JP3724762B2 - Method for producing fuel electrode of solid oxide fuel cell - Google Patents

Method for producing fuel electrode of solid oxide fuel cell Download PDF

Info

Publication number
JP3724762B2
JP3724762B2 JP20255997A JP20255997A JP3724762B2 JP 3724762 B2 JP3724762 B2 JP 3724762B2 JP 20255997 A JP20255997 A JP 20255997A JP 20255997 A JP20255997 A JP 20255997A JP 3724762 B2 JP3724762 B2 JP 3724762B2
Authority
JP
Japan
Prior art keywords
nickel
nickel oxide
oxide powder
fuel electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20255997A
Other languages
Japanese (ja)
Other versions
JPH1140170A (en
Inventor
直樹 加藤
敏雄 松島
姫子 大類
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20255997A priority Critical patent/JP3724762B2/en
Publication of JPH1140170A publication Critical patent/JPH1140170A/en
Application granted granted Critical
Publication of JP3724762B2 publication Critical patent/JP3724762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【産業上の利用分野】
本発明は燃料電極の製造方法に関し、特に、固体電解質型燃料電池(Solid Oxide Fuel Cell、以下SOFCと略す)の燃料電極の製造方法に関する。
【0002】
【従来の技術】
SOFCは、酸化剤と燃料の2種類のガスを酸化剤電極と燃料電極に供給して発電を行う燃料電池のうち、構成材料のすべてに固体物質を用いるものの総称である。SOFCでは、以下のようなセラミックスが広く用いられており、通常、1000℃付近の温度で運転される。
【0003】
電解質:イットリア安定化ジルコニア(YSZ)
燃料電極:ニッケル・ジルコニアサーメット(Ni−YSZ)
酸化剤電極:ストロンチウムドープ・ランタンマンガナイト(LSM)
【0004】
ここで、燃料電極の金属としてNiが多用されるのは、水素、一酸化炭素などの燃料ガスに対する活性が高く、またYSZに対して安定であり、燃料として石炭ガスを用いた場合の耐硫黄性にも優れていることなどからである。燃料電極を低コストで作製する手法としては通常、原料であるYSZ粉末や酸化ニッケル粉末をボールミル等で混合し、これをペーストとして電解質に塗布して焼成する、スラリー塗布法が用いられている。
【0005】
燃料電極は、燃料ガスと酸化剤とを反応させるための触媒としての役割を持ち、この電極反応場となっているのは、Ni、YSZ、および燃料ガスが接する三相界面である。従って、この三相界面長を増大させることはSOFCの出力特性の向上につながる。さらに、電極自身の導電性を増大させることも、SOFCの出力特性の向上につながる。このため、酸化ニッケル粉末とYSZ粉末の粒径や粒径比を調整することよってNi粒子およびYSZ粒子を高分散させ、三相界面を増大させる検討、あるいは酸化ニッケル粉末とYSZ粉末の混合比の調整によって導電性を増大させる検討などが従来より行われている。
【0006】
【発明が解決しようとする課題】
ところが、SOFCは燃料電極が電解質に直接接する構造をとるため、たとえ燃料電極自身では性能の高いものであっても、電解質との間の熱膨張・収縮における整合性が図れていなければ、界面応力に伴う電極の剥離や割れが生じ、その性能を十分に発揮できない。このため、酸化ニッケル粉末とYSZ粉末の粒径や粒径比、あるいは混合比の調整による燃料電極の最適化は、電解質との整合性も考慮した総合的なものとなり、電極自身の性能をある程度犠牲にしなければならないこともあった。
【0007】
例えば、既に焼結体となっている電解質膜あるいは電解質基板上に燃料電極を作製する場合、燃料電極を焼成する際に電解質の焼結はほとんど起こらないため、整合性を図るには燃料電極の焼成時の収縮を抑制しなければならない。焼成時の収縮を抑制する手法として、例えば、材料粉末をあらかじめ焼成温度よりも低い温度で焼結させておく、仮焼処理が行われる。ところがこのような仮焼処理では、粉末の粒径や粒径分布が変化してしまうことが多く、電極としての最適設計が損なわれることにもなる。
【0008】
本発明は、燃料電極の材料に結晶性の低い酸化ニッケル粉末、すなわち結晶性に大きなばらつきがある粉末、あるいは該酸化ニッケル粉末とYSZ粉末の混合粉末を使用することによって、上記問題点の解決を図ろうとするものである。
【0009】
【課題を解決するための手段】
【0010】
(第1の手段)
本発明は、酸化ニッケル粉末、あるいは酸化ニッケル粉末と酸素イオン導電性を有する酸化物粉末の混合粉末を焼成する固体電解質型燃料電池の燃料電極の製造方法において、該酸化ニッケル粉末の成形体が400℃から850℃で収縮するような酸化ニッケル粉末を使用するとともに、該酸化ニッケル粉末を硝酸ニッケル、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケルの一種以上のニッケル化合物の熱分解、またはこれらニッケル化合物を、水酸化ナトリウム、水酸化カリウム、水酸化リチウムの一種以上のアルカリ性溶液で中和することにより得た沈澱物の熱分解により作製することを特徴とする。
【0011】
(第2の手段)
本発明は、前記第1の手段に記載した固体電解質型燃料電池の燃料電極の製造方法において、酸化ニッケル粉末の結晶性の制御を、上記ニッケル塩または沈澱物の熱分解温度を変えることにより行うこと、または熱分解で得た、該酸化ニッケル粉末の成形体が400℃から850℃で収縮するような酸化ニッケル粉末を、熱分解温度よりも高く燃料電極の焼結温度よりも低い温度で熱処理することにより行うことを特徴とする。
【0012】
(第3の手段)
本発明は、前記第1または第2の手段に記載した固体電解質型燃料電池の燃料電極の製造方法において、酸素イオン導電性を有する酸化物が、イットリア安定化ジルコニア、部分安定化ジルコニア、サマリアドープセリアであることを特徴とする。
【0014】
【作用】
SOFCの燃料電極の材料として用いる酸化ニッケルは、塩化ニッケル、硝酸ニッケル等のニッケル化合物の熱分解、またはこれらニッケル化合物を、水酸化ナトリウム、水酸化カリウム等のアルカリ性溶液で中和することにより得た沈澱物の熱分解により作製することができる。このとき、熱分解温度が異なれば、生成する酸化ニッケルの結晶性が異なる。また、熱分解を行ったあとに、熱分解温度よりも高い温度で熱処理を行っても酸化ニッケルの結晶性が変化する。
【0015】
結晶性の異なる酸化ニッケル粉末で焼結体を作製した場合、焼結時の収縮率は、その結晶性により違ったものとなる。従って、熱分解温度あるいは熱処理温度を調整すれば、酸化ニッケルを焼結する際の収縮率を調整できることとなり、これを利用すれば、電解質上に燃料電極を形成する場合の、焼結時の熱収縮における整合性を図ることができる。
【0016】
【実施例1】
結晶性の低い酸化ニッケル粉末は、次のようにして作製した。まず、硝酸ニッケル水溶液を水酸化カリウム水溶液で中和し、このときに生じた沈澱物をろ過して取り出した。次にこれを400℃で熱分解することによって酸化ニッケルとし、さらにこれを粉砕および分級することにより、黒色で粒径約10μmの酸化ニッケル粉末を得た。このようにして得た酸化ニッケル粉末のX線回折パターンを図1に示す。また比較のため、粒径が同じで市販品の緑色の酸化ニッケル粉末のX線回折パターンも図2に示す。
【0017】
ここで図3に示すような、半値幅をカウント数のピーク値で徐した値α/C(以下、半値幅/ピーク値と記述)を求め、結晶性を評価する指標とする。この半値幅/ピーク値が大きいほど結晶性が低いと判断できる。図1と図2を比較すると、同じ回折角に対する半値幅/ピーク値は、いずれの角度においても図1の方が大きい。したがって、本発明の酸化ニッケルは結晶性が低いということができる。
【0018】
本発明の黒色の酸化ニッケル粉末、および市販品で緑色の酸化ニッケル粉末を1t/cm2のプレス圧で成形し、成形体の温度と長さの収縮率との関係を調べた。結果を図4に示すが、本発明の酸化ニッケル粉末では、400℃から850℃くらいの範囲において大きな収縮が見られる。さらに、本発明の酸化ニッケル粉末を500〜1100℃の範囲で2時間熱処理を行い、熱処理後、X線回折試験を行った。熱処理温度と(200)面での半値幅/ピーク値の関係を図5に示す。熱処理温度の上昇とともに半値幅/ピーク値が小さくなっており、結晶化が進行していることがわかる。なおここで、半値幅/ピーク値が減少する温度範囲は、図4で大きな収縮挙動が見られる400〜850℃の範囲に一致している。また、400〜800℃までの温度範囲で熱処理を行った酸化ニッケル粉末の、粒径および粒径分布を円心沈降法で測定した結果、これら物性の熱処理温度による大きな違いは見られなかった。結晶化の進行と重量との関係については、室温〜1000℃の範囲で熱重量分析(thermogravimetric analysys;TG分析)を行った結果、ここでの重量変化はほとんど見られなかった。従ってこの結晶化は、物質の吸収や放出を伴わない内部構造の変化によるものである。
【0019】
次に、各温度で2時間熱処理を行った本発明の酸化ニッケル粉末でプレス成形体を作製し、1200℃で2時間焼成したときの長さ方向の収縮率と熱処理温度との関係も求めた。結果を図6に示すが、熱処理温度を高くすることにより、収縮を小さくできることがわかる。同様に、熱処理は行わずに、熱分解温度の方だけを500〜1100℃の範囲で変えた場合についても、熱分解温度と収縮率の関係は、熱処理温度に対して得られた上記結果と同じ傾向を示した。
【0020】
これらの結果から、酸化ニッケルを作製するときの熱分解温度、あるいは結晶性の低い酸化ニッケルの熱処理温度を変えて酸化ニッケルの結晶性を調整すれば、焼成時の収縮率を調整できることがわかる。しかもここでの収縮率の調整は、従来行われている結晶性の高い酸化ニッケル粉末の仮焼処理によるものとは異なり、酸化ニッケルの焼結温度よりも低い温度で熱処理あるいは熱分解を行うため、前処理を行うことによる酸化ニッケル粉末の粒径の変化はほとんど起こらないというメリットがある。
【0021】
以上、結晶性の低い酸化ニッケル粉末の作製法と、結晶性の制御による収縮率の調整について実施例を述べた。次に、燃料電池の電極材料として本発明の酸化ニッケル粉末を用いた場合の実施例を示す。
【0022】
【実施例2】
上記の実施例1で示した材料と作製法で、400℃で熱分解を行うことにより作製した粒径10μmの酸化ニッケル粉末、およびこれを500〜1000℃の範囲で100℃毎の各温度で熱処理したものを燃料電極作製用の材料物質とした。これらの材料粉末をそのまま、あるいは、これらの材料粉末にYSZ粉末(8mol%イットリア安定化)を50:50の重量比で混合し、材料結着剤としてポリビニルブチラール、溶剤としてテレピネオールを混合してスラリーとした。これを、直径3cmで厚さが0.5mmのYSZ円盤(8mol%イットリア安定化)上に、厚さが0.1mmとなるように塗布し、1200℃で2時間焼成した。また比較のため、粒径が同じで市販品の緑色の酸化ニッケル粉末についても同様に焼成体を作製した。
【0023】
作製した燃料電極と電解質であるYSZ円盤との整合性の評価は、スクラッチ試験器により機械的な手法で行った。つまり、触針(先端部の直径0.2mm)と燃料電極の膜面とが垂直となるように接触させ、触針には直線的に増加する荷重をかけながら下地のYSZ円盤を一定の速度で移動させる。このとき、燃料電極が剥離または割れを開始したときの荷重を求め、この値を燃料電極と電解質との密着力と定義した。そしてこの値が大きいほど整合性が良いと判定した。
【0024】
図7に各試料についての熱処理温度と密着力との測定結果を示す。本発明の酸化ニッケル粉末のみのもの、および本発明の酸化ニッケル粉末とYSZ粉末を混合したものはいずれも、市販品で結晶性が良い酸化ニッケルを用いた場合と比較して密着力が大きく、整合性が良いことがわかる。また、800℃までは熱処理温度が高くなるにつれて密着力が大きくなる傾向にあり、酸化ニッケルの結晶性を制御することにより、燃料電極と電解質の間の整合性を高められることがわかる。なお、900℃以上で密着力が減少しているのは、熱処理時に酸化ニッケルの焼結が起こり、酸化ニッケルの粒径が増大したことによる焼結性の低下が起こったためと思われる。
【0025】
【発明の効果】
以上のように、本発明によれば、燃料電極の原料として使用する酸化ニッケル粉末の結晶性を調整することによって電解質との整合性を図ることができる。
【図面の簡単な説明】
【図1】本発明の黒色の酸化ニッケル粉末のX線回折図。
【図2】市販品で緑色の酸化ニッケル粉末のX線回折図。
【図3】X線回折図の半値幅とカウント数のピーク値から、試料の結晶性を評価する値の算出法を示す図。
【図4】本発明の黒色の酸化ニッケル粉末、および市販品で緑色の酸化ニッケル粉末のプレス成形体における、温度と長さの収縮率との関係を示す図。
【図5】本発明の酸化ニッケル粉末を2時間熱処理したときの熱処理温度と、X線回折試験から求めた、(200)面での半値幅をカウント数のピーク値で徐した値との関係図。
【図6】2時間熱処理を行った本発明の黒色の酸化ニッケル粉末で作製したプレス成形体を1200℃で2時間焼成したときの、成形体の長さ方向の収縮率と熱処理温度との関係図。
【図7】本発明の酸化ニッケルで発明した燃料電極、および本発明の酸化ニッケルとYSZを50:50の重量比で混合して作製した燃料電極の、酸化ニッケルの熱処理温度とスケラッチ試験で得られた密着力との関係図。
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a fuel electrode, in particular, it relates to a method for producing a fuel electrode of a solid oxide fuel cell (Solid Oxide Fuel Cell, hereinafter abbreviated as SOFC).
[0002]
[Prior art]
SOFC is a general term for a fuel cell that generates power by supplying two kinds of gases, an oxidant and a fuel, to the oxidant electrode and the fuel electrode, and uses a solid substance as a constituent material. In the SOFC, the following ceramics are widely used and are usually operated at a temperature around 1000 ° C.
[0003]
Electrolyte: Yttria stabilized zirconia (YSZ)
Fuel electrode: Nickel / zirconia cermet (Ni-YSZ)
Oxidant electrode: Strontium-doped lanthanum manganite (LSM)
[0004]
Here, Ni is frequently used as the metal of the fuel electrode because it is highly active against fuel gases such as hydrogen and carbon monoxide, is stable against YSZ, and is sulfur resistant when coal gas is used as the fuel. This is because of its excellent properties. As a method for producing a fuel electrode at a low cost, a slurry coating method is generally used in which YSZ powder or nickel oxide powder as raw materials are mixed with a ball mill or the like, applied as a paste to an electrolyte, and fired.
[0005]
The fuel electrode serves as a catalyst for reacting the fuel gas with the oxidant, and this electrode reaction field is a three-phase interface where Ni, YSZ, and the fuel gas are in contact. Therefore, increasing the three-phase interface length leads to an improvement in SOFC output characteristics. Furthermore, increasing the conductivity of the electrode itself also improves the output characteristics of the SOFC. Therefore, by adjusting the particle size and particle size ratio of nickel oxide powder and YSZ powder, high dispersion of Ni particles and YSZ particles to increase the three-phase interface, or the mixing ratio of nickel oxide powder and YSZ powder Studies have been made to increase conductivity by adjustment.
[0006]
[Problems to be solved by the invention]
However, since the SOFC has a structure in which the fuel electrode is in direct contact with the electrolyte, even if the fuel electrode itself has high performance, if the consistency with the thermal expansion and contraction with the electrolyte is not achieved, the interface stress The electrode peels off and cracks, and the performance cannot be fully exhibited. For this reason, the optimization of the fuel electrode by adjusting the particle size, particle size ratio, or mixing ratio of the nickel oxide powder and the YSZ powder is comprehensive considering the compatibility with the electrolyte, and the performance of the electrode itself is improved to some extent. I had to sacrifice.
[0007]
For example, when a fuel electrode is fabricated on an electrolyte membrane or an electrolyte substrate that has already been sintered, the electrolyte hardly sinters when firing the fuel electrode. Shrinkage during firing must be suppressed. As a method for suppressing shrinkage during firing, for example, a calcination treatment is performed in which the material powder is sintered in advance at a temperature lower than the firing temperature. However, in such a calcination treatment, the particle size and particle size distribution of the powder often change, and the optimum design as an electrode is impaired.
[0008]
The present invention solves the above problems by using nickel oxide powder with low crystallinity, that is, powder having a large variation in crystallinity, or a mixed powder of the nickel oxide powder and YSZ powder. It is intended to be illustrated.
[0009]
[Means for Solving the Problems]
[0010]
(First means)
The present invention, nickel oxide powder, or in the manufacturing method of the fuel electrode of the solid body electrolyte fuel cell you calcining a mixed powder of oxide powder with a nickel oxide powder and oxygen ion conductivity, compact of nickel oxide powder There together using an acid nickel powder as shrink at 850 ° C. from 400 ° C., the nickel oxide powder nickel nitrate, nickel sulfate, nickel chloride, nickel carbonate, thermal decomposition of one or more nickel compounds of nickel acetate, or These nickel compounds are produced by thermal decomposition of a precipitate obtained by neutralizing with one or more alkaline solutions of sodium hydroxide, potassium hydroxide and lithium hydroxide .
[0011]
(Second means)
According to the present invention, in the method for producing a fuel electrode of a solid oxide fuel cell described in the first means, the crystallinity of the nickel oxide powder is controlled by changing the thermal decomposition temperature of the nickel salt or precipitate. Or heat treating the nickel oxide powder obtained by thermal decomposition so that the nickel oxide powder compact shrinks at 400 ° C. to 850 ° C. at a temperature higher than the thermal decomposition temperature and lower than the sintering temperature of the fuel electrode. It is characterized by performing by doing .
[0012]
(Third means)
The present invention provides the method for producing a fuel electrode of a solid oxide fuel cell according to the first or second means , wherein the oxide having oxygen ion conductivity is yttria stabilized zirconia, partially stabilized zirconia, samaria dope. It is characterized by being ceria.
[0014]
[Action]
Nickel oxide used as a fuel electrode material for SOFC was obtained by thermal decomposition of nickel compounds such as nickel chloride and nickel nitrate, or neutralizing these nickel compounds with an alkaline solution such as sodium hydroxide and potassium hydroxide. It can be produced by thermal decomposition of the precipitate. At this time, if the thermal decomposition temperature is different, the crystallinity of the produced nickel oxide is different. Further, the crystallinity of nickel oxide changes even if heat treatment is performed at a temperature higher than the pyrolysis temperature after the thermal decomposition.
[0015]
When a sintered body is made of nickel oxide powders having different crystallinity, the shrinkage rate during sintering varies depending on the crystallinity. Therefore, if the thermal decomposition temperature or heat treatment temperature is adjusted, the shrinkage rate during sintering of nickel oxide can be adjusted, and if this is used, the heat during sintering when the fuel electrode is formed on the electrolyte can be adjusted. Consistency in contraction can be achieved.
[0016]
[Example 1]
The nickel oxide powder having low crystallinity was produced as follows. First, the aqueous nickel nitrate solution was neutralized with an aqueous potassium hydroxide solution, and the precipitate formed at this time was filtered out. Next, this was thermally decomposed at 400 ° C. to obtain nickel oxide, which was further pulverized and classified to obtain a nickel oxide powder having a black particle size of about 10 μm. The X-ray diffraction pattern of the nickel oxide powder thus obtained is shown in FIG. For comparison, an X-ray diffraction pattern of a commercially available green nickel oxide powder having the same particle size is also shown in FIG.
[0017]
Here, as shown in FIG. 3, a value α / C (hereinafter referred to as half width / peak value) obtained by grading the half width by the peak value of the count number is obtained and used as an index for evaluating crystallinity. It can be judged that the larger the half width / peak value, the lower the crystallinity. Comparing FIG. 1 with FIG. 2, the half width / peak value for the same diffraction angle is larger in FIG. 1 at any angle. Therefore, it can be said that the nickel oxide of the present invention has low crystallinity.
[0018]
The black nickel oxide powder of the present invention and a commercially available green nickel oxide powder were molded at a press pressure of 1 t / cm 2 , and the relationship between the temperature of the molded body and the shrinkage ratio of the length was examined. The results are shown in FIG. 4, and in the nickel oxide powder of the present invention, large shrinkage is observed in the range of about 400 ° C. to 850 ° C. Furthermore, the nickel oxide powder of the present invention was heat-treated at a temperature of 500 to 1100 ° C. for 2 hours, and an X-ray diffraction test was performed after the heat treatment. FIG. 5 shows the relationship between the heat treatment temperature and the full width at half maximum / peak value on the (200) plane. As the heat treatment temperature increases, the full width at half maximum / peak value decreases, indicating that crystallization is progressing. Here, the temperature range in which the full width at half maximum / the peak value decreases coincides with the range of 400 to 850 ° C. in which a large shrinkage behavior is seen in FIG. Moreover, as a result of measuring the particle size and particle size distribution of the nickel oxide powder heat-treated in a temperature range from 400 to 800 ° C. by the circular center sedimentation method, there was no significant difference in the physical properties depending on the heat treatment temperature. As for the relationship between the progress of crystallization and the weight, thermogravimetric analysis (TG analysis) was performed in the range of room temperature to 1000 ° C., and as a result, almost no weight change was observed here. Therefore, this crystallization is due to a change in internal structure that does not involve the absorption or release of substances.
[0019]
Next, a press-molded body was produced from the nickel oxide powder of the present invention that was heat-treated at each temperature for 2 hours, and the relationship between the shrinkage in the length direction and the heat treatment temperature when fired at 1200 ° C. for 2 hours was also obtained. . The results are shown in FIG. 6, and it can be seen that shrinkage can be reduced by increasing the heat treatment temperature. Similarly, in the case where only the thermal decomposition temperature is changed in the range of 500 to 1100 ° C. without performing the heat treatment, the relationship between the thermal decomposition temperature and the shrinkage ratio is the same as the above result obtained with respect to the heat treatment temperature. The same tendency was shown.
[0020]
From these results, it is understood that the shrinkage ratio during firing can be adjusted by adjusting the crystallinity of nickel oxide by changing the thermal decomposition temperature when producing nickel oxide or the heat treatment temperature of nickel oxide having low crystallinity. In addition, the shrinkage rate is adjusted here by performing heat treatment or thermal decomposition at a temperature lower than the sintering temperature of nickel oxide, unlike the conventional method of calcining nickel oxide powder with high crystallinity. There is an advantage that the particle size of the nickel oxide powder hardly changes due to the pretreatment.
[0021]
In the above, an example was described about the production method of nickel oxide powder having low crystallinity and the adjustment of the shrinkage rate by controlling the crystallinity. Next, the Example at the time of using the nickel oxide powder of this invention as an electrode material of a fuel cell is shown.
[0022]
[Example 2]
A nickel oxide powder having a particle size of 10 μm produced by performing thermal decomposition at 400 ° C. with the material and production method shown in Example 1 above, and this at a temperature of every 100 ° C. in the range of 500 to 1000 ° C. The heat-treated material was used as a material for preparing a fuel electrode. These material powders are mixed as they are, or YSZ powder (8 mol% yttria stabilized) is mixed at a weight ratio of 50:50, and polyvinyl butyral as a material binder and terpineol as a solvent are mixed to form a slurry. It was. This was applied onto a YSZ disk (8 mol% yttria stabilized) having a diameter of 3 cm and a thickness of 0.5 mm so as to have a thickness of 0.1 mm, and baked at 1200 ° C. for 2 hours. For comparison, a fired body was produced in the same manner for a commercially available green nickel oxide powder having the same particle size.
[0023]
Evaluation of consistency between the produced fuel electrode and the YSZ disk as the electrolyte was performed by a mechanical method using a scratch tester. That is, the stylus (diameter 0.2 mm at the tip) and the membrane surface of the fuel electrode are brought into contact with each other vertically, and the underlying YSZ disk is moved at a constant speed while applying a linearly increasing load to the stylus. Move with. At this time, the load when the fuel electrode started to peel or crack was determined, and this value was defined as the adhesion between the fuel electrode and the electrolyte. And it was determined that the greater the value, the better the consistency.
[0024]
FIG. 7 shows the measurement results of the heat treatment temperature and adhesion for each sample. Both the nickel oxide powder of the present invention and the mixture of the nickel oxide powder of the present invention and the YSZ powder both have a large adhesion compared to the case of using a commercially available nickel oxide with good crystallinity, It can be seen that the consistency is good. Further, it can be seen that the adhesive strength tends to increase as the heat treatment temperature increases up to 800 ° C., and it is understood that the consistency between the fuel electrode and the electrolyte can be improved by controlling the crystallinity of nickel oxide. The reason why the adhesive force decreased at 900 ° C. or higher is considered to be that the sintering of nickel oxide occurred during the heat treatment and the sinterability decreased due to the increase in the particle size of nickel oxide.
[0025]
【The invention's effect】
As described above, according to the present invention, consistency with the electrolyte can be achieved by adjusting the crystallinity of the nickel oxide powder used as the raw material of the fuel electrode.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of black nickel oxide powder of the present invention.
FIG. 2 is an X-ray diffraction pattern of a commercially available green nickel oxide powder.
FIG. 3 is a diagram showing a method for calculating a value for evaluating the crystallinity of a sample from the full width at half maximum of the X-ray diffraction diagram and the peak value of the count number.
FIG. 4 is a graph showing the relationship between temperature and length shrinkage in press-molded bodies of black nickel oxide powder of the present invention and commercially available green nickel oxide powder.
FIG. 5 shows the relationship between the heat treatment temperature when the nickel oxide powder of the present invention is heat-treated for 2 hours and the value obtained by grading the half-value width on the (200) plane by the peak value of the count number, which was obtained from the X-ray diffraction test Figure.
FIG. 6 shows the relationship between the shrinkage ratio in the length direction of the molded body and the heat treatment temperature when a press-molded body made of the black nickel oxide powder of the present invention that has been heat-treated for 2 hours is fired at 1200 ° C. for 2 hours. Figure.
FIG. 7 is a graph illustrating a fuel electrode invented with the nickel oxide of the present invention and a fuel electrode prepared by mixing nickel oxide and YSZ of the present invention in a weight ratio of 50:50 by a heat treatment temperature of nickel oxide and a squelatch test. FIG.

Claims (3)

酸化ニッケル粉末、あるいは酸化ニッケル粉末と酸素イオン導電性を有する酸化物粉末の混合粉末を焼成する固体電解質型燃料電池の燃料電極の製造方法において、該酸化ニッケル粉末の成形体が400℃から850℃で収縮するような酸化ニッケル粉末を使用するとともに、該酸化ニッケル粉末を硝酸ニッケル、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケルの一種以上のニッケル化合物の熱分解、またはこれらニッケル化合物を、水酸化ナトリウム、水酸化カリウム、水酸化リチウムの一種以上のアルカリ性溶液で中和することにより得た沈澱物の熱分解により作製することを特徴とする固体電解質型燃料電池の燃料電極の製造方法。 Nickel oxide powder, or in the manufacturing method of the fuel electrode of the solid body electrolyte fuel cell you calcining a mixed powder of oxide powder with a nickel oxide powder and oxygen ion conductivity, a molded body of nickel oxide powder is 400 ° C. with using a nickel oxide powder as shrink at 850 ° C., nickel nitrate to nickel oxide powder, nickel sulfate, nickel chloride, nickel carbonate, thermal decomposition of one or more nickel compounds of nickel acetate, or these nickel compounds, A method for producing a fuel electrode for a solid oxide fuel cell, comprising producing a precipitate obtained by neutralization with one or more alkaline solutions of sodium hydroxide, potassium hydroxide and lithium hydroxide . 請求項1に示す、固体電解質型燃料電池の燃料電極の製造方法において、酸化ニッケル粉末の結晶性の制御を、上記ニッケル塩または沈澱物の熱分解温度を変えることにより行うこと、または熱分解で得た、該酸化ニッケル粉末の成形体が400℃から850℃で収縮するような酸化ニッケル粉末を、熱分解温度よりも高く燃料電極の焼結温度よりも低い温度で熱処理することにより行うことを特徴とする固体電解質型燃料電池の燃料電極の製造方法 The method for producing a fuel electrode for a solid oxide fuel cell according to claim 1 , wherein the crystallinity of the nickel oxide powder is controlled by changing the thermal decomposition temperature of the nickel salt or precipitate, or by thermal decomposition. obtained, that done by molding of nickel oxide powder of nickel oxide powders, such as shrinkage at 850 ° C. from 400 ° C., a heat treatment at a temperature lower than the sintering temperature of the higher fuel electrode than the thermal decomposition temperature A method for producing a fuel electrode of a solid oxide fuel cell, characterized in that 請求項1〜2に示す、固体電解質型燃料電池の燃料電極の製造方法において、酸素イオン導電性を有する酸化物が、イットリア安定化ジルコニア、部分安定化ジルコニア、サマリアドープセリアであることを特徴とする固体電解質型燃料電池の燃料電極の製造方法 The method for producing a fuel electrode of a solid oxide fuel cell according to claim 1 or 2 , wherein the oxide having oxygen ion conductivity is yttria-stabilized zirconia, partially-stabilized zirconia, or samaria-doped ceria. A method for manufacturing a fuel electrode of a solid oxide fuel cell.
JP20255997A 1997-07-11 1997-07-11 Method for producing fuel electrode of solid oxide fuel cell Expired - Fee Related JP3724762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20255997A JP3724762B2 (en) 1997-07-11 1997-07-11 Method for producing fuel electrode of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20255997A JP3724762B2 (en) 1997-07-11 1997-07-11 Method for producing fuel electrode of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH1140170A JPH1140170A (en) 1999-02-12
JP3724762B2 true JP3724762B2 (en) 2005-12-07

Family

ID=16459509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20255997A Expired - Fee Related JP3724762B2 (en) 1997-07-11 1997-07-11 Method for producing fuel electrode of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3724762B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784197B2 (en) * 2004-08-11 2011-10-05 住友金属鉱山株式会社 Nickel oxide powder and anode material for anode material of solid oxide fuel cell
JP5631625B2 (en) * 2009-06-30 2014-11-26 日本碍子株式会社 Solid oxide fuel cell
KR101438671B1 (en) * 2013-02-15 2014-09-17 영남대학교 산학협력단 Preparation of octahedron NiO anode materials for solid oxide fuel cells

Also Published As

Publication number Publication date
JPH1140170A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
KR100958514B1 (en) Manufacturing method of solid oxide fuel cell
JP5163122B2 (en) Nickel oxide powder material for solid oxide fuel cell, method for producing the same, raw material composition used therefor, and fuel electrode material using the same
JP5642197B2 (en) Composite ceramic material and method for producing the same
JPH04118861A (en) Solid electrolyte type fuel cell and its manufacture
JP6655122B2 (en) Method for producing proton conductive oxide fuel cell
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
KR101220586B1 (en) A Method for Preparing NiO/YSZ Composite for a Solid Oxide Fuel Cell
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
JP3661676B2 (en) Solid oxide fuel cell
JP5598920B2 (en) Method for producing electrolyte dense material for solid oxide fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
CN111769296B (en) Preparation method of SOFC (solid oxide Fuel cell) carbon deposition resistant Ni-YSZ (yttria stabilized zirconia) anode material
JP4784197B2 (en) Nickel oxide powder and anode material for anode material of solid oxide fuel cell
JP3724762B2 (en) Method for producing fuel electrode of solid oxide fuel cell
KR102148077B1 (en) Interconnect for a solid oxide fuel cell, its manufacturing method, and a solid oxide fuel cell comprising the same
JP2003217597A (en) Solid electrolyte type fuel cell
JP3729194B2 (en) Solid oxide fuel cell
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
JP3411064B2 (en) Method for producing solid electrolyte sintered body for solid oxide fuel cell
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP2003323903A (en) Zirconia material containing scandia in form of solid solution, and solid electrolyte fuel cell using the same
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP2003243001A (en) Solid electrolyte fuel cell
JP2771090B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees