JPH11111307A - Separator for solid electrolyte fuel cell and manufacture thereof - Google Patents

Separator for solid electrolyte fuel cell and manufacture thereof

Info

Publication number
JPH11111307A
JPH11111307A JP9267240A JP26724097A JPH11111307A JP H11111307 A JPH11111307 A JP H11111307A JP 9267240 A JP9267240 A JP 9267240A JP 26724097 A JP26724097 A JP 26724097A JP H11111307 A JPH11111307 A JP H11111307A
Authority
JP
Japan
Prior art keywords
separator
perovskite
parts
pts
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9267240A
Other languages
Japanese (ja)
Inventor
Toshitaka Shiyouhou
敏貴 正宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASO CEMENT KK
ASOU CEMENT KK
Original Assignee
ASO CEMENT KK
ASOU CEMENT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASO CEMENT KK, ASOU CEMENT KK filed Critical ASO CEMENT KK
Priority to JP9267240A priority Critical patent/JPH11111307A/en
Publication of JPH11111307A publication Critical patent/JPH11111307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a separator at low cost, without lowering the quality thereof by forming a glass flow passage structure in an extruded molding of a perovskite compound oxide, including La and Sr or Ca after the extrusion. SOLUTION: A perovskite compound oxide which forms a separator is expressed with the formula A1-x Bx CrO3 , and A is La, B is Sr or Ca, (x) is in the range of 0-0.4. A separator is formed of a ceramic sheet formed in advanced with a groove, having the gas flow passage structure after the extruding and before the burning, and the flow passage structure can be formed without performing post-work. A separator is manufactured by the following method. One hundred pts.wt. of perovskite powder having a particle side of 1-10 μm, 10-25 pts.vol. of binder fine powder of a hydroxide group-containing organic compound having a particle size <=300 μm, 10-20 pts.vol. of plasticizer, 0.3-2.0 pts.wt. of a dispersant in relation to the perovskite powder of 100 pts.wt. and 100-150 pts.vol. of water are mixed to obtain the unburned earth, and this unburned earth is extrusion-molded, and baked after to eliminate the binder and the plasticizer by thermal decomposition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、押出し法によるぺ
ロブスカイト型複合酸化物からなる固体電解質型燃料電
池用セパレータとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell separator comprising a perovskite-type composite oxide formed by an extrusion method and a method for producing the same.

【0002】[0002]

【従来の技術】固体電解質型燃料電池(以下SOFCと
略称する。)のセパレータの開発においては、例えば特
開平6−5295号公報や特開平7−85881号公報
などに開示されているように、構成部材の薄膜化、低廉
な材料の使用はもちろんのこと、作製工程の簡略化によ
って製造コストの大幅な削減が試みられている。
2. Description of the Related Art In the development of a separator for a solid oxide fuel cell (hereinafter abbreviated as SOFC), for example, as disclosed in JP-A-6-5295 and JP-A-7-85881, Attempts have been made to significantly reduce the manufacturing cost by simplifying the manufacturing process as well as reducing the thickness of the constituent members and using inexpensive materials.

【0003】平板型SOFCにおいては、運転温度(1
000℃)で安定的に使用できるランタンクロマイト
(LaCrO3)系ぺロブスカイト型複合酸化物が使用
されている。
In a flat type SOFC, the operating temperature (1
Lanthanum chromite (LaCrO 3 ) -based perovskite-type composite oxide which can be used stably at 2,000 ° C.).

【0004】このランタンクロマイトによる平板型SO
FCのセパレータはガス流路のための複数の溝を有して
おり、この溝形成のためには、まず、ランタンクロマイ
ト型酸化物のシートを作成し、このシートの仮焼あるい
は本焼成後、機械加工してきた。そのため、加工時によ
る割れなどによる歩留まりが低い上に、高価な機械加工
装置が必要となり、作製費の引き下げは大変難しいとい
う問題があった。
[0004] The flat type SO using the lanthanum chromite
The FC separator has a plurality of grooves for a gas flow path. In order to form the grooves, first, a sheet of lanthanum chromite type oxide is prepared, and after calcining or main firing the sheet, Machined. Therefore, there is a problem that the yield due to cracking during processing is low, and an expensive machining apparatus is required, and it is very difficult to reduce the manufacturing cost.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、SO
FCの重要な構成部材であるセパレータとして好適な溝
付きセラミックシートを、その品質を低下することなく
安価に提供することにある。
The problem to be solved by the present invention is that SO
An object of the present invention is to provide a grooved ceramic sheet suitable as a separator, which is an important component of FC, at low cost without deteriorating its quality.

【0006】[0006]

【課題を解決するための手段】本発明のSOFC用セパ
レータは、Aがランタンであり、Bがストロンチウムも
しくはカルシウムであり、Xが0ないし0.4であるA
1-XXCrO3で表されるぺロブスカイト型複合酸化物
の押出し成形体であって、押出し後にガス流路構造を形
成していることを特徴とする。
According to the present invention, there is provided a separator for an SOFC, wherein A is lanthanum, B is strontium or calcium, and X is 0 to 0.4.
A 1-X B X extrudate perovskite-type composite oxide represented by CrO 3, characterized in that it forms a gas flow path structure after extrusion.

【0007】このSOFC用セパレータは、相対密度が
60パーセント以上を持ち、膜厚が1ないし3mmであ
るシー卜状の複合酸化物体の押出し成形体であって、押
出し時に、ガスの流路構造のような条溝が形成してい
る。すなわち、押出し成形後にガスの流路構造のような
条溝が焼成前にあらかじめ形成されているセラミックシ
ートであり、ガスの流路構造を後加工なく作製できる。
The SOFC separator is an extruded sheet-shaped composite oxide having a relative density of 60% or more and a film thickness of 1 to 3 mm. Such a groove is formed. That is, it is a ceramic sheet in which grooves like the gas flow channel structure are formed before extrusion before extrusion, and the gas flow channel structure can be manufactured without post-processing.

【0008】本発明のSOFC用セパレータは、均一な
厚さと、溝の高さを持ち、酸化剤と燃料ガスの両方も滞
留なく通気させる。
The SOFC separator of the present invention has a uniform thickness and a groove height, and allows both the oxidizing agent and the fuel gas to pass without stagnation.

【0009】このSOFC用セパレータは粒子径が1な
いし10μm程度のぺロブスカイト粉体100容積部と
300μm以下の水酸基含有有機化合物の結合剤微粉末
10ないし25容積部と、可塑剤10ないし20容積部
と、このぺロブスカイト型粉体100重量に対して分散
剤0.3ないし2.0重量部と、水を100ないし15
0容積部とを混合して得られた坏土を押出し成形後、結
合剤、可塑剤を加熱分解除去した後焼成することによっ
て得られる。
This SOFC separator comprises 100 parts by volume of perovskite powder having a particle diameter of about 1 to 10 μm, 10 to 25 parts by volume of a binder fine powder of a hydroxyl-containing organic compound having a particle size of 300 μm or less, and 10 to 20 parts by volume of a plasticizer. And 0.3 to 2.0 parts by weight of a dispersant and 100 to 15 parts by weight of water per 100 parts by weight of the perovskite powder.
It is obtained by extruding and kneading the kneaded clay obtained by mixing the mixture with 0 parts by volume, removing the binder and the plasticizer by thermal decomposition, and then firing.

【0010】配合する成形助剤のうち、結合剤微粉末と
しては、有機結合剤、無機結合剤等が使用できるが、混
合の際、溶媒である水に容易に溶解して直ちに結合剤と
して作用を発揮し、使用するぺロブスカイト型粉体と反
応せず、また仮焼時に容易にグリーン体から分解除去さ
れ、未燃焼の炭素分や灰分の残留を防止するために有機
結合剤なかでもメチルセルロースやへミセルロースをは
じめとする多糖類誘導体の使用が好ましい。
Among the molding aids to be blended, organic binders, inorganic binders, etc. can be used as the binder fine powder, but when mixed, they are easily dissolved in water as a solvent and immediately act as binders. It does not react with the perovskite-type powder used, and is easily decomposed and removed from the green body during calcination.To prevent the remaining of unburned carbon and ash, methylcellulose and other organic binders are used. The use of polysaccharide derivatives such as hemicellulose is preferred.

【0011】この微粉末の配合はぺロブスカイト型粉体
同士の結合を高め、押出し時の際の良好な強度と成形性
を保つ上でも最も重要な要素である。このため少なすぎ
るとかえって押出し時に坏土が硬くなってしまい、押出
しが困難となるので、成形性と強度の面からぺロブスカ
イト型粉体100容積部に対して5ないし30容積部、
好ましくは10ないし25容積部の範囲とする。
The compounding of this fine powder is the most important factor in enhancing the bonding between perovskite-type powders and maintaining good strength and moldability during extrusion. On the contrary, if the amount is too small, the kneaded clay becomes harder at the time of extrusion, and the extrusion becomes difficult. Therefore, from the viewpoint of moldability and strength, 5 to 30 parts by volume per 100 parts by volume of perovskite type powder,
Preferably it is in the range of 10 to 25 parts by volume.

【0012】配合する可塑剤としては、有機性可塑剤、
無機性可塑剤が使用できるが、微粉末の場合と同じく、
混合の際、溶媒である水に容易に溶解して直ちに結合剤
として作用を発揮し、使用するぺロブスカイト型酸化物
複合体と反応せず、また仮焼時に容易にグリーン体から
分解除去され、未燃焼の炭素分や灰分の残留を防止する
ために有機可塑剤、なかでもグリセロールやポリビニル
アルコールをはじめとする水酸基含有有機化合物の使用
が最も好ましい。
As the plasticizer to be blended, an organic plasticizer,
Inorganic plasticizers can be used, but as with fine powders,
Upon mixing, it readily dissolves in water as a solvent and immediately acts as a binder, does not react with the perovskite-type oxide complex used, and is easily decomposed and removed from the green body during calcination, In order to prevent unburned carbon and ash from remaining, it is most preferable to use an organic plasticizer, especially a hydroxyl-containing organic compound such as glycerol or polyvinyl alcohol.

【0013】この可塑剤の配合は、ぺロブスカイト型粉
体同士が押出される際の流動性を高め、押出し時の良好
な押出し圧力や成形性を保つ上でも最も重要な要素の1
つであるが、少なすぎるとかえって押出し時に坏土が硬
くなってしまい、押出し機内で坏土の一部がとどまる、
いわゆる閉塞が起こってしまい、均一な成型物の作製や
押出しが困難となるので、成形性と強度の面からぺロブ
スカイト型粉体100容積部に対して5ないし40容積
部、好ましくは10ないし20容積部の範囲である。
The blending of the plasticizer enhances the fluidity of the perovskite-type powder when it is extruded, and is one of the most important factors in maintaining good extrusion pressure and moldability during extrusion.
However, if the amount is too small, the kneaded material becomes harder at the time of extrusion, and a part of the kneaded material stays in the extruder,
Since so-called blockage occurs and it becomes difficult to produce and extrude a uniform molded product, from the viewpoint of moldability and strength, 5 to 40 parts by volume, preferably 10 to 20 parts by volume, per 100 parts by volume of perovskite-type powder. It is the range of the volume part.

【0014】分散剤については、ぺロブスカイト型粉体
について、溶媒が水の際には分散性が悪く、そのため十
分な流動性を保持していない。そのため、流動性を保持
するために添加量はぺロブスカイト型粉体100重量部
に対して分散剤0.3ないし2.0重量部が好適であ
る。
As for the dispersant, the perovskite type powder has poor dispersibility when the solvent is water, and thus does not maintain sufficient fluidity. Therefore, in order to maintain fluidity, the amount of the dispersant is preferably 0.3 to 2.0 parts by weight based on 100 parts by weight of perovskite powder.

【0015】焼成温度については焼成温度が低いと焼結
が進まず、また1700℃を越えて焼成を行うと、ペロ
ブスカイト型酸化物複合体中の成分であるクロムが酸化
クロムガスとして、減少してしまい相対強度の低下をも
たらすので、1350℃から1650℃、好ましくは1
450℃から1600℃で、最高温度保持時間として3
ないし6時間である。
Regarding the sintering temperature, if the sintering temperature is low, sintering does not proceed, and if the sintering is carried out at more than 1700 ° C., chromium which is a component in the perovskite type oxide composite is reduced as chromium oxide gas. 1350 ° C. to 1650 ° C., preferably 1
450 ° C to 1600 ° C, the maximum temperature holding time is 3
Or 6 hours.

【0016】[0016]

【発明の実施の形態】以下に、本発明の実施の形態を実
施例によって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to examples.

【0017】実施例1 A1-XXCrO3で表される構造式において、Aがラン
タンであり、Bがストロンチウムである複合酸化物成形
体で導電性と酸素空孔を持たせるためにXが0.2であ
るぺロブスカイト型粉体を用いた。粒径は中位径が7μ
m程度である。
EXAMPLE 1 In the structural formula represented by A 1 -XB X CrO 3 , A is lanthanum, and B is strontium. A perovskite type powder in which X was 0.2 was used. The median diameter is 7μ
m.

【0018】表1に示す配合比の混合物A,B,C,D
のそれぞれを混合機で混合し、所定の水を加えて更に混
合機で練り混ぜて坏土を得た。この坏土を押出し機で、
押出し圧力が1ないし9kgf/cm2の条件で押出し
を行いグリーン体として膜厚1ないし3mmのシートを
得た。この際、図lに示す溝の高さ500μmの櫛状の
口金を使用することにより、あらかじめ溝を持ったグリ
ーン体を作製することができた。これを乾燥して脱脂炉
に入れ仮焼することで成形助剤を分解除去した。更に、
仮焼体を酸化雰囲気で1450ないし1600℃に加熱
し焼成体を得た。
Mixtures A, B, C and D having the compounding ratios shown in Table 1
Were mixed with a mixer, predetermined water was added, and the mixture was further kneaded with a mixer to obtain a clay. This kneaded clay is extruded using an extruder
Extrusion was performed under the conditions of an extrusion pressure of 1 to 9 kgf / cm 2 to obtain a sheet having a thickness of 1 to 3 mm as a green body. At this time, a green body having a groove in advance could be produced by using a comb-shaped die having a groove height of 500 μm shown in FIG. This was dried, placed in a degreasing furnace and calcined to decompose and remove the molding aid. Furthermore,
The calcined body was heated to 1450 to 1600 ° C. in an oxidizing atmosphere to obtain a calcined body.

【0019】[0019]

【表1】 本成形体の相対密度を測定するために、日本セラミック
ス協会編「セラミック工学ハンドブック」,技報堂出
版,p460〜461,(1989)に記載されている
アルキメデス法を用いて測定した。
[Table 1] In order to measure the relative density of the molded article, the relative density was measured by the Archimedes method described in "Ceramic Engineering Handbook" edited by The Ceramic Society of Japan, Gihodo Shuppan, pp. 460-461, (1989).

【0020】この溝付きぺロブスカイト型複合酸化物体
は溝構造を持った上で、相対密度を50%以上に高める
ことができた。
The grooved perovskite-type composite oxide body had a groove structure and the relative density could be increased to 50% or more.

【0021】実施例2 実施例1に使用した粒子の径を更に小さくして粒子の焼
結性を向上させた。Aがランタンであり、Bがストロン
チウムであるA1-XXCrO3で表されるぺロブスカイ
ト型複合酸化物の成形体に導電性と酸素空孔を持たせる
ためにXが0.2であるぺロブスカイト型粉体を用い
た。
Example 2 The diameter of the particles used in Example 1 was further reduced to improve the sinterability of the particles. A is lanthanum, and B is strontium. The perovskite-type composite oxide represented by A 1-X B X CrO 3 has a conductivity of oxygen and oxygen vacancies. A perovskite-type powder was used.

【0022】表2に示す配合比のA,B,C,Dのそれ
ぞれを混合機で混合し、所定の水を加えて更に混合機で
練り混ぜて坏土を得た。この坏土を押出し機で、押出し
圧力がlないし10kgf/cm2の条件で押出しを行
いグリーン体として膜厚1ないし3mmのシートを得
た。この際、図lに示す、溝の高さ500μmの櫛状の
口金を使用することにより、あらかじめ溝を持ったグリ
ーン体を作製することができた。これを乾燥して脱脂炉
に入れ仮焼することで成形助剤を分解除去した。更に、
仮焼体を酸化雰囲気で1450ないし1600℃に加熱
して焼成体を得た。本成形体の相対密度を測定するため
に、同様にアルキメデス法を用いて測定した。この溝付
きぺロブスカイト型酸化物複合体は溝構造を持った上
で、相対密度を80%以上に高めることができた。
Each of the mixing ratios A, B, C, and D shown in Table 2 was mixed by a mixer, predetermined water was added, and the mixture was further kneaded by a mixer to obtain a clay. The kneaded material was extruded with an extruder under the conditions of an extrusion pressure of 1 to 10 kgf / cm 2 to obtain a green body having a thickness of 1 to 3 mm. At this time, a green body having a groove in advance could be manufactured by using a comb-shaped die having a groove height of 500 μm as shown in FIG. This was dried, placed in a degreasing furnace and calcined to decompose and remove the molding aid. Furthermore,
The calcined body was heated to 1450 to 1600 ° C. in an oxidizing atmosphere to obtain a calcined body. In order to measure the relative density of the molded article, the measurement was similarly performed using the Archimedes method. The perovskite-type oxide composite with grooves has a groove structure and the relative density can be increased to 80% or more.

【0023】[0023]

【表2】 実施例3 実施例1ないし2と比較し、易焼結性である組成にして
粒子の焼結性を向上させた。A1-XXCrO3で表され
るぺロブスカイト型複合酸化物において、Aがランタン
であり、Bをストロンチウムからカルシウムに代え、導
電性と酸素空孔を持たせるためにXが0.2であるぺロ
ブスカイト型粉体を用いた。
[Table 2] Example 3 Compared to Examples 1 and 2, the composition was made to be easily sinterable to improve the sinterability of the particles. In the perovskite-type composite oxide represented by A 1 -X B X CrO 3 , A is lanthanum, and B is changed from strontium to calcium, and X is 0.2 to provide conductivity and oxygen vacancies. Perovskite type powder was used.

【0024】表3に示す配合比の混合物をそれぞれ混合
機で混合し、所定の水を加えて更に混合機で練り混ぜて
坏土を得た。この坏土を押出し機で、押出し圧力が1な
いし10kgf/cm2の条件で押出しを行いグリーン
体として膜厚1ないし3mmのシートを得た。この際、
図1に示す、溝の高さ500μmの櫛状の口金を使用す
ることにより、あらかじめ溝を持ったグリーン体を作製
することができた。これを乾燥して脱脂炉に入れ仮焼す
ることで成形助剤を分解除去した。更に、仮焼体を酸化
雰囲気で1450ないし1600℃に加熱し焼成体を得
た。成形体の相対密度を測定するために、同様にアルキ
メデス法を用いて測定した。
The mixtures having the compounding ratios shown in Table 3 were mixed by a mixer, and predetermined water was added, and the mixture was further kneaded by a mixer to obtain a clay. The kneaded material was extruded with an extruder under the conditions of an extruding pressure of 1 to 10 kgf / cm 2 to obtain a sheet having a thickness of 1 to 3 mm as a green body. On this occasion,
By using a comb-shaped die having a groove height of 500 μm as shown in FIG. 1, a green body having grooves in advance could be produced. This was dried, placed in a degreasing furnace and calcined to decompose and remove the molding aid. Further, the calcined body was heated to 1450 to 1600 ° C. in an oxidizing atmosphere to obtain a calcined body. In order to measure the relative density of the molded body, the measurement was similarly performed using the Archimedes method.

【0025】[0025]

【表3】 上記の溝付きぺロブスカイト型複合酸化物体は相対密度
を90%以上に高めることができた。
[Table 3] The above-mentioned grooved perovskite-type composite oxide body could increase the relative density to 90% or more.

【0026】上記実施例1から実施例3に示した焼成体
を固体電解質型燃料電池のセパレータとして使用した結
果、特別な溝加工をすることなく、ガスの流路構造を持
つセパレータとして使用できることが分かった。
As a result of using the fired bodies shown in Embodiments 1 to 3 as a separator of a solid oxide fuel cell, the fired bodies can be used as separators having a gas flow path structure without special groove processing. Do you get it.

【0027】また、図2は、このセパレータの電子顕微
鏡写真を示すもので、大規模な平面加工を行わずに、使
用に供することができた。
FIG. 2 shows an electron micrograph of this separator, which could be used without large-scale planar processing.

【0028】[0028]

【発明の効果】本発明によって、電極への酸化物ガスお
よび燃料ガスを効率を損なわずに供給するガス供給路
を、機械加工を行わずに押出し成形時に作製することが
でき、製作に係わるコストを大幅に削減できるだけでな
く、焼成後の機械加工等による割れの心配がないため、
製品の歩留まりを大幅に向上することができる。
According to the present invention, a gas supply path for supplying an oxide gas and a fuel gas to an electrode without impairing the efficiency can be produced at the time of extrusion molding without performing machining, and the cost involved in production can be increased. Not only can be greatly reduced, but also there is no fear of cracking due to machining after firing.
Product yield can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 使用した口金の断面形状を示す。FIG. 1 shows a cross-sectional shape of a used die.

【図2】 押出して、溝加工を行わずに焼成したぺロブ
スカイト型複合酸化物体の焼成後の電子顕微鏡写真を示
す。
FIG. 2 shows an electron micrograph of a perovskite-type composite oxide body that has been extruded and fired without performing groove processing after firing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Aがランタンであり、Bがストロンチウ
ムもしくはカルシウムであり、Xが0ないし0.4であ
るA1-XXCrO3で表されるぺロブスカイト型酸化物
の押出し成形体であって、押出し後にガス流路構造を形
成している固体電解質型燃料電池用セパレータ。
An extruded product of a perovskite oxide represented by A 1-X B X CrO 3 wherein A is lanthanum, B is strontium or calcium, and X is 0 to 0.4. A solid oxide fuel cell separator having a gas flow path structure after extrusion.
【請求項2】 粒子径が1ないし10μmのぺロブスカ
イト複合酸化物粉体100容積部と300μm以下の水
酸基含有有機化合物の結合剤微粉末10ないし25容積
部と、可塑剤10ないし20容積部と、ぺロブスカイト
型粉体100重量に対して分散剤0.3ないし2.0重
量部と、水を100ないし150容積部とを混合して得
られた坏土をガス流路構造を形成した口金を通して押出
し成形後、結合剤、可塑剤を加熱分解除去した後焼成す
る固体電解質型燃料電池用セパレータの製造方法。
2. 100 parts by volume of perovskite composite oxide powder having a particle size of 1 to 10 μm, 10 to 25 parts by volume of a binder fine powder of a hydroxyl group-containing organic compound having a particle size of 300 μm or less, and 10 to 20 parts by volume of a plasticizer. A die having a gas passage structure formed by mixing a clay obtained by mixing 0.3 to 2.0 parts by weight of a dispersant and 100 to 150 parts by volume of water with respect to 100 parts by weight of perovskite-type powder A method for producing a separator for a solid oxide fuel cell, wherein the binder and the plasticizer are thermally decomposed and removed, and then fired.
JP9267240A 1997-09-30 1997-09-30 Separator for solid electrolyte fuel cell and manufacture thereof Pending JPH11111307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9267240A JPH11111307A (en) 1997-09-30 1997-09-30 Separator for solid electrolyte fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9267240A JPH11111307A (en) 1997-09-30 1997-09-30 Separator for solid electrolyte fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11111307A true JPH11111307A (en) 1999-04-23

Family

ID=17442093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9267240A Pending JPH11111307A (en) 1997-09-30 1997-09-30 Separator for solid electrolyte fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11111307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178527B1 (en) 2010-12-28 2012-08-30 주식회사 포스코 Separator for solid oxide fuel cell and manufacturing method thereof and fuel cell with separator
WO2014062198A1 (en) * 2012-10-19 2014-04-24 United Technologies Corporation Low cost fuel cell components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178527B1 (en) 2010-12-28 2012-08-30 주식회사 포스코 Separator for solid oxide fuel cell and manufacturing method thereof and fuel cell with separator
WO2014062198A1 (en) * 2012-10-19 2014-04-24 United Technologies Corporation Low cost fuel cell components
US10651484B2 (en) 2012-10-19 2020-05-12 Audi Ag Extruded carbon fuel cell components

Similar Documents

Publication Publication Date Title
DE69736454T2 (en) Laminated structures of sintered ceramic material, electrochemical cells, filters and processes for their manufacture
EP2977363B1 (en) Joined body, and production method therefor
JPH05190180A (en) Air electrode body of solid electrolyte type fuel cell, manufacture of air electrode body and solid electrolyte type fuel cell
KR20170085049A (en) Anode for solid oxide fuel cell and production method therefor, and method for producing electrolyte layer-electrode assembly for fuel cell
CN101654364B (en) Method for extruding tubular ceramic products by virtue of composite thermoplastic medium
Durango-Petro et al. Ascendable method for the fabrication of micro-tubular solid oxide fuel cells by ram-extrusion technique
JPH0669907B2 (en) Method for manufacturing electron conductive porous ceramic tube
JP2004188819A (en) Method for manufacturing honeycomb molded body and honeycomb structure
KR101222867B1 (en) Anode support using spherical pore former and solid oxide fuel cell and the fabrication method therefor
JPH11111307A (en) Separator for solid electrolyte fuel cell and manufacture thereof
CN106268334A (en) A kind of ceramic separation film element and preparation method thereof
Ertugrul et al. Effect of binder burnout on the sealing performance of glass ceramics for solid oxide fuel cells
JPH07126061A (en) Magnesia-based sintered material and production thereof
US20060154068A1 (en) Method of manufacturing honeycomb structure and silicon carbide particles used for producing honeycomb structure
JP3015859B2 (en) Method for producing perovskite-type oxide thin film sheet by extrusion method
JP2725732B2 (en) Zirconia porous body and method for producing the same
JP2010262761A (en) Solid oxide fuel cell and jointing material
JP2571138B2 (en) Method for producing stabilized zirconia film
JP3724762B2 (en) Method for producing fuel electrode of solid oxide fuel cell
JP4145041B2 (en) Electrochemical equipment
JPH06116027A (en) Zirconia thin film sheet by extrusion method and its production
JPH0740322A (en) Extrusion molding equipment
JPH05225986A (en) Manufacture of solid electrolyte type fuel cell
JP4196224B2 (en) INTERCONNECTOR OF SOLID OXIDE FUEL CELL AND MANUFACTURING METHOD THEREOF, SOLID OXIDE FUEL CELL AND METHOD OF OPERATING THE SAME
KR101346729B1 (en) Anode support for sold oxide fuel cell and manufacturing methods thereof