状に形成した
ときに層コイル要素間に起こり易い隙間の発生を防止す
ることができ、冷却特性や製作性を阻害することなく各
層コイル要素間の一体化を容易に実現できる。さらに、
巻枠を周方向に複数に分割しているので、層間に高分子
フイルム等の絶縁材の配設が容易となり、耐圧性能の向
上化も可能となる。
With such a configuration, when winding the superconducting wire, the superconducting wire may be simply wound while being mounted in a spiral groove formed on the outer peripheral surface of the winding frame, thereby facilitating the winding operation. Becomes possible. Further, the spiral groove reliably fixes the superconducting wire while keeping the winding pitch of the superconducting wire constant. Therefore, the fixation of the superconducting wire is sufficiently ensured. Further, since the plurality of refrigerant passage grooves are formed deeper than the spiral groove and intersect with the spiral groove, the flow of the refrigerant near the superconducting wire can be sufficiently ensured even after the winding, and Good cooling becomes possible. Furthermore, since the winding frame is divided into a plurality of parts in the circumferential direction, the so-called crossover part between the layer coil elements can be set up from the boundary between the divided pieces, so that the overall structure is neat despite the multilayer structure. This enables a compact configuration. In addition, since the winding frame is divided into a plurality in the circumferential direction, it is possible to prevent the occurrence of a gap that easily occurs between the layer coil elements when the winding frame is formed in a cylindrical shape, and impairs cooling characteristics and manufacturability. The integration between the coil elements of the respective layers can be easily realized without performing. further,
Since the winding frame is divided into a plurality of parts in the circumferential direction, it is easy to dispose an insulating material such as a polymer film between the layers, and the pressure resistance can be improved.

【0011】しかしながら、上記のように改良された巻
枠を用いて構成された限流装置にあっても次のような問
題があった。すなわち、限流素子を構成している超電導
線には、定常時において交流電流が流れているので発熱
が生じる。この発熱は、電磁気的なものと、機械的なも
のとの両方に起因している。
However, the current limiting device constructed using the improved winding frame as described above has the following problems. In other words, heat is generated in the superconducting wire constituting the current limiting element because an alternating current flows in a steady state. This heat generation is due to both electromagnetic and mechanical sources.

【0012】前者による発熱は、主として超電導線があ
びる磁場に依存しており、多層コイルにおいては1層目
と2層目とを逆向通電するように結線して無誘導化する
ことによって低減できる。
The heat generated by the former mainly depends on the magnetic field of the superconducting wire, and in the case of a multilayer coil, it can be reduced by connecting the first layer and the second layer in such a way that the first layer and the second layer are energized in the reverse direction and de-inductive.

【0013】一方、後者の発熱は、主として変動磁界に
より超電導線が振動し、巻枠と接触している部分の摩擦
によって引き起こされる。この微小摩擦による発熱は、
〜1Wのオーダーに達すると考えられている。超電導線
を限流素子として用いる限流装置では、本来、超電導線
にその臨界電流を超える電流が流れようとしたとき、超
電導線が瞬時にクエンチすることが望まれる。しかし、
上述した機械的不安定性に起因して超電導線にクエンチ
が生じることがある。このような機械的不安定性は、超
電導線と巻枠との接触状態により変化する。このため、
巻枠に超電導線を巻回して限流素子を構成したものにお
いては、クエンチ電流値が素子全体、つまり超電導線の
長さ方向に亘って分布を持つことになる。
On the other hand, the latter heat is generated mainly by the friction of the portion in contact with the bobbin due to the superconducting wire vibrating due to the fluctuating magnetic field. The heat generated by this minute friction
It is believed to reach the order of ~ 1W. In a current limiting device using a superconducting wire as a current limiting element, it is originally desired that the superconducting wire be instantly quenched when a current exceeding the critical current flows through the superconducting wire. But,
The quench may occur in the superconducting wire due to the mechanical instability described above. Such mechanical instability changes depending on the state of contact between the superconducting wire and the bobbin. For this reason,
In the case where the superconducting wire is wound around the winding frame to constitute a current limiting element, the quench current value has a distribution over the entire element, that is, the length direction of the superconducting wire.

【0014】改良された巻枠を用いて構成された従来の
限流装置にあっても、超電導線の大部分は巻枠と接触し
ている。したがって、クエンチ電流値に分布が存在して
いることには変わりない。このようにクエンチ電流値に
分布があると、限流時に低いクエンチ電流を示す部分が
最初に常電導へ転移して抵抗を発生する。このときの発
生抵抗により事故電流が限流される。したがって、クエ
ンチ電流値の分布が大きい場合には、超電導線の一部分
のみが常電導転移することになり、この常電導転移した
部分だけで投入されたエネルギを消費することになるの
で、導体の劣化さらには焼損を招く虞があった。また、
事故時毎に発生する抵抗値が変化する虞があるので、系
統の安定度へ影響を与える虞もあった。
Even in a conventional current limiting device constructed using the improved bobbin, most of the superconducting wire is in contact with the bobbin. Therefore, the distribution of the quench current value still exists. When the quench current value has a distribution as described above, a portion exhibiting a low quench current at the time of current limiting transitions to normal conduction first to generate resistance. The fault current is limited by the resistance generated at this time. Therefore, when the distribution of the quench current value is large, only a part of the superconducting wire undergoes normal conduction transition, and only the part where the normal conduction transition has been performed consumes the input energy. Further, there is a risk of burning. Also,
Since there is a possibility that the resistance value generated every time of an accident changes, there is also a possibility that the stability of the system may be affected.

【0015】[0015]

【発明が解決しようとする課題】上述の如く、巻枠に超
電導線を巻回したものを限流素子として用いる従来の限
流装置にあっては、クエンチ電流値が超電導線固有の臨
界電流値よりも超電導線を固定している部分の機械的不
安定性によって決まり易く、これが原因して超電導線の
局部的劣化や焼損を招くばかりか、系統の安定度へも悪
影響を与える虞があった。
As described above, in a conventional current limiting device using a superconducting wire wound around a bobbin as a current limiting element, the quench current value is a critical current value inherent to the superconducting wire. It is more likely to be determined by the mechanical instability of the portion where the superconducting wire is fixed than this, which may cause local deterioration and burning of the superconducting wire, as well as adversely affect the stability of the system.

【0016】そこで本発明は、低損失で、かつ限流時に
はクエンチ発生場所が特定されることなく、超電導線の
全体に亘ってクエンチを発生させることができ、信頼性
の高い限流動作を行わせることが可能な限流装置を提供
することを目的としている。
Therefore, the present invention is capable of generating a quench over the entire superconducting wire with low loss and without specifying the quench location at the time of current limiting, and performing a reliable current limiting operation. It is an object of the present invention to provide a current limiting device capable of causing a current to flow.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明は、超電導線を限流素子として
用いる限流装置において、前記超電導線の両端部のみが
固定具を介して固定部材に固定され、上記超電導線の上
記両端部以外の部分が非接触に保持されていることを特
徴としている。
According to a first aspect of the present invention, there is provided a current limiting device using a superconducting wire as a current limiting element, wherein only the both ends of the superconducting wire are connected via fixing members. The superconducting wire is fixed to the fixing member, and portions other than the both ends of the superconducting wire are held in a non-contact manner.

【0018】なお、前記超電導線は、張力が加えられた
状態で前記固定具を介して前記固定部材に固定されてい
ることが好ましい。また、上記目的を達成するために、
請求項3に係る発明は、超電導線を限流素子として用い
る限流装置において、前記超電導線の両端部を固定部材
に固定する両端固定具と、前記固定部材に装着されて前
記超電導線の両端部間における複数箇所を上記超電導線
に加えられた張力で支持する複数の中間支持具とを備え
ていることを特徴としている。
Preferably, the superconducting wire is fixed to the fixing member via the fixing tool in a state where tension is applied. In order to achieve the above objective,
The invention according to claim 3 is a current limiting device using a superconducting wire as a current limiting element, wherein both ends of the superconducting wire are fixed to a fixing member, and both ends of the superconducting wire attached to the fixing member. And a plurality of intermediate supports for supporting a plurality of portions between the portions with the tension applied to the superconducting wire.

【0019】なお、前記各中間支持具は、前記超電導線
の両端部間をほぼ等間隔に支持していることが好まし
い。また、前記各中間支持具は、前記超電導線の前記両
端部間を蛇行形態に支持していてもよい。
It is preferable that each of the intermediate supports supports both ends of the superconducting wire at substantially equal intervals. Further, each of the intermediate supports may support between the both ends of the superconducting wire in a meandering form.

【0020】また、前記各中間支持具は、両端部に比べ
て中央部が小径な鼓状に形成されていてもよい。また、
前記各中間支持具は、前記固定部材に対して回転自在に
設けられていてもよい。
[0020] Each of the intermediate supports may be formed in a drum shape having a smaller diameter at the center than at both ends. Also,
Each of the intermediate supports may be rotatably provided with respect to the fixing member.

【0021】請求項1に係る限流装置では、限流素子を
構成している超電導線の両端部のみが固定されており、
両端部間は非接触に保持されている。特に、超電導線に
張力を加えた状態で超電導線の両端部を固定すると、超
電導線が直線状に張られたものとなるので、超電導線の
両端部間を非接触に保持しやすい。このため、定常時に
交流通電により超電導線が変動磁界、すなわち変動する
電磁力を受けても、超電導線には他の部材と摩擦接触す
る部位がないため、摩擦による発熱現象は生じない。し
たがって、交流通電による素子自身の損失は無視し得る
ほど小さい。
In the current limiting device according to the first aspect, only both ends of the superconducting wire constituting the current limiting element are fixed,
Non-contact is maintained between both ends. In particular, when both ends of the superconducting wire are fixed in a state where tension is applied to the superconducting wire, the superconducting wire is stretched in a straight line, so that it is easy to hold the two ends of the superconducting wire in a non-contact manner. For this reason, even if the superconducting wire receives a fluctuating magnetic field, that is, a fluctuating electromagnetic force due to alternating current in a steady state, the superconducting wire does not have a portion that comes into frictional contact with another member, so that a heat generation phenomenon due to friction does not occur. Therefore, the loss of the element itself due to the alternating current is negligibly small.

【0022】一方、短絡事故等により大きな事故電流が
流れようとした場合にあっても、摩擦発熱などのように
超電導線の臨界電流値より低い値で超電導状態を破るよ
うな不安定現象が生じないため、高いクエンチ電流を示
すとともに素子全体に亘って均一なクエンチ電流値を示
す。すなわち、素子全体が同時に常電導状態へ転移する
ため、素子全体が抵抗体となる。したがって、定常時に
は抵抗がほぼ零で回路電流を流し、短絡事故等のときに
は素子全体の抵抗値で事故電流を限流することが可能と
なる。
On the other hand, even when a large fault current is about to flow due to a short circuit fault or the like, an unstable phenomenon such as frictional heating that breaks the superconducting state at a value lower than the critical current value of the superconducting wire occurs. Therefore, a high quench current is exhibited and a uniform quench current value is exhibited over the entire device. In other words, the entire element simultaneously transitions to the normal conduction state, so that the entire element becomes a resistor. Therefore, in a steady state, the circuit current flows with almost zero resistance, and in the event of a short circuit or the like, the fault current can be limited by the resistance value of the entire element.

【0023】請求項3に係る限流装置では、限流素子を
構成する超電導線の両端部を固定部材に固定するととも
に、超電導線の両端部間における複数箇所を中間支持具
で超電導線に加えられた張力で支持するようにしている
ので、例えば超電導線が蛇行するように中間支持具で支
持することによって、素子全体の体積を小型にすること
ができる。
In the current limiting device according to the third aspect, both ends of the superconducting wire constituting the current limiting element are fixed to the fixing member, and a plurality of portions between both ends of the superconducting wire are added to the superconducting wire by the intermediate support. Since the element is supported by the applied tension, the volume of the entire element can be reduced by, for example, supporting the superconducting wire with an intermediate support so as to meander.

【0024】なお、この限流装置では、中間支持具で支
持している部分において摩擦などの発熱現象が生じ得
る。したがって、中間支持具で支持されている箇所でク
エンチが発生する可能性があるが、むしろクエンチ発生
場所を上記支持箇所に限定することが可能となり、この
支持箇所における摩擦などの発熱現象を制御することに
より、素子全体のクエンチ電流を制御することが可能で
ある。
In this current limiting device, a heat generation phenomenon such as friction may occur in a portion supported by the intermediate support. Therefore, although quench may occur at a location supported by the intermediate support, it is possible to limit the quench occurrence location to the above-mentioned support location, and to control a heat generation phenomenon such as friction at the support location. This makes it possible to control the quench current of the entire device.

【0025】[0025]

【発明の実施の形態】以下、図面を参照しながら発明の
実施形態を説明する。図1には本発明の第1の実施形態
に係る限流装置における要部の斜視図が示されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a main part of the current limiting device according to the first embodiment of the present invention.

【0026】同図において、1は限流素子を構成する超
電導線である。この超電導線1は、長手方向に一定の張
力が加えられた状態で、その両端部のみが固定具2a,
2bを介して絶縁材製の固定部材3に固定され、上記両
端部以外の部分は非接触に保持されている。なお、固定
具2a,2bには、超電導線1の両端部に接続された電
極4a、4bが固定されている。
In FIG. 1, reference numeral 1 denotes a superconducting wire constituting a current limiting element. This superconducting wire 1 has a fixed tension applied in the longitudinal direction, and only two ends of the superconducting wire 1
It is fixed to a fixing member 3 made of an insulating material via 2b, and portions other than the above both ends are held in a non-contact manner. Electrodes 4a, 4b connected to both ends of superconducting wire 1 are fixed to fixtures 2a, 2b.

【0027】なお、超電導線1に加わる張力及び摩擦力
を適切に設定するために、温度の低下と共に図中実線矢
印3′、2′で示すように伸張するか、またはほとんど
変化しない特性を示す部材、換言すると矢印3′、2′
方向の熱膨張率が -1×10-5[1/K]以上で超電導
線1の熱膨張率(一般的に金属は約9×10-6[1/
K])以下の材料で固定部材3及び固定具2a,2bを
形成するようにしてもよい。
In order to properly set the tension and the frictional force applied to the superconducting wire 1, the wire expands as the temperature decreases as shown by solid arrows 3 'and 2' in the figure, or shows a characteristic that hardly changes. Members, in other words arrows 3 ', 2'
The thermal expansion coefficient of the superconducting wire 1 when the thermal expansion coefficient in the direction is −1 × 10 −5 [1 / K] or more (generally, about 9 × 10 −6 [1 /
K]) The fixing member 3 and the fixing tools 2a and 2b may be formed from the following materials.

【0028】また、固定具2a,2bは、超電導線1と
の摩擦発熱とそれに伴うクエンチ発生を抑制するため
に、金属との静または動摩擦係数が0.2以下である四
フッ化エチレン等の低摩擦材で形成されていてもよい
し、その低摩擦材(金属との静または動摩擦係数が0.
2以下)を表面のみにつけた材料で形成されていてもよ
い。
The fixtures 2a and 2b are made of a material such as ethylene tetrafluoride having a static or kinetic friction coefficient of 0.2 or less with metal in order to suppress frictional heating with the superconducting wire 1 and accompanying quench. It may be formed of a low-friction material or a low-friction material (having a coefficient of static or kinetic friction with a metal of 0.1.
2 or less) may be formed of a material provided only on the surface.

【0029】さらにまた、電極部での電流集中による発
熱増加、クエンチ発生を抑制するために、超電導線1を
電極4a、4bに接続する際に、図7に示すような円筒
端子板21を用いてもよい。図7では、一例として、6
×6の2次導体23を考えている。2次導体23を1次
導体22毎に分割し、これら一次導体22を円筒端子板
21の表面に60度等間隔で平行に沿わせて半田付けし
ている。なお、(nー1)次導体22をS本撚りあわせ
た2次以上のn次導体については、(nー1)次導体2
2毎に分割し、円筒端子板21の表面に(360/s)
度間隔で平行に沿わせて半田付けしてもよい。
Further, in order to suppress an increase in heat generation and quench due to a current concentration in the electrode portion, when connecting the superconducting wire 1 to the electrodes 4a and 4b, a cylindrical terminal plate 21 as shown in FIG. You may. In FIG. 7, as an example, 6
A × 6 secondary conductor 23 is considered. The secondary conductor 23 is divided into the primary conductors 22 and the primary conductors 22 are soldered to the surface of the cylindrical terminal plate 21 in parallel at equal intervals of 60 degrees. In addition, the (n-1) secondary conductor 22 is the (n-1) secondary conductor 2
2 (360 / s) on the surface of the cylindrical terminal plate 21.
The soldering may be performed in parallel at intervals of degrees.

【0030】このように構成された要部は、超電導線1
を臨界温度以下に冷却できる冷媒、例えば液体ヘリウム
や液体窒素に浸漬されたり、あるいは固定部材3、固定
具2a,2bなどを介して冷却されたりして限流装置と
して用いられる。
The main part thus constructed is a superconducting wire 1
Can be cooled as a current limiting device by being immersed in a refrigerant capable of cooling below the critical temperature, for example, liquid helium or liquid nitrogen, or cooled through the fixing member 3, the fixing tools 2a, 2b, and the like.

【0031】このような構成であると、定常時に交流通
電により超電導線1が変動磁界を受けても、超電導線1
は他の部材と摩擦接触する部位がないため、摩擦による
発熱現象は生じない。したがって、交流通電による素子
自身の損失は無視し得るほど小さい。
With such a configuration, even if the superconducting wire 1 receives a fluctuating magnetic field due to alternating current in a steady state, the superconducting wire 1
Since there is no portion that comes into frictional contact with other members, heat generation due to friction does not occur. Therefore, the loss of the element itself due to the alternating current is negligibly small.

【0032】また、短絡事故等により大きな事故電流が
流れようとした場合にあっても、摩擦発熱などのように
超電導線の臨界電流値より低い値で超電導状態を破るよ
うな不安定現象が生じないため、臨界電流値において超
電導線1全体がクエンチする。すなわち、超電導線1全
体が同時に常電導状態へ転移するため、素子全体が抵抗
体となる。したがって、定常時には抵抗がほぼ零で回路
電流を流し、短絡事故等のときには事故電流を限流する
ことが可能となる図2には本発明の第2の実施形態に係
る限流装置における要部を一部切欠した斜視図が示され
ている。
Further, even when a large fault current is caused to flow due to a short circuit fault or the like, an unstable phenomenon such as frictional heating that breaks the superconducting state at a value lower than the critical current value of the superconducting wire occurs. Therefore, the entire superconducting wire 1 is quenched at the critical current value. That is, since the entire superconducting wire 1 simultaneously transitions to the normal conducting state, the entire element becomes a resistor. Therefore, in a steady state, the circuit current flows with almost zero resistance, and the fault current can be limited in the event of a short circuit fault or the like. FIG. 2 shows a main part of the current limiting device according to the second embodiment of the present invention. Is shown in a partially cutaway perspective view.

【0033】同図において、11は冷媒槽を示してい
る。この冷媒槽11内には該冷媒槽11の側壁内面に沿
うように絶縁材製の固定部材12が配置されている。冷
媒槽11の上壁には固定具を兼ねたブッシング13a,
13bが相互間に所定の間隔を設け、かつ液密に貫通し
て設けられている。
In the figure, reference numeral 11 denotes a refrigerant tank. In the coolant tank 11, a fixing member 12 made of an insulating material is arranged along the inner surface of the side wall of the coolant tank 11. A bushing 13a serving also as a fixture is provided on the upper wall of the refrigerant tank 11.
13b are provided at predetermined intervals between each other and penetrate in a liquid-tight manner.

【0034】各ブッシング13a,13bの電極14
a、14bで冷媒槽11内に位置している端部には限流
素子を構成する超電導線15の両端部が電気的及び機械
的に固定されている。そして、固定部材12の側面に
は、超電導線15の両端部間をほぼ等間隔に、かつを蛇
行形態に、しかも超電導線15に一定の張力を加えた状
態で支持する中間支持具16が複数取り付けられてい
る。なお、中間支持具16は、それぞれ両端部に比べて
中央部が小径な鼓状に形成されていて、軸心線を固定部
材12の側面に直交させて取り付けられている。なお、
中間支持具16は鼓の持ち手部分がV字になっていても
よい。
The electrode 14 of each bushing 13a, 13b
Both ends of the superconducting wire 15 constituting the current limiting element are electrically and mechanically fixed to the ends of the superconducting wires 15 a and 14 b located in the refrigerant tank 11. On the side surface of the fixing member 12, there are provided a plurality of intermediate supports 16 for supporting the superconducting wire 15 at substantially equal intervals between both ends thereof, in a meandering manner, and with a constant tension applied to the superconducting wire 15. Installed. The intermediate support 16 is formed in a drum shape having a smaller diameter at the center than at both ends, and is attached with the axis thereof orthogonal to the side surface of the fixing member 12. In addition,
The handle of the drum of the intermediate support 16 may be V-shaped.

【0035】このような構成であると、超電導線15
は、一定の張力が加えられた状態で、、両端部間が等間
隔に、しかも蛇行するように中間支持具16で支持され
ているので、無誘導化されて電磁気的な原因で生じる発
熱が抑制されたものとなっている。このような蛇行配置
によって素子全体の小型化を図ることができる。
With such a configuration, the superconducting wire 15
Are supported by the intermediate support 16 in a state where a constant tension is applied and the both ends are equally spaced and meandering, so that heat generated due to electromagnetic causes due to non-induction is generated. It has been suppressed. Such a meandering arrangement can reduce the size of the entire device.

【0036】なお、この例に係る限流装置では、超電導
線15を中間支持具16で支持しているので、中間支持
具16で支持されている部分において摩擦などの発熱現
象が生じ得る。したがって、中間支持具16で支持され
ている箇所でクエンチが発生する可能性があるが、むし
ろクエンチ発生場所を上記支持箇所に限定することがで
きるので、この支持箇所における摩擦などの発熱現象を
制御することにより、素子全体のクエンチ電流を制御す
ることができる。
In the current limiting device according to this embodiment, since the superconducting wire 15 is supported by the intermediate support 16, a heat generation phenomenon such as friction may occur in the portion supported by the intermediate support 16. Therefore, quenching may occur at a location supported by the intermediate support member 16, but rather, the quench location can be limited to the above-described support location, so that heat generation phenomena such as friction at the support location can be controlled. By doing so, the quench current of the entire device can be controlled.

【0037】図2に示した例では、固定部材12の片方
の側面に沿わせて限流素子となる超電導線15を蛇行状
態に配設しているが、固定部材12の両方の側面に沿わ
せて超電導線を蛇行状態に配設した構成を採用してもよ
い。
In the example shown in FIG. 2, the superconducting wire 15 serving as a current limiting element is arranged in a meandering state along one side surface of the fixing member 12. In addition, a configuration in which the superconducting wires are arranged in a meandering state may be adopted.

【0038】また、図2に示した例では、平板状の固定
部材を使用しているが、図3(a)、(b)に示すよう
に、円筒状あるいは円柱状の固定部材12aを用い、こ
の固定部材12aの外周面に沿わせ、中間支持具16で
支持されて蛇行状に配設される関係に超電導線15を設
けてもよい。なお、図3(a)、(b)中、17a、1
7bは、限流素子を構成する超電導線15の両端部を固
定部材12aあるいは固定部材を兼ねた図示しない冷媒
槽の壁に固定するための固定具を示している。
Further, in the example shown in FIG. 2, a flat fixing member is used, but as shown in FIGS. 3 (a) and 3 (b), a cylindrical or columnar fixing member 12a is used. The superconducting wire 15 may be provided along the outer peripheral surface of the fixing member 12a so as to be supported by the intermediate support 16 and arranged in a meandering manner. 3A and 3B, 17a, 1
Reference numeral 7b denotes a fixing tool for fixing both ends of the superconducting wire 15 constituting the current limiting element to the fixing member 12a or a wall of a refrigerant tank (not shown) which also serves as a fixing member.

【0039】このような構成であると、素子全体のイン
ピーダンスをさらに低下させることができる。なお、超
電導線15に加わる張力及び摩擦力を適切に設定するた
めに、図4に示すように、温度の低下とともに図中実線
矢印18で示すように伸張するか、またはほとんど変化
しない特性を示す部材、換言すると矢印方向の熱膨張率
が -1×10-5[1/K]以上で超電導線15の熱膨張
率以下の材料で固定部材12(12a)を形成するよう
にしてもよい。また、図5に示すように、温度の低下と
ともに図中実線矢印20で示すように伸張するか、また
はほとんど変化しない特性を示す部材、換言すると矢印
方向の熱膨張率が -1×10-5[1/K]以上で超電導
線15の熱膨張率以下の材料で中間支持具16を形成す
るようにしてもよい。また、中間支持具16での摩擦発
熱によるクエンチ発生を抑制するために、金属との静ま
たは動摩擦係数が0.2以下である四フッ化エチレン等
の低摩擦材で中間支持具16を形成してもよいし、その
低摩擦材(金属との静または動摩擦係数が0.2以下)
を表面のみにつけた材料で中間支持具16が形成しても
よい。また、これらととももに、図中実線矢印20′で
示すように、軸心線を中心にして回転自在に中間支持具
16が設けられていてもよい。さらに電極14a、14
bへの接続には図7に示す円筒端子板21を用いてもよ
い。
With such a configuration, the impedance of the entire device can be further reduced. In order to properly set the tension and the frictional force applied to the superconducting wire 15, as shown in FIG. 4, the wire expands as the temperature decreases, as shown by a solid line arrow 18 in the drawing, or shows a characteristic that hardly changes. The fixing member 12 (12a) may be formed of a member, in other words, a material having a coefficient of thermal expansion in the direction of the arrow of −1 × 10 −5 [1 / K] or more and a coefficient of thermal expansion of the superconducting wire 15 or less. Also, as shown in FIG. 5, a member that expands as shown by a solid line arrow 20 in the figure with a decrease in temperature, or shows a characteristic that hardly changes, in other words, a coefficient of thermal expansion in the arrow direction is −1 × 10 −5. The intermediate support 16 may be formed of a material that is not less than [1 / K] and not more than the thermal expansion coefficient of the superconducting wire 15. Further, in order to suppress the occurrence of quench due to frictional heat generated in the intermediate support 16, the intermediate support 16 is formed of a low friction material such as ethylene tetrafluoride having a coefficient of static or dynamic friction with metal of 0.2 or less. Or low friction material (static or kinetic friction coefficient with metal is 0.2 or less)
The intermediate support 16 may be formed of a material having only the surface. In addition, as shown by a solid line arrow 20 'in the drawing, the intermediate support 16 may be provided so as to be rotatable about the axis. Further, the electrodes 14a, 14
For connection to the terminal b, a cylindrical terminal plate 21 shown in FIG. 7 may be used.

【0040】また、図2に示すように構成されたものを
ユニットUとし、このユニットUを図6に示すように、
1つの真空容器19内に複数配置して三相電路に対処で
きるようにしてもよい。
The unit configured as shown in FIG. 2 is referred to as a unit U, and the unit U is configured as shown in FIG.
A plurality may be arranged in one vacuum vessel 19 so as to cope with a three-phase electric circuit.

【0041】ここで、図3に示した例の実験例を説明す
る。外径250mm、内径200mm、高さ300mm
のガラス繊維強化プラスチックで形成された固定部材1
2aの上部より50mmの位置および下部より50mm
の位置に両端外径が20mmの鼓状に形成された中間支
持具16を45度間隔に上下で45度位相をずらして配
置したものに、限流素子としての超電導線15を張設し
た。この超電導線15の全長は7mで巻き線時の張力は
10kg/mm2 とした。これと同様に外径400m
m、内径300mm、高さ300mmの同様の固定部材
に超電導線を張設した。両者を同心状に重ね合わせ、並
列に接続して限流素子とした。なお、超電導線には直径
0.2mmの交流用超電導素線を同一直径のCu−30
%Ni線の周りに6本撚り合わせてなる一次導体をCu
−Ni線の周りに6本撚り合わせた二次導体を用いた。
この導体の短尺での交流50Hzでのクエンチ電流Iq
は3000Aピーク値であった。なお、この例において
は、電極14a、14bでの電流集中による発熱増加に
伴うクエンチ発生を避けるために、超電導線を電極14
a、14bに接続する際に、図7に示すように、2次導
体23を6本の1次導体22に分けて銅製の円筒端子板
21の表面に平行に等間隔で半田付けした。
Here, an experimental example of the example shown in FIG. 3 will be described. Outer diameter 250mm, inner diameter 200mm, height 300mm
Fixing member 1 made of glass fiber reinforced plastic
2a 50mm from the top and 50mm from the bottom
A superconducting wire 15 as a current limiting element was stretched on a drum-shaped intermediate support 16 having an outer diameter of 20 mm at both ends and a phase shift of 45 degrees vertically at 45 ° intervals. The total length of the superconducting wire 15 was 7 m, and the tension at the time of winding was 10 kg / mm 2 . 400m outside diameter
A superconducting wire was stretched over a similar fixing member having a diameter of 300 m, an inner diameter of 300 mm, and a height of 300 mm. Both were concentrically overlapped and connected in parallel to form a current limiting element. The superconducting wire is a superconducting wire for alternating current having a diameter of 0.2 mm and Cu-30 having the same diameter.
% Ni wire is stranded around the primary conductor of Cu
-Six secondary conductors twisted around the Ni wire were used.
Quench current Iq at 50 Hz AC in a short length of this conductor
Was 3000 A peak value. In this example, the superconducting wire is connected to the electrodes 14a and 14b in order to avoid the occurrence of quench due to an increase in heat generation due to current concentration at the electrodes 14a and 14b.
When connecting to a and 14b, as shown in FIG. 7, the secondary conductor 23 was divided into six primary conductors 22 and soldered in parallel to the surface of the cylindrical terminal board 21 made of copper at equal intervals.

【0042】比較のため、ガラス繊維強化プラスチック
で上述した2種類の固定部材と同一サイズに形成された
2つの巻枠にそれぞれ同一の超電導線を螺旋状に巻線
し、これらを同心状に配置した限流素子を用意した。電
極部は図7と同じ構成とした。
For comparison, the same superconducting wire is spirally wound around two winding frames formed of the same size as the above two types of fixing members made of glass fiber reinforced plastic, and these are concentrically arranged. A current limiting element was prepared. The electrode section had the same configuration as in FIG.

【0043】まず、1000A(rms)を連続通電
し、このときの発熱量を測定したところ、比較例では1
00mWであったのに対し、実験例では10mWとなっ
た。また、両者のクエンチ電流を測定したところ、比較
例では当初2000Aピーク値であり、クエンチの回数
と共に増加し2800Aピーク値でほぼ飽和したのに対
し、実験例では最初に4500Aピーク値を示し、その
後2回のクエンチでほぼ導体の臨界電流Icに相当する
5600Aピーク値を示した。さらに、このときの素子
の抵抗値は1.0Ωと超電導線全体が均一にクエンチし
ていることを示した。
First, a current was continuously supplied at 1000 A (rms), and the calorific value at this time was measured.
In contrast to 00 mW, it was 10 mW in the experimental example. In addition, when the quench currents of both were measured, the comparative example had a peak value of 2000 A at the beginning, increased with the number of times of quench and almost saturated at the peak value of 2800 A, whereas the experimental example first showed a peak value of 4500 A, The two quench times showed a peak value of 5600 A corresponding to the critical current Ic of the conductor. Furthermore, the resistance value of the element at this time was 1.0Ω, indicating that the entire superconducting wire was uniformly quenched.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
定常時の損失を低減できるとともに、クエンチ電流値が
超電導線固有の臨界電流値よりも超電導線を固定してい
る部分の機械的不安定性によって決まるのを防止でき、
安定性に勝れた限流装置を提供できる。
As described above, according to the present invention,
In addition to reducing the steady-state loss, it is possible to prevent the quench current value from being determined by the mechanical instability of the part that fixes the superconducting wire more than the critical current value inherent to the superconducting wire,
A current limiting device that excels in stability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る限流装置におけ
る要部の斜視図
FIG. 1 is a perspective view of a main part of a current limiting device according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係る限流装置におけ
る要部を一部切欠して示す斜視図
FIG. 2 is a perspective view showing a main part of a current limiting device according to a second embodiment of the present invention, with a part cut away.

【図3】(a) は本発明の第3の実施形態に係る限流装置
における要部の斜視図で、(b)は(a) におけるA−A線
矢視図
FIG. 3A is a perspective view of a main part of a current limiting device according to a third embodiment of the present invention, and FIG. 3B is a view taken along line AA in FIG.

【図4】固定部材の変形例を説明するための図FIG. 4 is a view for explaining a modification of the fixing member.

【図5】中間支持具の変形例を説明するための図FIG. 5 is a view for explaining a modification of the intermediate support.

【図6】三相電路を対象とした限流装置の概念図FIG. 6 is a conceptual diagram of a current limiting device for a three-phase circuit.

【図7】(a) は電極への接続に用いられる円筒端子板の
斜視図で、(b) は(a) におけるB−B線矢視図
7A is a perspective view of a cylindrical terminal plate used for connection to an electrode, and FIG. 7B is a view taken along the line BB in FIG. 7A.

【符号の説明】[Explanation of symbols]

1,15…超電導線 2a,2b、13a,13b、17a,17b…固定具 3、12、12a…固定部材 4a、4b…電極 11…冷媒槽 13a、13b…ブッシング 14a、14b…電極 16…中間支持具 19…真空容器 2′,3′,20…温度低下に対して伸張する方向 20′…回転の方向 21…円筒端子板 22…(nー1)次導体 23…n次導体 1, 15 ... superconducting wire 2a, 2b, 13a, 13b, 17a, 17b ... fixture 3, 12, 12a ... fixing member 4a, 4b ... electrode 11 ... refrigerant tank 13a, 13b ... bushing 14a, 14b ... electrode 16 ... middle Support 19: Vacuum container 2 ', 3', 20: Direction of elongation against temperature drop 20 ': Direction of rotation 21: Cylindrical terminal plate 22: (n-1) -order conductor 23: n-order conductor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩田 良浩 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 野村 俊自 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 米田 えり子 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 竹澤 伸久 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 ▲鶴▼永 和行 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 浦田 昌身 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiro Iwata 4-1 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Within the Electric Power Research Laboratory, Tokyo Electric Power Co., Inc. No. 1, Komukai Toshiba, Toshiba R & D Center (72) Inventor Eriko Yoneda No. 1, Komukai Toshiba, Kochi, Kawasaki, Kanagawa, Japan Toshiba R & D Center (72) Inventor Nobuhisa Takezawa, Kanagawa 1 Toshiba R & D Center, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi (72) Inventor ▲ Tsuru ▼ Kazuyuki Naga Eighth Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu Plant, Inc. Body 1-1-1, Shibaura, Minato-ku, Tokyo Inside the Toshiba head office

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】超電導線を限流素子として用いる限流装置
において、前記超電導線の両端部のみが固定具を介して
固定部材に固定され、上記超電導線の上記両端部以外の
部分が非接触に保持されていることを特徴とする限流装
置。
1. A current limiting device using a superconducting wire as a current limiting element, wherein only both ends of the superconducting wire are fixed to a fixing member via a fixture, and portions other than the both ends of the superconducting wire are in non-contact. A current limiting device, characterized in that the current limiting device is held.
【請求項2】前記超電導線は、張力が加えられた状態で
前記固定具を介して前記固定部材に固定されていること
を特徴とする請求項1に記載の限流装置。
2. The current limiting device according to claim 1, wherein the superconducting wire is fixed to the fixing member via the fixing tool in a state where tension is applied.
【請求項3】超電導線を限流素子として用いる限流装置
において、前記超電導線の両端部を固定部材に固定する
両端固定具と、前記固定部材に装着されて前記超電導線
の両端部間における複数箇所を上記超電導線に加えられ
た張力で支持する複数の中間支持具とを具備してなるこ
とを特徴とする限流装置。
3. A current limiting device using a superconducting wire as a current limiting element, wherein both ends of said superconducting wire are fixed to a fixing member, and said fixing member is attached to said fixing member and is provided between said two ends of said superconducting wire. A current limiting device, comprising: a plurality of intermediate supports for supporting a plurality of locations with tension applied to the superconducting wire.
【請求項4】前記各中間支持具は、前記超電導線の前記
両端部間をほぼ等間隔に支持していることを特徴とする
請求項3に記載の限流装置。
4. The current limiting device according to claim 3, wherein each of said intermediate supports supports said both ends of said superconducting wire at substantially equal intervals.
【請求項5】前記各中間支持具は、前記超電導線の前記
両端部間を蛇行形態に支持していることを特徴とする請
求項3または4に記載の限流装置。
5. The current limiting device according to claim 3, wherein each of the intermediate supports supports the both ends of the superconducting wire in a meandering form.
【請求項6】前記各中間支持具は、両端部に比べて中央
部が小径な鼓状に形成されていることを特徴とする請求
項3、4,5の何れか1項に記載の限流装置。
6. A limiter according to claim 3, wherein each of said intermediate supports is formed in a drum shape having a smaller diameter at a center portion than at both end portions. Flow device.
【請求項7】前記各中間支持具は、前記固定部材に対し
て回転自在に設けられていることを特徴とする請求項
3、4、5、6の何れか1項に記載の限流装置。
7. The current limiting device according to claim 3, wherein each of the intermediate supports is rotatably provided with respect to the fixing member. .
JP9266963A 1997-09-30 1997-09-30 Current limiter Pending JPH11113166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9266963A JPH11113166A (en) 1997-09-30 1997-09-30 Current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9266963A JPH11113166A (en) 1997-09-30 1997-09-30 Current limiter

Publications (1)

Publication Number Publication Date
JPH11113166A true JPH11113166A (en) 1999-04-23

Family

ID=17438145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9266963A Pending JPH11113166A (en) 1997-09-30 1997-09-30 Current limiter

Country Status (1)

Country Link
JP (1) JPH11113166A (en)

Similar Documents

Publication Publication Date Title
JP4295189B2 (en) Superconducting resistance type current limiter
JP4620637B2 (en) Resistive superconducting fault current limiter
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
US3559126A (en) Means to provide electrical and mechanical separation between turns in windings of a superconducting device
US7589941B2 (en) Fault current limiter having superconducting bypass reactor for simultaneous quenching
JP5190211B2 (en) Resistive current limiter
US3619479A (en) Electrical conductor of electrically normal conducting metal and superconducting material
JP2010251713A (en) Current limiting device
JPH0523485B2 (en)
US7463461B2 (en) Resistive superconducting fault current limiter
JPH0371518A (en) Superconductor
US4602231A (en) Spaced stabilizing means for a superconducting switch
CN101183592A (en) Two-sided immersion superconducting solenoid coil
KR101996388B1 (en) Superconducting switch of superconducting magnet for magnetic levitation
JPH11113166A (en) Current limiter
JP4599807B2 (en) Current leads for superconducting equipment
JP6012170B2 (en) Superconducting coil and superconducting transformer
JPH04237105A (en) Superconducting electromagnet
JP3559550B2 (en) Superconducting current limiting module and superconducting current limiting unit
JPH06163095A (en) Superconducting connection lead provided with thermal plug
JP2533119B2 (en) Superconducting device for short circuit suppression
AU678191B2 (en) Division of current between different strands of a superconducting winding
JP2919036B2 (en) Superconducting conductor and magnet using the conductor
JP2000101153A (en) Current lead for superconducting device
JPS62293703A (en) Holder for superconducting coil