JPH11110715A - Magnetic head and its manufacture - Google Patents

Magnetic head and its manufacture

Info

Publication number
JPH11110715A
JPH11110715A JP26898097A JP26898097A JPH11110715A JP H11110715 A JPH11110715 A JP H11110715A JP 26898097 A JP26898097 A JP 26898097A JP 26898097 A JP26898097 A JP 26898097A JP H11110715 A JPH11110715 A JP H11110715A
Authority
JP
Japan
Prior art keywords
magnetic
magnetostriction
film
metal
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26898097A
Other languages
Japanese (ja)
Inventor
Junichi Honda
順一 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP26898097A priority Critical patent/JPH11110715A/en
Publication of JPH11110715A publication Critical patent/JPH11110715A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize excellent recording/reproducing characteristics of a magnetic head and reduce the variation in characteristics of the individual heads. SOLUTION: A pair of magnetic half cores are joined integrally with each other so as to have their magnetic gap forming surfaces abut upon each other. Metal magnetic films 5 and 6 are formed on the magnetic gap forming surfaces of the magnetic half cores. The metal magnetic films 5 and 6 are composed of layered magnetic layers 14, 15, 16 and 17 which are made of material whose composition is expressed by a formula Fex My Az (wherein M denotes at least one of elements Ta, Zr, Hf Nb and Ti, A denotes at least one of elements N, C and B, 71<=x<=85, 6<=y<=15 and 9<=z<=16). The uppermost magnetic layers 16 and 17 among the magnetic layers 14, 15, 16 and 17 have positive magnetic distortions, the lowermost magnetic layers 14 and 15 opposite to the uppermost magnetic layers have negative magnetic distortions and, further, the absolute values of the respective magnetic distortions are not larger than 7×10<-7> . These requirements can be achieved by applying a heat treatment every time after the respective magnetic layers 14, 15, 16 and 17 are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヘリカルスキャン
のシステムで記録・再生を行うビデオテープレコーダや
データストレージ装置に用いられ、メタルテープ等の高
抗磁力磁気記録媒体に対応して好適な磁気ヘッド及びそ
の製造方法に関するものであり、特に磁気ギャップ部を
構成する金属磁性膜の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head suitable for a high coercive force magnetic recording medium such as a metal tape, which is used for a video tape recorder or a data storage device for recording / reproducing in a helical scan system. More particularly, the present invention relates to improvement of a metal magnetic film constituting a magnetic gap portion.

【0002】[0002]

【従来の技術】近年、磁気記録の分野においては、記録
信号の高密度化が進行しており、高い抗磁力と高い残留
磁束密度を有する磁気記録媒体、例えば強磁性金属材料
を非磁性支持体上に直接被着せしめてなるメタルテープ
等が使用されるようになっている。これに伴って磁気ヘ
ッドに対しては、コア材料が高飽和磁束密度、高透磁率
を有することが要求されている。
2. Description of the Related Art In recent years, in the field of magnetic recording, the density of recording signals has been increasing, and a magnetic recording medium having a high coercive force and a high residual magnetic flux density, such as a ferromagnetic metal material, has been used as a non-magnetic support. Metal tapes and the like directly adhered on top have been used. Accordingly, the core material is required to have a high saturation magnetic flux density and a high magnetic permeability for the magnetic head.

【0003】このような要求を満たすために、従来か
ら、補助コア材にフェライトを用い、そのフェライト上
に高飽和磁束密度を有する金属磁性膜を主コア材として
形成し、磁気ギャップ部を上記金属磁性膜により形成す
るようにしたメタル・イン・ギャップ(Metal i
n Gap)型の磁気ヘッド(以下、MIGヘッドと称
する。)が提案されており、メタルテープ等の記録・再
生に好適なものとなっている。
In order to satisfy such requirements, ferrite has been conventionally used as an auxiliary core material, a metal magnetic film having a high saturation magnetic flux density is formed as a main core material on the ferrite, and a magnetic gap portion is formed on the metal core. Metal-in-gap (Metal i gap) formed by a magnetic film
An n Gap) type magnetic head (hereinafter, referred to as an MIG head) has been proposed, which is suitable for recording / reproducing a metal tape or the like.

【0004】この種の磁気ヘッドにおいては、最近の高
記録密度化の著しい進展に伴い、上記メタルテープ等の
ように高抗磁力の磁気記録媒体に対してより良好に記録
・再生を行うべく、記録磁界を十分とるためのより高い
飽和磁束密度を持ち、かつ優れた軟磁気特性を有する金
属磁性材料の使用が求められている。
In this type of magnetic head, with the recent remarkable progress of high recording density, in order to perform better recording / reproducing on a magnetic recording medium having a high coercive force such as the above-mentioned metal tape, It is required to use a metal magnetic material having a higher saturation magnetic flux density for obtaining a sufficient recording magnetic field and having excellent soft magnetic properties.

【0005】そこで、近年、Feを主成分とする、いわ
ゆる析出型の微結晶金属磁性膜が高い飽和磁束密度を持
ち、面内方向において優れた軟磁気特性を示すことか
ら、従来の磁気ヘッド用金属磁性材料を置き換える形で
実用化され始めている。この析出型の微結晶金属磁性膜
は、一般に、非結晶として成膜された後に熱処理が施さ
れることによって、Feを基とする微小な結晶粒が分散
・析出することにより形成される。
Therefore, in recent years, a so-called precipitation type microcrystalline metal magnetic film containing Fe as a main component has a high saturation magnetic flux density and exhibits excellent soft magnetic characteristics in an in-plane direction. Practical use has begun in the form of replacing metal magnetic materials. The precipitation-type microcrystalline metal magnetic film is generally formed by dispersing and depositing fine crystal grains based on Fe by forming a non-crystalline film and then performing a heat treatment.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述した微
結晶金属磁性膜をMIG型磁気ヘッドの金属磁性材料と
して適用した場合、微結晶金属磁性薄膜の軟磁性は、特
に成膜条件と熱処理条件により大きく影響される特性を
もつ。そのため、金属磁性膜の磁気的な劣化を防ぎ、磁
束の流れが一方向に限定されないようにするために、特
に磁歪がほぼ零付近になるように適当な熱処理条件を見
いだして対応していた。
When the above-mentioned microcrystalline metal magnetic film is applied as a metal magnetic material for a MIG type magnetic head, the soft magnetism of the microcrystalline metal magnetic thin film depends on the film forming conditions and heat treatment conditions. Has properties that are greatly affected. Therefore, in order to prevent magnetic deterioration of the metal magnetic film and prevent the flow of magnetic flux from being limited to one direction, an appropriate heat treatment condition has been found so as to make the magnetostriction substantially close to zero.

【0007】しかしながら、磁歪の調整は、スパッタ成
膜時のターゲット消費等に伴う微妙な変動、熱処理時の
微妙な熱吸収率の変動等の成膜条件或いは熱処理条件の
ずれにより、約±3〜5×10-7程度でしか制御でき
ず、微妙に制御することが難しかった。また、これらず
れの度合いによるばらつきがヘッド個体毎に発生して問
題となっていた。
However, the adjustment of the magnetostriction is limited to about ± 3 to ± 3 due to subtle variations due to target consumption during sputter deposition, subtle variations in heat absorption during heat treatment, etc. Control was only possible at about 5 × 10 −7 , and it was difficult to control delicately. In addition, variations due to the degree of these deviations occur for each individual head, which is a problem.

【0008】さらに、十分に磁歪を小さく制御しても、
膜単体として同じ磁歪を有することから、金属磁性膜へ
の残留応力や金属磁性膜に各種要因により誘導される異
方性により、ある特定の方向への金属磁性膜の磁気的な
異方性が残ってしまい、ヘッドの記録再生特性が低下し
てしまう問題があった。
Furthermore, even if the magnetostriction is controlled to be sufficiently small,
Since the film itself has the same magnetostriction, the magnetic anisotropy of the metal magnetic film in a specific direction is reduced due to residual stress on the metal magnetic film and anisotropy induced by various factors in the metal magnetic film. There is a problem that the recording and reproduction characteristics of the head are deteriorated.

【0009】本発明は、上述したような問題点を解決す
るために提案されたものであり、金属磁性膜の磁歪を微
妙に制御し、熱処理のずれによる影響を少なくするとと
もに、金属磁性膜の磁気的な異方性の影響を回避するこ
とができ、記録再生特性に優れた磁気ヘッド及びその製
造方法を提供することを目的とするものである。
The present invention has been proposed in order to solve the above-mentioned problems, and delicately controls the magnetostriction of the metal magnetic film to reduce the influence of the deviation due to the heat treatment. It is an object of the present invention to provide a magnetic head which can avoid the influence of magnetic anisotropy and has excellent recording / reproducing characteristics, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため、鋭意検討を重ねた結果、Feを主成分
とする微結晶金属磁性膜の磁歪が熱処理の温度に依存し
て低下、さらに熱処理時間の対数に依存して低下するこ
とに着目し、微結晶金属磁性膜を複数回に分断して形成
し、それぞれの磁性層形成毎に熱処理を施すことによっ
て、各磁性層の膜厚方向での磁歪を正から負へ変化さ
せ、磁性層全体の磁歪を微妙に制御できることを見いだ
した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the magnetostriction of the microcrystalline metal magnetic film containing Fe as a main component depends on the temperature of the heat treatment. Paying attention to the decrease and further decreasing depending on the logarithm of the heat treatment time, the microcrystalline metal magnetic film is divided into a plurality of times and formed, and the heat treatment is performed for each magnetic layer formation, so that each magnetic layer is formed. By changing the magnetostriction in the film thickness direction from positive to negative, it was found that the magnetostriction of the entire magnetic layer can be finely controlled.

【0011】すなわち、本発明に係る磁気ヘッドは、一
対の磁気コア半体が磁気ギャップ形成面を突き合わせて
接合一体化され、これら一対の磁気コア半体のうち少な
くとも一方の磁気コア半体の磁気ギャップ形成面に金属
磁性膜が成膜されてなる。そして、上記金属磁性膜は、
Fexyz(ただし、MはTa,Zr,Hf,Nb,
Tiのうちの少なくとも一種であり、AはN,C,Bの
うちの少なくとも1種であり、x,y,zは原子分率を
示し、これらがそれぞれ、71≦x≦85,6≦y≦1
5,9≦z≦16である。)で示される組成からなる磁
性層が複数積層されて形成されてなり、上記複数積層さ
れてなる磁性層のうち、磁気ギャップ側の最上磁性層の
磁歪が正を示し、最上磁性層とは反対側の最下磁性層の
磁歪が負を示し、かつそれぞれの磁歪の絶対値が7×1
-7以下であることを特徴とするものである。
That is, in the magnetic head according to the present invention, a pair of magnetic core halves are joined and integrated by abutting the magnetic gap forming surfaces, and the magnetic core of at least one of the pair of magnetic core halves is magnetically integrated. A metal magnetic film is formed on the gap forming surface. And, the metal magnetic film,
Fe x M y A z (however, M is Ta, Zr, Hf, Nb,
A is at least one of Ti, A is at least one of N, C, and B, x, y, and z are atomic fractions, each of which is 71 ≦ x ≦ 85, 6 ≦ y ≦ 1
5, 9 ≦ z ≦ 16. ) Is formed by laminating a plurality of magnetic layers having the composition represented by the formula (1), and among the laminated magnetic layers, the uppermost magnetic layer on the magnetic gap side shows a positive magnetostriction, and is opposite to the uppermost magnetic layer. And the absolute value of each magnetostriction is 7 × 1.
0-7 or less.

【0012】このように、最上磁性層から最下磁性層ま
で各磁性層の磁歪を正から負まで変化させることによ
り、金属磁性膜全体の見かけの磁歪を小さく制御するこ
とができ、成膜条件や熱処理条件のずれによる影響を小
さくすることができる。さらに、このように各磁性層間
で磁歪を変化させることにより、金属磁性膜中に磁気特
性の変化が揺らぎ状に発生するため、単一形成による金
属磁性膜の場合と異なり、磁性膜の成膜時或いは熱処理
時に誘導される磁性膜の磁気的な異方性による影響を回
避でき、磁束の流れが一定方向に限定されることがな
い。その結果、ヘッドの記録再生特性が改善され、ヘッ
ド個体間のばらつきもなくなる。
As described above, by changing the magnetostriction of each magnetic layer from the uppermost magnetic layer to the lowermost magnetic layer from positive to negative, the apparent magnetostriction of the entire metal magnetic film can be controlled to be small. And the influence of deviation of heat treatment conditions can be reduced. Further, by changing the magnetostriction between the respective magnetic layers as described above, a change in magnetic characteristics occurs in the metal magnetic film in a fluctuating manner. The influence of the magnetic anisotropy of the magnetic film induced at the time of or during the heat treatment can be avoided, and the flow of the magnetic flux is not limited to a certain direction. As a result, the recording / reproducing characteristics of the head are improved, and variations among heads are eliminated.

【0013】ここで、磁歪の絶対値が7×10-7を越え
ると、各磁性層毎の磁歪による影響が、平均化した場合
にも大きく現れ、磁区構造が乱れる、逆磁歪効果によっ
て磁化方向が固定され磁化が回転しにくくしまう、記録
媒体との接触により雑音等を生じる等の虞がある。
Here, when the absolute value of the magnetostriction exceeds 7 × 10 −7 , the influence of the magnetostriction of each magnetic layer greatly appears even when averaged, and the magnetic domain structure is disturbed. Is fixed and the magnetization is hard to rotate, and noise or the like is generated by contact with the recording medium.

【0014】さらに、本発明に係る磁気ヘッドにおいて
は、上記金属磁性膜に圧縮応力を残留させることによ
り、磁歪が正である最上磁性層付近ほど面内方向に磁化
困難方向となる異方性が発生し、磁歪が負である最下磁
性層付近ほど膜厚方向に磁化困難方向となる異方性が発
生する。その結果、磁気ギャップ面へ磁束を伝達しやす
くなり、磁気ギャップ部での磁束の漏洩が促進されやす
くなるためヘッドの記録再生特性がさらに改善される。
Further, in the magnetic head according to the present invention, by leaving a compressive stress in the metal magnetic film, the anisotropy in which the direction of hard magnetization becomes more in-plane in the direction near the uppermost magnetic layer where the magnetostriction is positive. Anisotropy occurs in which the magnetization direction becomes more difficult in the film thickness direction near the lowermost magnetic layer where the magnetostriction is negative. As a result, the magnetic flux is easily transmitted to the magnetic gap surface, and the leakage of the magnetic flux in the magnetic gap is easily promoted, so that the recording / reproducing characteristics of the head are further improved.

【0015】また、本発明に係る磁気ヘッドにおいて
は、上記金属磁性膜に、Rh,Pd,Ag,Ir,P
t,Auの少なくとも1種からなる中間層を1層以上積
層させることで、金属磁性膜の配向性が整えられ、さら
に記録再生特性が改善される。
Further, in the magnetic head according to the present invention, Rh, Pd, Ag, Ir, P
By laminating at least one intermediate layer composed of at least one of t and Au, the orientation of the metal magnetic film is adjusted and the recording / reproducing characteristics are further improved.

【0016】一方、本発明に係る磁気ヘッドの製造方法
は、一対の磁気コア半体が磁気ギャップ形成面を突き合
わせて接合一体化され、これら一対の磁気コア半体のう
ち少なくとも一方の磁気コア半体の磁気ギャップ形成面
に金属磁性膜が成膜されてなる磁気ヘッドを製造するに
際して、Fexyz(ただし、MはTa,Zr,H
f,Nb,Tiのうちの少なくとも一種であり、Aは
N,C,Bのうちの少なくとも1種であり、x,y,z
は原子分率を示し、これらがそれぞれ、71≦x≦8
5,6≦y≦15,9≦z≦16である。)で示される
組成からなる金属磁性膜を複数回に分断して成膜し、そ
れぞれに分断された磁性層の成膜後毎に熱処理を施すこ
とを特徴とする。そして、磁気ギャップ側の最上磁性層
の磁歪が正を示し、最上磁性層とは反対側の最下磁性層
の磁歪が負を示し、かつそれぞれの磁歪の絶対値が7×
10-7以下となるようにすることを特徴とするものであ
る。
On the other hand, in the method of manufacturing a magnetic head according to the present invention, a pair of magnetic core halves are joined and integrated by abutting a magnetic gap forming surface, and at least one of the pair of magnetic core halves is joined. in the metallic magnetic film in the magnetic gap forming surface of the body to produce a magnetic head formed by deposition, Fe x M y a z (however, M is Ta, Zr, H
at least one of f, Nb, Ti, A is at least one of N, C, B, x, y, z
Represents an atomic fraction, and these are respectively 71 ≦ x ≦ 8
5, 6 ≦ y ≦ 15, 9 ≦ z ≦ 16. ), A metal magnetic film having the composition shown in (1) is divided into a plurality of times to form a film, and heat treatment is performed after each of the divided magnetic layers is formed. Then, the magnetostriction of the uppermost magnetic layer on the magnetic gap side indicates positive, the magnetostriction of the lowermost magnetic layer on the opposite side to the uppermost magnetic layer indicates negative, and the absolute value of each magnetostriction is 7 ×
It is characterized in that it is 10 -7 or less.

【0017】本発明に係る磁気ヘッドの製造方法におい
ては、金属磁性膜を複数回に分断して、それぞれに分断
された磁性層の成膜毎に熱処理を加えることによって、
最初に成膜される最下磁性層の磁歪を負とし、最後に成
膜される磁気ギャップ側の最上磁性層の磁歪を正とし、
それぞれの磁歪の絶対値を7×10-7として、金属磁性
膜全体の見かけの磁歪を小さく制御することができ、成
膜条件や熱処理条件のずれによる影響を小さくすること
ができる。さらに、このように各磁性層間で磁歪を変化
させることにより、金属磁性膜中に磁気特性の変化が揺
らぎ状に発生するため、金属磁性膜を単一形成する場合
と異なり、磁性膜の成膜時或いは熱処理時に誘導される
磁性膜の磁気的な異方性による影響を回避でき、磁束の
流れが一定方向に限定されることがない。その結果、ヘ
ッドの記録再生特性が改善され、ヘッド個体間のばらつ
きもなくなる。
In the method of manufacturing a magnetic head according to the present invention, the metal magnetic film is divided into a plurality of times, and a heat treatment is applied to each of the divided magnetic layers.
The magnetostriction of the lowermost magnetic layer formed first is defined as negative, the magnetostriction of the uppermost magnetic layer on the magnetic gap side formed last is defined as positive,
By setting the absolute value of each magnetostriction to 7 × 10 −7 , the apparent magnetostriction of the entire metal magnetic film can be controlled to be small, and the influence of the deviation of the film forming conditions and the heat treatment conditions can be reduced. Further, by changing the magnetostriction between the respective magnetic layers in this manner, a change in magnetic properties occurs in the metal magnetic film in a fluctuating manner. Therefore, unlike the case where a single metal magnetic film is formed, the magnetic film is formed. The influence of the magnetic anisotropy of the magnetic film induced at the time of or during the heat treatment can be avoided, and the flow of the magnetic flux is not limited to a certain direction. As a result, the recording / reproducing characteristics of the head are improved, and variations among heads are eliminated.

【0018】さらに、本発明に係る磁気ヘッドの製造方
法においては、上記金属磁性膜に圧縮応力を残留させる
ことにより、磁歪が正である最上磁性層付近ほど面内方
向に磁化困難方向となる異方性が発生し、磁歪が負であ
る最下磁性層付近ほど膜厚方向に磁化困難方向とる異方
性が発生する。その結果、磁気ギャップ面へ磁束を伝達
しやすくなり、磁気ギャップ部での磁束の漏洩が促進さ
れやすくなるためヘッドの記録再生特性がさらに改善さ
れる。
Further, in the method of manufacturing a magnetic head according to the present invention, by leaving a compressive stress in the metal magnetic film, the near-uppermost magnetic layer having a positive magnetostriction becomes more difficult to magnetize in the in-plane direction. Anisotropy occurs, and anisotropy occurs in which the direction of magnetization is more difficult in the thickness direction near the lowermost magnetic layer where the magnetostriction is negative. As a result, the magnetic flux is easily transmitted to the magnetic gap surface, and the leakage of the magnetic flux in the magnetic gap is easily promoted, so that the recording / reproducing characteristics of the head are further improved.

【0019】また、本発明に係る磁気ヘッドの製造方法
においては、上記金属磁性膜に、Rh,Pd,Ag,I
r,Pt,Auの少なくとも1種からなる中間層を1層
以上積層させることで、金属磁性膜の配向性が整えら
れ、さらに記録再生特性が改善される。
In the method of manufacturing a magnetic head according to the present invention, the metal magnetic film may include Rh, Pd, Ag, and I.
By laminating at least one intermediate layer composed of at least one of r, Pt, and Au, the orientation of the metal magnetic film is adjusted, and the recording / reproducing characteristics are further improved.

【0020】[0020]

【発明の実施の形態】以下、本発明を適用した磁気ヘッ
ドの具体的な実施の形態について、図面を参照しながら
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of a magnetic head to which the present invention is applied will be described in detail with reference to the drawings.

【0021】本実施の形態に係る磁気ヘッドは、図1及
び図2に示すように、磁気記録媒体対接面の略中央に位
置する磁気ギャップgを境として左右別々に作成された
一対の磁気コア半体1,2が突き合わせ面である磁気ギ
ャップ形成面をトラック幅部が一致するような位置で突
き合わせて接合一体化されてなるものである。
As shown in FIGS. 1 and 2, the magnetic head according to the present embodiment has a pair of magnetic heads separately formed on the left and right sides of a magnetic gap g located substantially at the center of the surface in contact with the magnetic recording medium. The core halves 1 and 2 are joined and integrated by abutting the magnetic gap forming surfaces, which are abutting surfaces, at positions where the track width portions coincide.

【0022】上記磁気コア半体1,2は、補助コア部で
ある磁気コア基体3,4と、主コア部である金属磁性膜
5,6とから構成されている。上記磁気コア基体3,4
は、例えばMn−Zn系フェライトやNi−Zn系フェ
ライト等の軟磁性酸化物材料よりなり、上記金属磁性膜
5,6とともに閉磁路を構成する補助コア部となってい
る。上記磁気コア基体3,4の前記磁気ギャップ形成面
と対向する面には、上記磁気ギャップgのトラック幅T
wを規制するためのトラック幅規制溝7,8,9,10
が磁気ギャップgの両端縁近傍部よりそれぞれデプス方
向にわたって円弧状に形成されている。なお、上記トラ
ック幅規制溝7,8,9,10内には、それぞれ磁気記
録媒体との当たり特性を確保すると共に摺接による偏摩
耗を防止する目的で、ガラス等の非磁性材11が充填さ
れている。
The magnetic core halves 1 and 2 are composed of magnetic core bases 3 and 4 as auxiliary cores and metal magnetic films 5 and 6 as main cores. The magnetic core bases 3, 4
Is made of a soft magnetic oxide material such as Mn-Zn based ferrite or Ni-Zn based ferrite, and serves as an auxiliary core portion that forms a closed magnetic circuit together with the metal magnetic films 5 and 6. The surfaces of the magnetic core substrates 3 and 4 facing the magnetic gap forming surface have a track width T of the magnetic gap g.
w, groove width regulating grooves for regulating w
Are formed in an arc shape in the depth direction from the vicinity of both ends of the magnetic gap g. The track width regulating grooves 7, 8, 9 and 10 are filled with a non-magnetic material 11 such as glass for the purpose of securing the contact characteristics with the magnetic recording medium and preventing uneven wear due to sliding contact. Have been.

【0023】また、上記磁気コア基体3,4の前記磁気
ギャップ形成面と対向する面には、前記磁気ギャップg
のデプスを規制すると共に、図示しないコイルを巻装す
るための巻線溝12,13が、側面形状が略矩形状とな
るように形成されている。
The surfaces of the magnetic core substrates 3 and 4 facing the magnetic gap forming surface are provided with the magnetic gap g.
The winding grooves 12 and 13 for winding a coil (not shown) are formed so as to have a substantially rectangular side surface.

【0024】一方、金属磁性膜5,6は、上記磁気コア
基体3,4と共に閉磁路を構成する主コア部となるもの
で、磁気ギャップ形成面を含む全面に亘って成膜され
る。なお、図1では、上記金属磁性膜5,6が、磁気ギ
ャップ形成面のみならず前記トラック幅規制溝7,8,
9,10内、巻線溝12,13内の全面に亘って成膜さ
れている場合を示したが、ギャップ面に成膜されていれ
ば、他の溝内部の部分は、マスクスパッタ等の手法によ
り成膜されないような構成とすることも可能である。
On the other hand, the metal magnetic films 5 and 6 serve as a main core portion constituting a closed magnetic circuit together with the magnetic core bases 3 and 4, and are formed over the entire surface including the magnetic gap forming surface. In FIG. 1, the metal magnetic films 5 and 6 are formed not only on the magnetic gap forming surface but also on the track width regulating grooves 7 and 8.
Although the case where the film is formed over the entire surface inside the winding grooves 12 and 13 in 9, 10 and the winding grooves 12 and 13 is shown, if the film is formed on the gap surface, the other portions inside the groove are formed by mask sputtering or the like. It is also possible to adopt a configuration in which a film is not formed by a technique.

【0025】本発明においては、上記金属磁性膜5,6
が、それぞれ第1の磁性層14,15、第2の磁性層1
6,17からなることを特徴とする。そして、第1の磁
性層14,15及び第2の磁性層16,17は、Fex
yz(ただし、MはTa,Zr,Hf,Nb,Tiの
うちの少なくとも一種であり、AはN,C,Bのうちの
少なくとも1種であり、x,y,zは原子分率を示し、
これらがそれぞれ、71≦x≦85,6≦y≦15,9
≦z≦16である。)で示される組成からなり、磁気ギ
ャップ側の第2の磁性層16,17の磁歪が正となり、
その反対側の第1の磁性層14,15の磁歪が負とな
り、かつそれぞれの磁歪の絶対値が7×10-7とされて
いる。
In the present invention, the metal magnetic films 5, 6
Are the first magnetic layers 14 and 15 and the second magnetic layer 1 respectively.
6 and 17. The first magnetic layers 14 and 15 and the second magnetic layers 16 and 17 are composed of Fe x
M y A z (however, M is at least one of Ta, Zr, Hf, Nb, Ti, A is at least one of N, C, B, x, y, z are atomic Rate,
These are respectively 71 ≦ x ≦ 85, 6 ≦ y ≦ 15,9
≦ z ≦ 16. ), The magnetostriction of the second magnetic layers 16 and 17 on the magnetic gap side becomes positive,
The magnetostriction of the first magnetic layers 14 and 15 on the opposite side is negative, and the absolute value of each magnetostriction is 7 × 10 −7 .

【0026】このような構成をとることで、第1の磁性
層14,15の磁歪と第2の磁性層15,16の磁歪と
がそれぞれ影響し合って、金属磁性膜5,6の見かけの
全体の磁歪が小さくなる。各磁性層14,15,16,
17の膜厚と磁歪の積を平均化すると、−3×10-7
+3×10-7に抑えることができる。ここで、磁歪の絶
対値が7×10-7を越えると、各磁性層毎の磁歪による
影響が、平均化した場合にも大きく現れ、磁区構造が乱
れる、逆磁歪効果によって磁化方向が固定され磁化が回
転しにくくなってしまう、記録媒体との接触により雑音
等を生じる虞がある。
With such a configuration, the magnetostriction of the first magnetic layers 14 and 15 and the magnetostriction of the second magnetic layers 15 and 16 influence each other, and the apparent appearance of the metal magnetic films 5 and 6 is increased. The overall magnetostriction is reduced. Each of the magnetic layers 14, 15, 16,
When the product of the film thickness and magnetostriction of No. 17 is averaged, -3 × 10 -7
+ 3 × 10 -7 can be suppressed. Here, when the absolute value of the magnetostriction exceeds 7 × 10 −7 , the influence of the magnetostriction of each magnetic layer is large even when averaged, the magnetic domain structure is disturbed, and the magnetization direction is fixed by the inverse magnetostriction effect. There is a possibility that noise or the like may be generated due to contact with the recording medium, which makes the magnetization difficult to rotate.

【0027】このように、各磁性層14,15,16,
17の磁歪を正から負まで変化させることで、金属磁性
膜5,6の見かけの全体の磁歪を零付近に抑えることが
でき、熱処理のずれ等による影響を少なくすることがで
きる。さらに、このような構成をとることで、金属磁性
膜5,6中に磁気特性の変化が揺らぎ状に発生するた
め、磁性膜の成膜時或いは熱処理時に誘導される磁性膜
の磁気的な異方性による影響を回避でき、磁束の流れが
一定方向に限定されることがない。その結果、ヘッドの
記録再生特性が改善され、ヘッド個体間のばらつきもな
くなる。
Thus, each of the magnetic layers 14, 15, 16,
By changing the magnetostriction 17 from positive to negative, the apparent overall magnetostriction of the metal magnetic films 5 and 6 can be suppressed to near zero, and the influence of a shift in heat treatment or the like can be reduced. Further, by adopting such a configuration, a change in magnetic characteristics occurs in the metal magnetic films 5 and 6 in a fluctuating manner. The influence of anisotropy can be avoided, and the flow of magnetic flux is not limited to a certain direction. As a result, the recording / reproducing characteristics of the head are improved, and variations among heads are eliminated.

【0028】さらに、上記金属磁性膜5,6は、圧縮応
力を残留させると、図3に示すような特性を示す。すな
わち、磁歪が負である第1の磁性層14,15では、磁
気ギャップとなる面の面内方向が容易磁化方向となり、
膜厚方向(図中の矢印方向)の透磁率が高くなる。一
方、磁歪が正である第2の磁性層16,17では、磁性
膜の面内方向が困難磁化方向となり、面内方向(図中の
矢印方向)の透磁率が高くなる。その結果、記録時は、
フェライト等の基体3,4を伝達してきた磁束が第1の
磁性層14,15で磁気ギャップg面へ伝達しやすくな
り、第2の磁性層16,17で磁気ギャップgから漏洩
しやすくなるため、記録効率が高まる。再生時も可逆的
に同様の効果が期待できる。このように、金属磁性膜の
応力と磁性膜の磁歪の間の効果により、金属磁性膜5,
6の軟磁性が磁気ヘッドに好適なものとなる。
Further, the metal magnetic films 5 and 6 exhibit characteristics as shown in FIG. 3 when the compressive stress is left. That is, in the first magnetic layers 14 and 15 having a negative magnetostriction, the in-plane direction of the plane serving as the magnetic gap becomes the easy magnetization direction,
The magnetic permeability in the film thickness direction (the direction of the arrow in the figure) increases. On the other hand, in the second magnetic layers 16 and 17 in which the magnetostriction is positive, the in-plane direction of the magnetic film becomes a difficult magnetization direction, and the magnetic permeability in the in-plane direction (the direction of the arrow in the drawing) increases. As a result, at the time of recording,
The magnetic flux transmitted through the bases 3 and 4, such as ferrite, is easily transmitted to the surface of the magnetic gap g by the first magnetic layers 14 and 15, and is easily leaked from the magnetic gap g by the second magnetic layers 16 and 17. And the recording efficiency is increased. Similar effects can be expected reversibly during reproduction. As described above, the effect between the stress of the metal magnetic film and the magnetostriction of the magnetic film causes the metal magnetic film 5,
The soft magnetism of No. 6 is suitable for a magnetic head.

【0029】また、第1の磁性層14,15及び第2の
磁性層16,17は、これよりも小さい膜厚で、Rh,
Pd,Ag,Ir,Pt,Auの少なくとも1種を含ん
だ中間層を少なくとも1層以上積層させることで多層構
造としてもよい。このように、各磁性層に14,15,
16,17に中間層を積層させることで、各磁性層1
4,15,16,17の配向性を整え、格子間隔を広
げ、ヘッド化時に好適な軟磁気特性の向上がなされる。
The first magnetic layers 14 and 15 and the second magnetic layers 16 and 17 have a smaller film thickness than that of Rh,
A multilayer structure may be obtained by stacking at least one or more intermediate layers containing at least one of Pd, Ag, Ir, Pt, and Au. Thus, each magnetic layer has 14, 15,
By laminating an intermediate layer on each of the magnetic layers 1 and 16,
The orientation of 4, 15, 16 and 17 is adjusted, the lattice spacing is widened, and the soft magnetic characteristics suitable for heading are improved.

【0030】積層効果を高めるためには、中間層の膜厚
が0.2〜10nmであり、積層する間隔が0.05〜
1μmであることが好ましい。中間層の割合が多すぎる
と、かえって軟磁気特性が劣化する。
In order to enhance the laminating effect, the thickness of the intermediate layer is 0.2 to 10 nm, and the laminating interval is 0.05 to 10 nm.
It is preferably 1 μm. If the ratio of the intermediate layer is too large, the soft magnetic characteristics are rather deteriorated.

【0031】また、第1の磁性層14,15と基体3,
4との間には、磁性層と基体の界面で起こる酸素移動な
どの化学的な反応を防止し、本来の磁気ギャップgから
発生する磁束と干渉を起こす反応層の形成を防止するた
めに、SiO2、Si3N,Al23等の化合物やこれら
化合物と上記金属との積層膜を下地膜として設けてもよ
い。
The first magnetic layers 14, 15 and the base 3,
In order to prevent a chemical reaction such as oxygen transfer occurring at the interface between the magnetic layer and the base between the magnetic layer and the base and prevent the formation of a reaction layer that interferes with the magnetic flux generated from the original magnetic gap g, Compounds such as SiO 2 , Si 3 N, and Al 2 O 3 or a stacked film of these compounds and the above-described metals may be provided as a base film.

【0032】なお、各磁性層14,15の磁歪は、加え
た磁界によって磁性層が伸縮する際、基板とのバイメタ
ル的効果で反りが生じるのを検知することにより、定量
的に測定することができる。反りの検知には、容量検知
型と光の反射角検知型が代表的である。また、各磁性層
の磁歪は、磁歪と応力の効果を使って、磁性層にストレ
スを加えたとき、B−H曲線の傾きがどのように変わる
かを評価することにより、求めることもできる。
The magnetostriction of each of the magnetic layers 14 and 15 can be quantitatively measured by detecting the occurrence of warpage due to a bimetallic effect with the substrate when the magnetic layers expand and contract by the applied magnetic field. it can. Typical examples of warp detection include a capacitance detection type and a light reflection angle detection type. The magnetostriction of each magnetic layer can also be obtained by using the effects of magnetostriction and stress to evaluate how the slope of the BH curve changes when stress is applied to the magnetic layer.

【0033】使いやすさの点から、磁性層の磁歪の測定
には、例えば図4(a)に示すような光の反射角検知型
測定装置がよく用いられている。この光の反射角検知型
装置30は、片持ち梁状に配置された試料31と、磁界
を発生させる着磁コイル32と、試料31の自由端側に
微細な径のレーザスポット光を出射するレーザ光源33
と、試料31からの反射レーザ光を検出する光検出器3
4とを備える。試料31は、既知のヤング率をもつ基板
35上に磁性層36が成膜されてなる。この光の反射角
検知型装置30においては、図4(b)(c)に示すよ
うに、光検出器34により、無磁化時の試料31aの磁
性層36に当てたレーザ光の反射位置と、磁化時の試料
31bの磁性層36に当てたレーザ光の反射位置とを検
出することにより、磁化時の試料31bのたわみを検出
し、基板35と磁性層36のヤング率により、磁性層3
6自体の変化、すなわち磁性層36の磁歪を求めること
ができる。
From the viewpoint of ease of use, for measuring the magnetostriction of the magnetic layer, for example, a light reflection angle detecting type measuring device as shown in FIG. 4A is often used. The light reflection angle detection type device 30 emits a laser spot light having a small diameter to a free end side of the sample 31, a magnetized coil 32 for generating a magnetic field, and a sample 31 arranged in a cantilever shape. Laser light source 33
And a photodetector 3 for detecting a reflected laser beam from the sample 31
4 is provided. The sample 31 has a magnetic layer 36 formed on a substrate 35 having a known Young's modulus. In the light reflection angle detection type device 30, as shown in FIGS. 4B and 4C, the reflection position of the laser beam applied to the magnetic layer 36 of the sample 31a in the non-magnetized state is determined by the photodetector 34. The deflection of the sample 31b at the time of magnetization is detected by detecting the reflection position of the laser beam applied to the magnetic layer 36 of the sample 31b at the time of magnetization, and the magnetic layer 3 is determined by the Young's modulus of the substrate 35 and the magnetic layer 36.
6, that is, the magnetostriction of the magnetic layer 36 can be obtained.

【0034】次に、上述した磁気ヘッドの製造方法につ
いて具体的に説明する。
Next, a method for manufacturing the above-described magnetic head will be specifically described.

【0035】先ず、図5に示すように、例えばMn−Z
n系フェライト、Ni−Zn系フェライト等の酸化物軟
磁性材料よりなる、例えば長さ34.5mm,幅2.5
mm,厚み1mm程度の板状の基体20を用意する。次
に、図6に示すように、基体20の主面の幅方向に、断
面略半円状の複数のトラック幅規制溝21を形成する。
上記トラック幅規制溝21同士の間には、所定のトラッ
ク幅と同じ間隔(21μm)が形成されることとなる。
First, as shown in FIG. 5, for example, Mn-Z
Made of an oxide soft magnetic material such as n-type ferrite or Ni-Zn-type ferrite, for example, a length of 34.5 mm and a width of 2.5
A plate-shaped substrate 20 having a thickness of about 1 mm and a thickness of about 1 mm is prepared. Next, as shown in FIG. 6, a plurality of track width regulating grooves 21 having a substantially semicircular cross section are formed in the width direction of the main surface of the base 20.
An interval (21 μm) equal to a predetermined track width is formed between the track width regulating grooves 21.

【0036】このトラック幅規制溝21の主面に接する
部分での側面の角度は、8〜45°程度が普通である
が、90°でもかまわない。トラック幅規制溝21の深
さは、200〜300μm、溝の断面形状は、図中では
U字型であるが、V字型、多角形による断面であっても
よい。但し、この角度が小さいと電磁変換効率の低下を
招き、大きいと記録媒体上の目的以外のトラックからも
信号を読み出す可能性が高くなり、その結果ノイズの増
加をもたらすため、30°程度が好ましい。
The angle of the side surface at the portion in contact with the main surface of the track width regulating groove 21 is usually about 8 to 45 °, but may be 90 °. The depth of the track width regulating groove 21 is 200 to 300 μm, and the cross-sectional shape of the groove is U-shaped in the figure, but may be V-shaped or polygonal. However, when the angle is small, the electromagnetic conversion efficiency is reduced, and when the angle is large, the possibility of reading a signal from a track other than the target on the recording medium is increased. As a result, noise is increased. .

【0037】次に、図7に示すように、磁気ギャップの
ギャップデプスを規制し、巻線を巻装するための巻線溝
22を形成する。そして、基体20の表面を表面粗度が
20〜100オングストローム程度になるように研磨す
る。
Next, as shown in FIG. 7, the gap depth of the magnetic gap is regulated, and a winding groove 22 for winding the winding is formed. Then, the surface of the substrate 20 is polished so that the surface roughness becomes about 20 to 100 Å.

【0038】次に、以上のように形成された基体20に
対して、Fexyz (ただし、MはTa,Zr,H
f,Nb,Tiのうちの少なくとも一種であり、Aは
N,C,Bのうちの少なくとも1種であり、x,y,z
は原子分率を示し、これらがそれぞれ、71≦x≦8
5,6≦y≦15,9≦z≦16である。)で示される
組成からなる金属磁性膜を成膜する。このような組成か
らなる金属磁性膜は、図8に示すように、熱処理により
磁歪が熱処理の温度に依存して低下、さらに熱処理時間
の対数に依存して低下する傾向を示す。
Next, to the substrate 20 formed as described above, Fe x M y A z (however, M is Ta, Zr, H
at least one of f, Nb, Ti, A is at least one of N, C, B, x, y, z
Represents an atomic fraction, and these are respectively 71 ≦ x ≦ 8
5, 6 ≦ y ≦ 15, 9 ≦ z ≦ 16. A metal magnetic film having the composition shown in (1) is formed. As shown in FIG. 8, the metal magnetic film having such a composition tends to decrease the magnetostriction due to the heat treatment depending on the temperature of the heat treatment, and further to decrease depending on the logarithm of the heat treatment time.

【0039】そこで、本発明では、例えば、金属磁性薄
膜を成膜するのに、先ず始めに第1の磁性層を成膜して
熱処理を加え、その後に、第1の磁性層上に第2の磁性
層を成膜して累積的に熱処理を加えることによって、第
1の磁性層の磁歪を負とし、第2の磁性層の磁歪を正と
し、それぞれの磁歪の絶対値を1×10-7以下とするも
のである。
Therefore, in the present invention, for example, to form a metal magnetic thin film, first, a first magnetic layer is formed and heat-treated, and then a second magnetic layer is formed on the first magnetic layer. The first magnetic layer is made negative in magnetostriction, the magnetostriction in the second magnetic layer is made positive, and the absolute value of each magnetostriction is set to 1 × 10 −. 7 or less.

【0040】例えば、Feに対してTaを13原子%含
まれるターゲットを用い、Ar中にN(窒素)が30%
含まれる雰囲気中でスパッタを行って、まず始めに図9
(a)(b)に示すように、基体20の面上に第1の磁
性層23を、規定の総膜厚5μmの約半分の膜厚2.5
μmで成膜する。
For example, a target containing 13 atomic% of Fe with respect to Fe is used, and N (nitrogen) is 30% in Ar.
Sputtering was performed in the contained atmosphere.
(A) As shown in (b), a first magnetic layer 23 is formed on the surface of the base 20 by a thickness of about half of a specified total thickness of 5 μm.
Form a film with a thickness of μm.

【0041】なお、この時、第1の磁性層23の配向性
を整えるめに、第1の磁性層23の約0.4μm毎に膜
厚15nmの中間層を積層しながら成膜を行う。また、
基体20と第1の磁性層23との界面での反応を防止す
るために、基体20と第1の磁性層23との間には、膜
厚5nmのSiO2膜を成膜する。
At this time, in order to adjust the orientation of the first magnetic layer 23, the first magnetic layer 23 is formed while an intermediate layer having a thickness of 15 nm is laminated every 0.4 μm. Also,
In order to prevent a reaction at the interface between the base 20 and the first magnetic layer 23, a 5-nm thick SiO 2 film is formed between the base 20 and the first magnetic layer 23.

【0042】そして、第1の磁性層23に対して、50
0℃で2000分真空中で加熱し、熱処理を施す。
Then, for the first magnetic layer 23, 50
Heating is performed at 0 ° C. in a vacuum for 2000 minutes to perform a heat treatment.

【0043】さらに、引き続いて成膜装置内に上記基体
20を戻し、図10(a)(b)に示すように、第1の
磁性層23上に第2の磁性層24を規定の残りの膜厚
2.5μmで成膜する。
Subsequently, the substrate 20 is returned into the film forming apparatus, and a second magnetic layer 24 is formed on the first magnetic layer 23 as shown in FIGS. A film is formed with a thickness of 2.5 μm.

【0044】なお、第2の磁性層24成膜前には、逆ス
パッタの操作を行い、第1の磁性層23表面の熱処理に
よる酸化膜を除去し、第2の磁性層24の初期層の配向
性を整えるために、膜厚0.4μmのPt層を成膜する
とよい。そして、第1の磁性層23と同様に、第2の磁
性層24の約0.4μm毎に膜厚15nmの中間層を積
層しながら成膜を行う。そして、図11(a)(b)に
示すように、第2の磁性層上にSiO2よりなるギャッ
プ膜25をコア半体毎に規定の磁気ギャップ長の約半分
となる膜厚で成膜する。
Before the formation of the second magnetic layer 24, reverse sputtering is performed to remove the oxide film by heat treatment on the surface of the first magnetic layer 23, and the initial layer of the second magnetic layer 24 is removed. In order to adjust the orientation, a Pt layer having a thickness of 0.4 μm is preferably formed. Then, similarly to the first magnetic layer 23, the second magnetic layer 24 is formed while laminating an intermediate layer having a thickness of 15 nm every about 0.4 μm. Then, as shown in FIGS. 11 (a) and 11 (b), a gap film 25 made of SiO 2 is formed on the second magnetic layer so as to have a thickness which is about half the prescribed magnetic gap length for each core half. I do.

【0045】その段階で、図12に示すように、上記基
体20と同様の巻線溝を有する基体26をギャップ膜2
5を介して、トラック幅規制溝21が一致するように位
置合わせを行い、端面を突き合わせた。そして、巻線溝
22内に非磁性ガラス27を挟み込み、500℃で10
0分の熱処理を加えてガラスの軟化溶融を行い、基体2
0,26同士を接合一体化させた。最後に、接合を行っ
た基体の磁気記録媒体に対接する面を円筒研削して適当
な形状に加工し、図12中、a,b,c,d,eの点線
で示したような位置でスライシングを行うことによっ
て、図1及び図2で示したような磁気ヘッドが完成す
る。
At this stage, as shown in FIG. 12, the base 26 having the same winding groove as that of the base 20 is attached to the gap film 2.
5, the positioning was performed such that the track width regulating grooves 21 coincided with each other, and the end faces were abutted. Then, the non-magnetic glass 27 is sandwiched in the winding groove 22,
0 minute heat treatment is applied to soften and melt the glass,
0 and 26 were joined and integrated. Lastly, the surface of the joined base that is in contact with the magnetic recording medium is cylindrically ground and machined into an appropriate shape, and at the positions indicated by dotted lines a, b, c, d, and e in FIG. By performing slicing, the magnetic head as shown in FIGS. 1 and 2 is completed.

【0046】その結果、図13に示すように、第1の磁
性層23は、500℃で2000分と100分との熱の
影響を受け、その磁歪が−3×10-7となり、一方、第
2の磁性層224は、500℃で100分の熱の影響を
受け、その磁歪が+4×10-7となった。そして、互い
の磁歪が影響しあって金属磁性膜の見かけの全体の磁歪
は小さくなり、各磁性層と磁歪との積を平均化すると、
[(−3×10-7×2.5μm)+(4×10-7×2.
5μm)]/5μm=0.5×10-7となり、極めて零
に近くなる。
As a result, as shown in FIG. 13, the first magnetic layer 23 is affected by heat at 500 ° C. for 2000 minutes and 100 minutes, and its magnetostriction becomes −3 × 10 −7 , The second magnetic layer 224 was affected by heat at 500 ° C. for 100 minutes, and its magnetostriction became + 4 × 10 −7 . Then, the magnetostriction of each other affects each other, the apparent overall magnetostriction of the metal magnetic film becomes small, and when the product of each magnetic layer and the magnetostriction is averaged,
[(−3 × 10 −7 × 2.5 μm) + (4 × 10 −7 × 2.
5 μm)] / 5 μm = 0.5 × 10 −7 , which is extremely close to zero.

【0047】また、上述したように、金属磁性膜では、
磁気特性の変化が揺らぎ状に発生することになり、磁束
の流れる方向は、成膜時条件や熱処理条件のずれの影響
を受けず、安定したヘッド特性を得ることができ、ヘッ
ド個体間のばらつきの少ない状態が得られる。
Further, as described above, in the metal magnetic film,
Changes in magnetic characteristics occur in a fluctuating manner, and the direction in which magnetic flux flows is not affected by deviations in film formation conditions or heat treatment conditions, and stable head characteristics can be obtained, and variations among individual heads can be obtained. Is obtained.

【0048】さらに、上記金属磁性膜に圧縮応力を残留
させると、例えば、金属磁性膜成膜時のスパッタ中総ガ
ス圧を低下させる、若しくは成膜時の基体温度を低下さ
せる、若しくは熱膨張係数の大きな基体を選択すると、
上述したように、磁性膜の応力と磁性膜の磁歪との間の
効果により、金属磁性膜の軟磁性が磁気ヘッドに好適な
ものとなる。すなわち、図3に示すように、第1の磁性
層14,15(23)では、磁歪が負であるため、圧縮
応力が加えられて磁気ギャップとなる面の面内方向が容
易磁化方向となり、膜厚方向(図中の矢印方向)の透磁
率が高くなる。一方、第2の磁性層16,17(24)
では、磁歪が正であるため、圧縮応力が加えられると磁
性膜の面内方向が困難磁化方向となり、面内方向(図中
の矢印方向)の透磁率が高くなる。その結果、記録時
は、フェライト等の基体3(20)を伝達してきた磁束
が第1の磁性層14,15(23)で磁気ギャップg面
へ伝達しやすくなり、第2の磁性層16,17(24)
で磁気ギャップgから漏洩しやすくなるため、記録効率
が高まる。再生時も可逆的に同様の効果が期待できる。
Further, when compressive stress is left in the metal magnetic film, for example, the total gas pressure during sputtering during the formation of the metal magnetic film is reduced, the substrate temperature during the film formation is reduced, or the coefficient of thermal expansion is reduced. If you choose a large substrate,
As described above, the soft magnetism of the metal magnetic film becomes suitable for the magnetic head due to the effect between the stress of the magnetic film and the magnetostriction of the magnetic film. That is, as shown in FIG. 3, in the first magnetic layers 14, 15 (23), since the magnetostriction is negative, the in-plane direction of the plane that becomes a magnetic gap due to the application of compressive stress becomes the easy magnetization direction, The magnetic permeability in the film thickness direction (the direction of the arrow in the figure) increases. On the other hand, the second magnetic layers 16, 17 (24)
In this case, since the magnetostriction is positive, when a compressive stress is applied, the in-plane direction of the magnetic film becomes a difficult magnetization direction, and the magnetic permeability in the in-plane direction (the direction of the arrow in the drawing) increases. As a result, at the time of recording, the magnetic flux transmitted through the base 3 (20), such as ferrite, is easily transmitted to the magnetic gap g surface by the first magnetic layers 14, 15 (23), and the second magnetic layer 16, 20 17 (24)
As a result, the recording efficiency is increased because the leakage from the magnetic gap g is facilitated. Similar effects can be expected reversibly during reproduction.

【0049】このように、第1の磁性層23及び第2の
磁性層24成膜後にそれぞれ熱処理を加え、スパッタ中
の総ガス圧を低く制御して金属磁性膜を成膜して磁気ヘ
ッドを作製した場合には、金属磁性膜成膜中に熱処理工
程を挟まない場合に比べて、0.5dBの出力改善がみ
られた。また、金属磁性膜の成膜条件及び熱処理条件の
ばらつきによる磁気ヘッド個体間のばらつきも、標準偏
差値で従来比で30%改善された。
As described above, after the first magnetic layer 23 and the second magnetic layer 24 are formed, a heat treatment is applied, and the total gas pressure during sputtering is controlled to be low to form a metal magnetic film. In the case of the production, the output was improved by 0.5 dB as compared with the case where the heat treatment step was not interposed during the formation of the metal magnetic film. Also, the variation among the individual magnetic heads due to the variation in the film forming conditions and the heat treatment conditions of the metal magnetic film was improved by 30% in the standard deviation value as compared with the conventional case.

【0050】また、上述したように、第1の磁性層23
及び第2の磁性層24に、これよりも小さい膜厚で、中
間層のPt層(Rh,Pd,Ag,Ir,Auでもよ
い。)を複数積層させることで、各磁性層23,24の
配向性が整えられ、ヘッド特性をさらに改善することが
できる。
Further, as described above, the first magnetic layer 23
By stacking a plurality of intermediate Pt layers (Rh, Pd, Ag, Ir, Au) with a smaller thickness on the second magnetic layer 24, the thickness of each of the magnetic layers 23, 24 is reduced. The orientation is adjusted, and the head characteristics can be further improved.

【0051】ところで、本実施の形態では、金属磁性膜
を第1の磁性層と第2の磁性層とに分断したが、本発明
においては、3層以上に分断し、それぞれの磁性層形成
後毎に熱処理を行いながら一連の金属磁性膜を形成して
もよいことはもちろんである。
In the present embodiment, the metal magnetic film is divided into the first magnetic layer and the second magnetic layer. However, in the present invention, the metal magnetic film is divided into three or more layers, and after each magnetic layer is formed. It goes without saying that a series of metal magnetic films may be formed while performing heat treatment every time.

【0052】さらに、本実施の形態では、熱処理時間の
みを調整することにより、各磁性層の磁歪を調整した
が、本発明では、熱処理時間と熱処理温度の両方を調整
することにより、磁歪を調整してもよいことはもちろん
である。
Furthermore, in the present embodiment, the magnetostriction of each magnetic layer is adjusted by adjusting only the heat treatment time, but in the present invention, the magnetostriction is adjusted by adjusting both the heat treatment time and the heat treatment temperature. Of course, you may do it.

【0053】また、本実施の形態では、巻線溝を両側の
コア半体に形成した場合を示したが、本発明では、片側
のコア半体にのみ形成してもよいことはもちろんであ
る。
Further, in this embodiment, the case where the winding groove is formed in the core half on both sides is shown, but in the present invention, it is needless to say that the winding groove may be formed only in the core half on one side. .

【0054】本実施の形態では、コア半体に対し、巻線
溝形成後に金属磁性膜の成膜を行う場合を示したが、巻
線溝形成前に磁性膜を成膜する構成でもよい。巻線溝形
成後に磁性膜の成膜を行う場合、基体として非磁性基
体、例えばZrO2基体を用いてもよい。
In the present embodiment, the case where the metal magnetic film is formed on the core half after the formation of the winding groove has been described. However, the magnetic film may be formed before the formation of the winding groove. When a magnetic film is formed after the formation of the winding groove, a non-magnetic substrate such as a ZrO 2 substrate may be used as the substrate.

【0055】[0055]

【発明の効果】以上の説明からも明らかなように、本発
明に係る磁気ヘッドによれば、磁気ギャップ部を構成す
る金属磁性膜が、複数の磁性層で構成され、膜厚方向で
磁歪を正から負へ変化させてなることから、金属磁性膜
のみかけの全体の磁歪を微妙に制御でき、製造条件のず
れによる磁気的な異方性による影響を回避することがで
きる。したがって、この磁気ヘッドにおいては、ヘッド
の記録再生特性が改善され、ヘッド個体間のばらつきも
なくなる。
As is apparent from the above description, according to the magnetic head of the present invention, the metal magnetic film constituting the magnetic gap is constituted by a plurality of magnetic layers, and the magnetostriction is reduced in the thickness direction. Since it is changed from positive to negative, the apparent magnetostriction of the entire metallic magnetic film can be finely controlled, and the influence of magnetic anisotropy due to a shift in manufacturing conditions can be avoided. Therefore, in this magnetic head, the recording / reproducing characteristics of the head are improved, and variations between heads are eliminated.

【0056】また、本発明に係る磁気ヘッドの製造方法
によれば、磁気ギャップを構成する金属磁性膜を複数回
に分断して成膜し、それぞれに分断された磁性層の成膜
後毎に熱処理を施してなることから、各磁性層に加わる
累積的な熱処理の効果が変化し、金属磁性膜の膜厚方向
での磁歪が正から負へと変化する。その結果、金属磁性
膜のみかけの全体の磁歪を小さく制御でき、製造条件の
ずれによる磁気的な異方性による影響を回避し、ヘッド
の記録再生特性を改善し、さらにヘッド個体間のばらつ
きをなくすことができる。
Further, according to the method of manufacturing a magnetic head of the present invention, the metal magnetic film constituting the magnetic gap is divided into a plurality of times to form a film, and after each of the divided magnetic layers is formed, Since the heat treatment is performed, the effect of the cumulative heat treatment applied to each magnetic layer changes, and the magnetostriction in the thickness direction of the metal magnetic film changes from positive to negative. As a result, the apparent total magnetostriction of the metal magnetic film can be controlled to be small, the influence of magnetic anisotropy due to the deviation of the manufacturing conditions is avoided, the recording / reproducing characteristics of the head are improved, and the variation between individual heads is reduced. Can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した磁気ヘッドの構成を示す斜視
図である。
FIG. 1 is a perspective view showing a configuration of a magnetic head to which the present invention is applied.

【図2】同磁気ヘッドの記録媒体対接面を拡大して示す
要部拡大平面図である。
FIG. 2 is an enlarged plan view showing a main part of the magnetic head in contact with a recording medium.

【図3】同磁気ヘッドの金属磁性膜(第1の磁性層及び
第2の磁性層)に圧縮応力が加わった際の磁気的に透磁
率が高い方向を示す模式図である。
FIG. 3 is a schematic diagram showing a direction in which magnetic permeability is high when a compressive stress is applied to a metal magnetic film (first magnetic layer and second magnetic layer) of the magnetic head.

【図4】磁歪の測定方法を説明する図であり、(a)は
反射角検知型測定装置を示す模式図であり、(b)は無
磁化時の試料を示す模式図であり、(c)は磁化時の試
料を示す模式図である。
4A and 4B are diagrams illustrating a method for measuring magnetostriction, FIG. 4A is a schematic diagram illustrating a reflection angle detection type measuring device, FIG. 4B is a schematic diagram illustrating a sample in a non-magnetized state, and FIG. () Is a schematic diagram showing a sample at the time of magnetization.

【図5】同磁気ヘッドの製造工程を説明する図であり、
基体を示す斜視図である。
FIG. 5 is a diagram illustrating a manufacturing process of the magnetic head.
It is a perspective view showing a substrate.

【図6】同磁気ヘッドの製造工程を説明する図であり、
トラック幅溝投入工程を示す斜視図である。
FIG. 6 is a diagram illustrating a manufacturing process of the magnetic head.
It is a perspective view which shows a track width groove | channel input process.

【図7】同磁気ヘッドの製造工程を説明する図であり、
巻線溝投入工程を示す斜視図である。
FIG. 7 is a diagram for explaining a manufacturing process of the magnetic head.
It is a perspective view which shows a winding groove | channel input process.

【図8】同磁気ヘッドの金属磁性膜の磁歪と熱処理時間
の対数との関係を示す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between a magnetostriction of a metal magnetic film of the magnetic head and a logarithm of a heat treatment time.

【図9】同磁気ヘッドの製造工程を説明する図であり、
(a)は第1の磁性層を成膜工程を示す斜視図であり、
(b)はその要部拡大平面図である。
FIG. 9 is a diagram illustrating a manufacturing process of the magnetic head.
(A) is a perspective view showing a step of forming a first magnetic layer,
(B) is an enlarged plan view of the main part.

【図10】同磁気ヘッドの製造工程を説明する図であ
り、(a)は第2の磁性層を成膜工程を示す斜視図であ
り、(b)はその要部拡大平面図である。
10A and 10B are diagrams illustrating a manufacturing process of the magnetic head, wherein FIG. 10A is a perspective view illustrating a process of forming a second magnetic layer, and FIG. 10B is an enlarged plan view of a main part thereof.

【図11】同磁気ヘッドの製造工程を説明する図であ
り、(a)はギャップ膜を成膜工程を示す斜視図であ
り、(b)はその要部拡大平面図である。
11A and 11B are diagrams illustrating a manufacturing process of the magnetic head, wherein FIG. 11A is a perspective view illustrating a process of forming a gap film, and FIG. 11B is an enlarged plan view of a main part thereof.

【図12】同磁気ヘッドの製造工程を説明する図であ
り、非磁性ガラスによる接着工程とヘッド化時の切断位
置を示す斜視図である。
FIG. 12 is a diagram illustrating a manufacturing process of the magnetic head, and is a perspective view illustrating a bonding process using non-magnetic glass and a cutting position when the head is formed.

【図13】同磁気ヘッドの金属磁性膜のの熱処理時間に
よる磁歪の変化を示す特性図である。
FIG. 13 is a characteristic diagram showing a change in magnetostriction depending on a heat treatment time of a metal magnetic film of the magnetic head.

【符号の説明】[Explanation of symbols]

1,2 磁気コア半体、3,4,20 基体、5,6 金属
磁性膜、7,8,9,10,21 トラック規制溝、1
1,27 非磁性ガラス、12,13,22 巻線溝、1
4,15,23 第1の磁性層、16,17,24 第2の
磁性層
1,2 magnetic core half, 3,4,20 substrate, 5,6 metal magnetic film, 7,8,9,10,21 track regulating groove,
1,27 non-magnetic glass, 12,13,22 winding groove, 1
4, 15, 23 First magnetic layer, 16, 17, 24 Second magnetic layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一対の磁気コア半体が磁気ギャップ形成
面を突き合わせて接合一体化され、これら一対の磁気コ
ア半体のうち少なくとも一方の磁気コア半体の磁気ギャ
ップ形成面に金属磁性膜が成膜されてなる磁気ヘッドに
おいて、 上記金属磁性膜は、Fexyz(ただし、MはTa,
Zr,Hf,Nb,Tiのうちの少なくとも一種であ
り、AはN,C,Bのうちの少なくとも1種であり、
x,y,zは原子分率を示し、これらがそれぞれ、71
≦x≦85,6≦y≦15,9≦z≦16である。)で
示される組成からなる磁性層が複数積層されて形成さ
れ、 上記複数積層されてなる磁性層のうち、磁気ギャップ側
の最上磁性層の磁歪が正を示し、最上磁性層とは反対側
の最下磁性層の磁歪が負を示し、かつそれぞれの磁歪の
絶対値が7×10-7以下であることを特徴とする磁気ヘ
ッド。
1. A pair of magnetic core halves are joined and integrated by abutting magnetic gap forming surfaces, and a metal magnetic film is formed on a magnetic gap forming surface of at least one of the pair of magnetic core halves. in the magnetic head formed by deposition, the metal magnetic film, Fe x M y A z (however, M is Ta,
Z is at least one of Zr, Hf, Nb, and Ti; A is at least one of N, C, and B;
x, y, and z indicate the atomic fraction, which are respectively 71%
≤ x ≤ 85, 6 ≤ y ≤ 15, 9 ≤ z ≤ 16. ) Is formed by laminating a plurality of magnetic layers having the composition represented by the formula (1). Of the plurality of laminated magnetic layers, the magnetostriction of the uppermost magnetic layer on the magnetic gap side indicates positive, A magnetic head wherein the magnetostriction of the lowermost magnetic layer is negative, and the absolute value of each magnetostriction is 7 × 10 −7 or less.
【請求項2】 上記金属磁性膜には、圧縮応力が残留す
ることを特徴とする請求項1記載の磁気ヘッド。
2. The magnetic head according to claim 1, wherein a compressive stress remains in the metal magnetic film.
【請求項3】 上記金属磁性膜中には、Rh,Pd,A
g,Ir,Pt,Auの少なくとも1種からなる中間層
が1層以上積層されてなることを特徴とする請求項1記
載の磁気ヘッド。
3. The metal magnetic film according to claim 1, wherein Rh, Pd, A
2. The magnetic head according to claim 1, wherein at least one intermediate layer made of at least one of g, Ir, Pt, and Au is laminated.
【請求項4】 一対の磁気コア半体が磁気ギャップ形成
面を突き合わせて接合一体化され、これら一対の磁気コ
ア半体のうち少なくとも一方の磁気コア半体の磁気ギャ
ップ形成面に金属磁性膜が成膜されてなる磁気ヘッドを
製造するに際して、 Fexyz(ただし、MはTa,Zr,Hf,Nb,
Tiのうちの少なくとも一種であり、AはN,C,Bの
うちの少なくとも1種であり、x,y,zは原子分率を
示し、これらがそれぞれ、71≦x≦85,6≦y≦1
5,9≦z≦16である。)で示される組成からなる金
属磁性膜を複数回に分断して成膜し、それぞれに分断さ
れた磁性層の成膜後毎に熱処理を施すことによって、 磁気ギャップ側の最上磁性層の磁歪が正を示し、最上磁
性層とは反対側の最下磁性層の磁歪が負を示し、かつそ
れぞれの磁歪の絶対値が7×10-7以下となるようにす
ることを特徴とする磁気ヘッドの製造方法。
4. A pair of magnetic core halves are joined and integrated by abutting a magnetic gap forming surface, and a metal magnetic film is formed on a magnetic gap forming surface of at least one of the pair of magnetic core halves. in the production of the formed magnetic head comprising, Fe x M y a z (however, M is Ta, Zr, Hf, Nb,
A is at least one of Ti, A is at least one of N, C, and B, x, y, and z are atomic fractions, each of which is 71 ≦ x ≦ 85, 6 ≦ y ≦ 1
5, 9 ≦ z ≦ 16. ) Is formed by dividing the metal magnetic film having the composition represented by the formula into a plurality of times, and performing a heat treatment after each of the divided magnetic layers is formed, whereby the magnetostriction of the uppermost magnetic layer on the magnetic gap side is reduced. The magnetic head according to claim 1, wherein the magnetostriction of the lowermost magnetic layer opposite to the uppermost magnetic layer is negative, and the absolute value of each magnetostriction is 7 × 10 −7 or less. Production method.
【請求項5】 上記金属磁性膜に圧縮応力を残留させる
ことを特徴とする請求項4記載の磁気ヘッドの製造方
法。
5. The method of manufacturing a magnetic head according to claim 4, wherein a compressive stress is left on the metal magnetic film.
【請求項6】 上記金属磁性膜中に、Rh,Pd,A
g,Ir,Pt,Auの少なくとも1種からなる中間層
を1層以上成膜することを特徴とする請求項4記載の磁
気ヘッドの製造方法。
6. The method according to claim 6, wherein Rh, Pd, A
5. The method according to claim 4, wherein at least one intermediate layer made of at least one of g, Ir, Pt, and Au is formed.
JP26898097A 1997-10-01 1997-10-01 Magnetic head and its manufacture Withdrawn JPH11110715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26898097A JPH11110715A (en) 1997-10-01 1997-10-01 Magnetic head and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26898097A JPH11110715A (en) 1997-10-01 1997-10-01 Magnetic head and its manufacture

Publications (1)

Publication Number Publication Date
JPH11110715A true JPH11110715A (en) 1999-04-23

Family

ID=17465989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26898097A Withdrawn JPH11110715A (en) 1997-10-01 1997-10-01 Magnetic head and its manufacture

Country Status (1)

Country Link
JP (1) JPH11110715A (en)

Similar Documents

Publication Publication Date Title
US5227940A (en) Composite magnetic head
JPS63191310A (en) Composite magnetic head
US5585984A (en) Magnetic head
US5862023A (en) Metal in gap magnetic head having metal magnetic film including precious metal layer
JPH04278205A (en) Magnetic head
JPH06215325A (en) Laminate type core of magnetic head
JPH11110715A (en) Magnetic head and its manufacture
JPH02208811A (en) Magnetic head and its production
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JP2523854B2 (en) Magnetic head
JPH10303024A (en) Soft magnetic thin film and magnetic head
JP2933638B2 (en) Manufacturing method of magnetic head
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
KR950001603B1 (en) Magnetic head for multi-layer
EP1548708A1 (en) Magnetic head and magnetic recording/reproducing device
JP2000011314A (en) Magnetic head and its production
JPH06290414A (en) Magnetic head
JPH08162355A (en) Manufacture of soft magnetic film and magnetic head
JPS63300417A (en) Magnetic head
JPH06111230A (en) Magnetic head
JPS63205810A (en) Composite magnetic head
JPH1139605A (en) Magnetic head
JPH08167110A (en) Magnetic head and its production
JPH0765316A (en) Magnetic head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207