JPH11110021A - Precision machining method and device - Google Patents

Precision machining method and device

Info

Publication number
JPH11110021A
JPH11110021A JP27938597A JP27938597A JPH11110021A JP H11110021 A JPH11110021 A JP H11110021A JP 27938597 A JP27938597 A JP 27938597A JP 27938597 A JP27938597 A JP 27938597A JP H11110021 A JPH11110021 A JP H11110021A
Authority
JP
Japan
Prior art keywords
spindle
machining
start timing
rotation speed
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27938597A
Other languages
Japanese (ja)
Other versions
JP3091436B2 (en
Inventor
Hideki Mochida
英樹 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP09279385A priority Critical patent/JP3091436B2/en
Publication of JPH11110021A publication Critical patent/JPH11110021A/en
Application granted granted Critical
Publication of JP3091436B2 publication Critical patent/JP3091436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize the blade edge position of a tool by calculating the cooling liquid supply start timing, the spindle start timing and the machining start timing according to the front and next spindle rotational speeds and based on each stored data and then performing the start of supply of the cooling liquid, the start of a spindle and the start of the machining. SOLUTION: The displaced variable of a spindle 7 is previously calculated and stored in a storage means 31 in its each state that is set when the thermal deformation of the spindle 7 is almost stabilized against its each rotational speed. Then the data are acquired and stored in the means 31 for the cooling liquid supply start timing of a cooling liquid supply means 17, the spindle start timing and the machining start timing which are decided with respect to the displaced variable of the spindle 7. A control means 29 calculates the cooling liquid supply start timing, the main spindle start timing and the machining start timing according to the front and next main spindle rotational speeds and based on those stored data. Thus, the supply of the cooling liquid, the spindle 7 and the machining are started in each calculated timing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工作機械における
主軸の熱変位を制御して、ワークを精密に加工する精密
加工方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision machining method and apparatus for precisely machining a workpiece by controlling thermal displacement of a spindle of a machine tool.

【0002】[0002]

【従来の技術】工作機械は、主軸の熱変形を抑制するた
め、主軸または主軸周辺部に温度管理された冷却液を循
環させる主軸冷却手段を有している。工作機械におい
て、ワークを加工する場合、通常は主軸の起動と主軸冷
却手段の冷却液供給開始とを同時に行い、主軸の熱変形
がほぼ安定してから加工を開始する方法をとっている。
するとどうしても時間がかかってしまう。
2. Description of the Related Art A machine tool has a spindle cooling means for circulating a coolant whose temperature is controlled around a spindle or a periphery of the spindle in order to suppress thermal deformation of the spindle. When machining a workpiece in a machine tool, usually, the start of the spindle and the start of the supply of the coolant by the spindle cooling means are performed simultaneously, and the method is started after the thermal deformation of the spindle is almost stabilized.
Then it takes time.

【0003】これを解決するための一つの方法として、
特開平9-70739 号公報に示されるようなダイナミック熱
変位補正方法がある。これは、機械の熱変形がほぼ安定
する前から加工を開始し、熱変形補正を行うことによっ
て理論上加工誤差をなくすものであるが、機械が安定す
る前から加工を開始しており、小径工具による精密加工
には不向きである。
[0003] As one method for solving this,
There is a dynamic thermal displacement correction method as disclosed in JP-A-9-70739. This is to start processing before the thermal deformation of the machine is almost stabilized, and to theoretically eliminate the processing error by performing the thermal deformation correction.However, the processing is started before the machine is stabilized, and the small diameter Not suitable for precision machining with tools.

【0004】[0004]

【発明が解決しようとする課題】工具交換、工具長測
定、作業者によるワークの加工結果の確認等のため、主
軸を一時停止し、その後、主軸を起動して加工を再開す
ることはしばしばあるが、この主軸の停止・起動の間に
起る主軸の熱変位の変化が加工精度上問題になる。よっ
て加工再開時の主軸装置の熱変形状態を一時停止前と同
じ状態に戻すためのウォーミングアップが必要である。
本発明はそのウオーミングアップ時間を短縮し、且つ加
工精度を向上させることを目的とする。
For the purpose of tool exchange, tool length measurement, confirmation of machining results of a workpiece by an operator, the spindle is temporarily stopped, and thereafter, the spindle is activated to resume machining. However, a change in the thermal displacement of the spindle that occurs during the stop / start of the spindle causes a problem in machining accuracy. Therefore, it is necessary to warm up the spindle device at the time of resuming machining to return it to the same state as before the temporary stop.
An object of the present invention is to shorten the warm-up time and improve the processing accuracy.

【0005】さらに説明するに、自動工具交換を含む加
工や、主軸回転速度が異なる加工を継続して行う場合
等、主軸停止時間の長短による主軸熱変位量の変化、及
び回転速度の違いによる主軸熱変位量の差により、主軸
先端に装着した工具の刃先位置が変動し加工誤差とな
る。本発明は、その主軸の停止時間、主軸回転速度の変
化に対し主軸冷却装置の起動タイミングを最適制御する
ことにより、加工回転速度における刃先位置をより短時
間に安定化させ、高い加工精度を確保することを目的と
したものである。
[0005] To further explain, when the machining including the automatic tool change or the machining with different spindle rotation speeds is continuously performed, the change in the spindle thermal displacement due to the length of the spindle stop time, and the change in the spindle speed due to the difference in the rotation speed. Due to the difference in the amount of thermal displacement, the position of the cutting edge of the tool mounted on the tip of the spindle fluctuates, resulting in a processing error. The present invention stabilizes the cutting edge position at the machining rotational speed in a shorter time and secures high machining accuracy by optimally controlling the start timing of the spindle cooling device with respect to the stop time of the spindle and changes in the spindle rotational speed. It is intended to do so.

【0006】主軸の熱変形には図5に示すように、各主
軸回転速度に応じてそれぞれ安定する時間領域があり、
一旦この時間領域に入れば主軸はそれ以上熱変形せず安
定するという現象がある。本発明はそれぞれの装置にお
いてこの現象には再現性があることに着目してなされた
ものである。
As shown in FIG. 5, thermal deformation of the spindle has a time region in which the spindle is stabilized in accordance with each spindle rotation speed.
Once in this time range, there is a phenomenon that the spindle does not undergo any further thermal deformation and becomes stable. The present invention has been made by focusing on the fact that this phenomenon is reproducible in each device.

【0007】主軸が各回転速度で起動してからこの安定
領域に入るまでのウオーミングアップ時間を如何に短縮
させるかの一手法として、低回転速度から高回転速度に
変速する場合と、高回転速度から低回転速度に変速する
場合とがある。
One method of reducing the warm-up time from the start of the spindle at each rotation speed to the entry into the stable region is to change the speed from a low rotation speed to a high rotation speed, and to reduce the warm-up time from the high rotation speed. The speed may be shifted to a low rotation speed.

【0008】これは、図4に示すような主軸変位量δを
まず求め、このδを媒介量にして主軸起動から冷却液供
給開始までの起動タイミングの時間差であるディレータ
イム(主軸低回転速度→高回転速度の場合)、主軸停止
時間(主軸高回転速度→低回転速度の場合)、および主
軸起動から加工開始までのウオーミングアップ時間(本
発明手法を用いた場合の)を求めることができる。
This is accomplished by first obtaining a spindle displacement δ as shown in FIG. 4, and using this δ as a medium amount, a delay time (spindle low rotation speed → In the case of a high rotation speed), the spindle stop time (in the case of the spindle high rotation speed → low rotation speed), and the warm-up time from the start of the spindle to the start of machining (in the case of using the method of the present invention) can be obtained.

【0009】例えば、工具交換を含む連続加工におい
て、数ミクロンオーダの加工精度(種々の工具による加
工面の段差)を管理する場合、加工回転速度の違いによ
る刃先位置の変化は勿論、同一回転速度にて全て加工で
きる場合でも、工具交換中の主軸停止により主軸が冷却
され、その影響による工具の刃先位置の変動を無視でき
ない。
For example, in continuous machining including tool change, when machining accuracy on the order of several microns (steps on the machining surface by various tools) is controlled, not only changes in the cutting edge position due to differences in machining rotational speed, but also changes in the same rotational speed. Even if all the operations can be carried out, the spindle is cooled due to the stop of the spindle during tool change, and the fluctuation of the cutting edge position of the tool due to the influence cannot be ignored.

【0010】即ち、従来の加工方法においては、 1本の工具で全ての仕上面を再度加工し直すことを
していた。しかしこれでは、工具摩耗、加工形状が必要
とする工具種類(ボールエンドミル、フラットエンドミ
ルなど)や、工具サイズ(最小工具を使用)の制約、及
び加工時間の問題から実用的でない。 工具交換を含む連続加工においては、工具種類や工
具サイズに拘らず加工回転速度を極力同一にして、主軸
熱変位の回転速度の違いによる工具刃先位置の変化量を
抑える。ここでは、同一回転速度でも、工具交換中に主
軸を停止させた影響で刃先位置が安定するまで数分のラ
ンニング運転が必要とされる。 工具交換を含む連続加工で、工具交換の前後で加工
回転速度が異なる場合は工具交換後、直ぐ加工せず、予
備ランニングをさせ、主軸熱変形が安定してから再度工
具長を再度測定し加工を開始する。この予備ランニング
時間は例えば約10分を要する。特に高速・高精度加工機
では、機械自体の加工精度が良くなり、且つ加工時間も
短くなっているので、上述のような問題を解決して工具
交換に伴う刃先位置の変動をより短時間に安定化させる
ことが重要となっている。
That is, in the conventional processing method, all the finished surfaces are processed again with one tool. However, this is not practical due to the problems of tool wear, tool types (ball end mill, flat end mill, etc.) required by the machining shape, limitations on tool size (use of minimum tools), and machining time. In continuous machining including tool change, the machining rotation speed is set to be the same as much as possible irrespective of the tool type and tool size, and the amount of change in the tool edge position due to the difference in the rotational speed of the spindle thermal displacement is suppressed. Here, even at the same rotation speed, a running operation for several minutes is required until the position of the cutting edge is stabilized by the effect of stopping the spindle during tool change. In continuous machining including tool change, if the machining rotation speed is different before and after the tool change, do not perform machining immediately after the tool change, perform preliminary running, measure the tool length again after the spindle thermal deformation is stabilized, and machine again. To start. This preliminary running time requires, for example, about 10 minutes. Particularly in high-speed, high-precision processing machines, the processing accuracy of the machine itself is improved and the processing time is shortened. It is important to stabilize.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するため、下記のように構成されている。 (1) 加工に先立って主軸装置をウオーミングアップ
して主軸の熱変形がほぼ安定してからワークの加工を開
始するようにした工作機械による精密加工方法におい
て、冷却液循環による主軸装置の冷却手段を設け、主軸
の各回転速度に対して主軸の熱変形がほぼ安定したとき
の各状態における主軸変位量を予め求めて記憶し、主軸
を起動して指令回転速度に達し、主軸の熱変形がほぼ安
定したときの主軸変位量に速やかに到達する主軸変位量
に対する前記冷却手段の冷却液供給開始タイミング、主
軸起動タイミング、および加工開始タイミングの各デー
タを予め求めて記憶し、実際の加工に当たり、前主軸回
転速度および次主軸回転速度に応じて当該加工における
冷却液供給開始タイミング、主軸起動タイミング、およ
び加工開始タイミングを前記記憶した各データに基づい
て演算し、演算した各タイミングで冷却液供給の開始、
主軸の起動、加工の開始を行う精密加工方法。
Means for Solving the Problems The present invention is configured as follows to solve the above-mentioned problems. (1) In a precision machining method using a machine tool in which a spindle device is warmed up before machining to start machining of a workpiece after thermal deformation of the spindle is substantially stabilized, a cooling means for the spindle device by circulation of a coolant is used. The main shaft displacement amount in each state when the thermal deformation of the main shaft is substantially stabilized with respect to each rotational speed of the main shaft is obtained and stored in advance, the main shaft is started to reach the commanded rotational speed, and the thermal deformation of the main shaft is substantially reduced. Each data of the coolant supply start timing, the spindle start timing, and the machining start timing of the cooling means with respect to the spindle displacement amount that quickly reaches the spindle displacement amount at the time of stabilization is obtained and stored in advance, and in actual machining, Coolant supply start timing, spindle start timing, and machining start timing in the machining according to the spindle rotation speed and the next spindle rotation speed Is calculated based on the stored data, and the start of the coolant supply at each calculated timing,
A precision machining method that starts the spindle and starts machining.

【0012】(2) 主軸を起動してから主軸の熱変形
が速やかに安定するまでの前記主軸変位量に対する冷却
液供給開始タイミング、主軸起動タイミング、および加
工開始タイミングの各データを主軸の停止時間に応じて
複数設定し、実際の加工に当たり、主軸の実停止時間、
前主軸回転速度および次主軸回転速度に応じて当該加工
における冷却液供給開始タイミング、主軸起動タイミン
グ、および加工開始タイミングを前記記憶した各データ
に基づいて演算する上記(1)記載の精密加工方法。
(2) The data of the coolant supply start timing, the spindle start timing, and the machining start timing with respect to the spindle displacement amount from the start of the spindle until the thermal deformation of the spindle is quickly stabilized are determined by the spindle stop time. In actual machining, the actual stop time of the spindle,
The precision machining method according to (1), wherein a coolant supply start timing, a spindle start timing, and a machining start timing in the machining are calculated based on the stored data in accordance with the front spindle rotation speed and the next spindle rotation speed.

【0013】(3) 加工に先立って主軸装置をウオー
ミングアップして主軸の熱変形がほぼ安定してからワー
クの加工を開始するようにした工作機械における精密加
工装置において、主軸装置の主軸の熱変位を制御するよ
う主軸または主軸頭内に温度管理された冷却液を循環供
給する冷却液供給手段、予め求めた前記主軸の各回転速
度に対して主軸の熱変形がほぼ安定するまでの主軸変位
量、主軸を起動してから主軸の熱変形が速やかに安定す
るまでの前記主軸変位量に対する冷却液供給手段の冷却
液供給開始タイミング、前記主軸の起動タイミング、お
よび加工開始タイミングの各データを予め記憶する記憶
手段、実際の加工に当たり、前主軸回転速度と次主軸回
転速度とに応じて前記主軸装置のウォーモングアップ時
間が最短となるよう冷却液供給開始タイミング、主軸起
動タイミング、および加工開始タイミングを前記記憶し
た各データに基づいて演算し制御する制御手段、を備え
てなる精密加工装置。
(3) In a precision machining device for a machine tool in which a spindle device is warmed up before machining to start machining a workpiece after thermal deformation of the spindle is substantially stabilized, thermal displacement of the spindle of the spindle device is performed. A coolant supply means for circulating a coolant whose temperature is controlled in the spindle or the spindle head so as to control the spindle displacement amount until the thermal deformation of the spindle becomes substantially stable with respect to each rotation speed of the spindle determined in advance. Each data of the coolant supply start timing of the coolant supply means, the spindle start timing, and the machining start timing with respect to the spindle displacement amount from the start of the spindle until the thermal deformation of the spindle is quickly stabilized is stored in advance. In the actual processing, the warming-up time of the spindle device is minimized in accordance with the front spindle rotation speed and the next spindle rotation speed. A precision machining apparatus comprising control means for calculating and controlling a coolant supply start timing, a spindle start timing, and a machining start timing based on the stored data.

【0014】(4) 前記記憶手段は、更に主軸を起動
してから主軸の熱変形が速やかに安定するまでの前記主
軸変位量に対する冷却液供給開始タイミング、主軸起動
タイミング、および加工開始タイミングの各データを主
軸の停止時間に応じて複数設定記憶し、前記制御手段
は、実際の加工に当たり、主軸の実停止時間、前主軸回
転速度および次主軸回転速度に応じて冷却液供給開始タ
イミング、主軸起動タイミング、および加工開始タイミ
ングを前記記憶した各データに基づいて演算制御する上
記(3)記載の精密加工装置。
(4) The storage means further comprises a coolant supply start timing, a spindle start timing, and a machining start timing with respect to the spindle displacement from when the spindle is started until the thermal deformation of the spindle is quickly stabilized. A plurality of data are set and stored according to the stop time of the spindle, and in the actual machining, the control means controls the actual stop time of the spindle, the timing of starting the supply of the coolant according to the front spindle rotation speed and the next spindle rotation speed, and the start of the spindle. The precision processing apparatus according to (3), wherein the timing and the processing start timing are arithmetically controlled based on the stored data.

【0015】[0015]

【作用】本発明による工作機械の主軸頭における主軸
は、その回転による発熱温度変化に基づく熱変位による
影響を受けないよう、その駆動部、軸受部を冷却液によ
り冷却するようにし、その冷却液の供給を主軸が熱変位
を生じないよう制御供給するようにしたので、主軸の回
転速度変化、駆動停止による温度変化に対応できるよう
になり、短時間で主軸の熱変位の生じない状態で加工を
行うことが可能となる。
According to the present invention, a drive shaft and a bearing portion of a spindle of a machine tool head of a machine tool according to the present invention are cooled by a coolant so as not to be affected by a thermal displacement caused by a change in heat generation temperature due to the rotation. Supply is controlled so that the spindle does not generate thermal displacement, so it can respond to changes in the spindle speed and temperature changes due to drive stop, and machining in a short time without thermal displacement of the spindle Can be performed.

【0016】[0016]

【発明の実施の形態】図1は本発明による実施形態を示
す工作機械の主軸装置における冷却液供給機構を含む精
密加工装置を示す説明図、図2は図1における制御手段
の動作フロー図、図3は主軸回転速度に対応して冷却液
供給を制御する場合の説明図、図4は主軸回転速度の変
化により生ずる主軸変位量と冷却液の供給タイミングに
ついての説明図、図5は主軸回転速度の変化と時間、主
軸変位量の関係を示す図、である。
FIG. 1 is an explanatory view showing a precision machining apparatus including a coolant supply mechanism in a spindle device of a machine tool according to an embodiment of the present invention. FIG. 2 is an operation flowchart of control means in FIG. FIG. 3 is an explanatory diagram for controlling the supply of the coolant in accordance with the spindle rotation speed, FIG. 4 is an explanatory diagram of a spindle displacement amount caused by a change in the spindle rotation speed and a coolant supply timing, and FIG. 5 is a spindle rotation diagram. FIG. 7 is a diagram showing a relationship between a change in speed, time, and a spindle displacement amount.

【0017】図1において、主軸頭1にはグリース潤滑
された軸受3,5により主軸7が回転自在に支承され、
ビルトインモータ9により駆動されるよう構成されてい
る。主軸7の先端には工具Tが装着された状態で回転
し、図示しないテーブル上に固定されたワークとの間で
X,Y,Z軸方向の相対移動が行われてワークが加工さ
れる。そして、主軸頭1内において温度変化を生ずる部
分である軸受3,5及びビルトインモータ9の外周部分
に、それぞれ冷却液ジャケット11,13,15が主軸頭1に
ビルトインされて設けられている。
In FIG. 1, a spindle 7 is rotatably supported on a spindle head 1 by bearings 3 and 5 lubricated with grease.
It is configured to be driven by a built-in motor 9. The tip of the main shaft 7 rotates with a tool T mounted thereon, and performs relative movement in the X, Y, and Z-axis directions with a workpiece fixed on a table (not shown) to process the workpiece. Coolant jackets 11, 13, and 15 are provided in the spindle head 1 so as to be built in the spindle head 1 at the outer peripheral portions of the bearings 3 and 5 and the built-in motor 9, which are portions where temperature changes occur.

【0018】そして、各冷却液ジャケット11,13,15に
は、外部に設けた冷却液供給手段17より開閉弁19を介し
て冷却液供給路21より冷却液が供給され、冷却液還流路
23を経て冷却液供給手段17に還流される。なお、冷却液
供給手段17には、前記ジャケット部に冷却液の供給をす
る必要がない場合は、開閉弁19を介して冷却液循環路25
に冷却液の流れを切り換え、冷却液を冷却液供給手段17
に戻すようにされている。これは、冷却液供給手段17を
常時ONさせておくためで、冷却レスポンスをできるだ
け良くする効果と、冷却液供給手段17のコンプレッサの
ON/OFF 頻度を下げてコンプレッサの寿命を延ばす効果
を得ることができる。
A coolant is supplied to each of the coolant jackets 11, 13, and 15 from a coolant supply path 21 via an on-off valve 19 by a coolant supply means 17 provided outside.
The refrigerant is returned to the cooling liquid supply means 17 through 23. When it is not necessary to supply the coolant to the jacket section, the coolant supply means 17 is provided with a coolant circulation path 25 through an on-off valve 19.
To the coolant supply means 17
To be returned to. This is because the cooling liquid supply means 17 is always turned on, and the effect of improving the cooling response as much as possible and the compressor of the cooling liquid supply means 17
The effect of extending the life of the compressor by reducing the ON / OFF frequency can be obtained.

【0019】主軸7の駆動は、NC装置27によりビルト
インモータ9を回転制御させるようにしてあり、その制
御は制御手段29によりNC装置27を制御し、また、同時
にNC装置27と関連して冷却液供給手段17よりの冷却液
の流れを制御する開閉弁19をも制御するよう構成されて
いる。なお、制御手段29には別に設けた記憶手段31より
の情報をも加味して行われる。
The spindle 7 is driven by controlling the rotation of the built-in motor 9 by the NC device 27. The control is performed by controlling the NC device 27 by the control means 29, and at the same time, the cooling is performed in connection with the NC device 27. The opening / closing valve 19 for controlling the flow of the cooling liquid from the liquid supply means 17 is also controlled. It should be noted that the control means 29 is performed in consideration of information from a storage means 31 provided separately.

【0020】図2は、本発明による制御手段29の動作フ
ローチャートで、工具交換、ワークの加工状態確認、工
具長測定等何らかの理由によって主軸を停止後、加工を
再開する場合について考える。前主軸回転速度を記憶
し、また、次主軸回転速度を記憶し、次いで主軸回転速
度の変化により生ずる主軸変位量と冷却液の供給タイミ
ングについての説明図である図4(a)に示すように、
主軸変位量−主軸回転速度曲線から次主軸回転速度と前
主軸回転速度との差に対応する主軸変位量δを演算す
る。前主軸回転速度と次主軸回転速度とが同じ場合は主
軸変位量δは0である。ここで主軸変位とは、あらゆる
方向にあるが、一番顕著に現われる主軸軸線方向のZ軸
変位を本実施形態では云う。
FIG. 2 is an operation flowchart of the control means 29 according to the present invention. Consider a case in which machining is restarted after stopping the spindle for some reason such as tool change, work state confirmation, tool length measurement, or the like. As shown in FIG. 4A, which stores the front spindle rotation speed, stores the next spindle rotation speed, and then illustrates the spindle displacement amount and the coolant supply timing caused by a change in the spindle rotation speed. ,
A main shaft displacement amount δ corresponding to the difference between the next main shaft rotation speed and the front main shaft rotation speed is calculated from the main shaft rotation amount-main shaft rotation speed curve. When the front spindle rotation speed and the next spindle rotation speed are the same, the spindle displacement amount δ is zero. Here, the main axis displacement is in any direction, but the most prominent Z axis displacement in the main axis direction is referred to in this embodiment.

【0021】そして、次主軸回転速度が前主軸回転速度
より大きいか同じならば、各冷却液ジャケット11,13,
15への冷却液の供給を停止する。その後主軸起動の信号
を受けて主軸を起動するとともに、主軸起動までの主軸
停止時間を計測し、図4(b)に示すような冷却液供給
ディレータイム−主軸変位量曲線から主軸停止時間曲線
と先に求めた主軸変位量δに対応するディレータイムを
演算し、そのディレータイム経過後冷却液供給手段17を
起動して冷却液供給を開始する。
If the rotation speed of the next spindle is greater than or equal to the rotation speed of the front spindle, the coolant jackets 11, 13,.
Turn off the coolant supply to 15. Thereafter, the spindle is started in response to a spindle start signal, and the spindle stop time until the spindle is started is measured. The spindle stop time curve is calculated from the coolant supply delay time-spindle displacement amount curve as shown in FIG. The delay time corresponding to the previously calculated spindle displacement amount δ is calculated, and after the delay time has elapsed, the coolant supply means 17 is activated to start coolant supply.

【0022】さらに、図4(d)に示すようなウォーミ
ングアップ時間−主軸変位量曲線から先に求めた主軸変
位量δに対応するウォーミングアップ時間を演算し、そ
のウォーミングアップ時間だけ主軸を回転させた後、加
工を開始する。
Further, a warming-up time corresponding to the spindle displacement δ obtained previously is calculated from a warming-up time-spindle displacement amount curve as shown in FIG. 4D, and after the spindle is rotated by the warming-up time, Start processing.

【0023】また、次主軸回転速度が前主軸回転速度よ
り小さいときは、主軸の停止時間が5分未満かどうかを
チェックし、5分未満ならば、冷却液は冷却液ジャケッ
ト11,13,15へ供給したまま、図4(a)に示す主軸回
転速度差に対応する主軸変位量δと、図4(c)に示す
ような主軸停止時間−主軸変位量曲線から先に求めた変
位量δに対応する主軸停止時間を演算する。例え主軸起
動の信号が発せられても該演算された主軸停止時間だけ
は主軸を停止する。その後、次主軸回転速度で主軸を起
動し、その後は次主軸回転速度が前主軸回転速度より大
きいか同じ場合と同様に、ウォーミングアップ時間−主
軸変位量曲線からウォーミングアップ時間を演算し、そ
のウォーミングアップ時間経過後、加工を開始する。
If the rotation speed of the next spindle is smaller than the rotation speed of the front spindle, it is checked whether the stop time of the spindle is less than 5 minutes. If the rotation speed is less than 5 minutes, the coolant is supplied to the coolant jackets 11, 13, and 15. 4A, the spindle displacement amount δ corresponding to the spindle rotation speed difference shown in FIG. 4A, and the displacement amount δ previously obtained from the spindle stop time-spindle displacement amount curve as shown in FIG. 4C. Calculate the spindle stop time corresponding to. Even if a spindle start signal is issued, the spindle is stopped only for the calculated spindle stop time. Thereafter, the spindle is started at the next spindle rotation speed, and thereafter, in the same manner as when the next spindle rotation speed is greater than or equal to the front spindle rotation speed, the warming-up time is calculated from the warming-up time-spindle displacement amount curve, and the warming-up time elapses. Then, the processing is started.

【0024】なお、主軸停止が5分未満でない(5分以
上の)場合は、前記次主軸回転速度が前主軸回転速度よ
り大きいか同じ場合と同様に、主軸起動の信号を受けた
ら主軸を起動し、図2の動作フローチャートの左側の処
理経路をとるようにする。
If the spindle stop is not less than 5 minutes (more than 5 minutes), the spindle is started upon receiving a spindle start signal as in the case where the next spindle rotation speed is greater than or equal to the front spindle rotation speed. Then, the processing path on the left side of the operation flowchart of FIG. 2 is taken.

【0025】上記図4についてさらに説明するに、 (a)に示すように、主軸を20000 から30000/min に変
速すると、主軸の熱変形がそれぞれ安定したときにおけ
る両者間の主軸変位量はδμm である。なお、主軸を30
000 から20000/min に変速する場合も同じである。 (b)に示すように、主軸の変位量δを媒介にしてディ
レータイム(主軸が起動してから冷却液供給開始までの
時間)が求まる(主軸回転速度低→高の場合)。 (c)に示すように、30000 から20000/min に変速する
場合、δを媒介にして主軸停止時間が求まる(主軸回転
速度高→低の場合)。 (d)に示すように、δを媒介にして主軸を起動してか
らの加工開始タイミングがわかる。
Referring to FIG. 4 further, as shown in (a), when the speed of the main shaft is changed from 20,000 to 30,000 / min, when the thermal deformation of the main shaft is stabilized, the main shaft displacement between them is δ μm. is there. Note that the spindle is 30
The same applies when shifting from 000 to 20000 / min. As shown in (b), the delay time (the time from the start of the main shaft to the start of the supply of the coolant) is obtained by using the displacement amount δ of the main shaft (when the main shaft rotation speed is low → high). As shown in (c), when the speed is changed from 30,000 to 20,000 / min, the stop time of the spindle is obtained via δ (when the spindle rotation speed changes from high to low). As shown in (d), the machining start timing after starting the spindle through δ is known.

【0026】本発明によれば、主軸を低回転速度から高
回転速度に変速した場合を示す図3(a)における経過
時間と主軸変位との関係を示す図と、高回転速度から低
回転速度に変速した場合を示す図3(b)における主軸
変位を示す図を参照すると、図中に一点鎖線で記載され
ている従来の場合の主軸変位曲線に比較して、本件発明
により主軸変位の安定する時間が短縮されることが明確
にわかる。
According to the present invention, a diagram showing the relationship between the elapsed time and the displacement of the spindle in FIG. 3A showing a case where the spindle is shifted from a low rotation speed to a high rotation speed, 3 (b), which shows the case where the gearshift is performed, shows that the present invention makes it possible to stabilize the displacement of the spindle according to the present invention, as compared with the spindle displacement curve in the conventional case indicated by a dashed line in the figure. It can be clearly seen that the time for performing the operation is reduced.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
工具の刃先位置が短時間に安定するように、その主軸起
動時の指令回転数に応じ、主軸冷却装置の冷却液供給開
始タイミングを最適制御することができるので、実際の
加工回転速度における工具の刃先位置が短時間に安定
し、工具交換等の主軸一時停止を含む連続加工で段差の
ない高い加工精度を確保できるようになる。
As described above, according to the present invention,
In order to stabilize the cutting edge position of the tool in a short time, it is possible to optimally control the coolant supply start timing of the spindle cooling device according to the command rotation speed at the time of starting the spindle. The position of the cutting edge is stabilized in a short time, and it is possible to secure high processing accuracy without a step in continuous processing including temporary stop of the spindle such as tool change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による実施形態を示す工作機械の主軸装
置における冷却液供給機構を含む精密加工装置を示す説
明図である。
FIG. 1 is an explanatory view showing a precision machining device including a coolant supply mechanism in a spindle device of a machine tool according to an embodiment of the present invention.

【図2】図1における制御手段の動作フロー図である。FIG. 2 is an operation flowchart of a control unit in FIG. 1;

【図3】主軸回転速度に対応して冷却液供給を制御する
場合の説明図である。
FIG. 3 is an explanatory diagram of a case where the supply of a coolant is controlled according to a spindle rotation speed.

【図4】主軸回転速度の変化により生ずる主軸変位量と
冷却液の供給タイミングについての説明図である。
FIG. 4 is an explanatory diagram of a spindle displacement amount caused by a change in a spindle rotation speed and a coolant supply timing.

【図5】主軸回転速度の変化と時間、主軸変位量の関係
を示す図である。
FIG. 5 is a diagram showing a relationship between a change in spindle rotation speed, time, and spindle displacement.

【符号の説明】[Explanation of symbols]

1 主軸頭 3,5 軸受 7 主軸 9 ビルトインモータ 11,13,15 冷却ジャケット 17 冷却液供給手段 19 開閉弁 21 冷却液供給路 23 冷却液還流路 25 冷却液循環路 27 NC装置 29 制御手段 31 記憶手段 1 Spindle head 3,5 Bearing 7 Spindle 9 Built-in motor 11,13,15 Cooling jacket 17 Coolant supply means 19 On-off valve 21 Coolant supply path 23 Coolant recirculation path 25 Coolant circulation path 27 NC unit 29 Control means 31 Storage means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加工に先立って主軸装置をウオーミング
アップして主軸の熱変形がほぼ安定してからワークの加
工を開始するようにした工作機械による精密加工方法に
おいて、 冷却液循環による主軸装置の冷却手段を設け、 主軸の各回転速度に対して主軸の熱変形がほぼ安定した
ときの各状態における主軸変位量を予め求めて記憶し、 主軸を起動して指令回転速度に達し、主軸の熱変形がほ
ぼ安定したときの主軸変位量に速やかに到達する主軸変
位量に対する前記冷却手段の冷却液供給開始タイミン
グ、主軸起動タイミング、および加工開始タイミングの
各データを予め求めて記憶し、 実際の加工に当たり、前主軸回転速度および次主軸回転
速度に応じて当該加工における冷却液供給開始タイミン
グ、主軸起動タイミング、および加工開始タイミングを
前記記憶した各データに基づいて演算し、 演算した各タイミングで冷却液供給の開始、主軸の起
動、加工の開始を行うことを特徴とした精密加工方法。
1. A precision machining method using a machine tool for warming up a spindle device prior to machining and starting machining of a workpiece after thermal deformation of the spindle is substantially stabilized, wherein cooling of the spindle device by cooling fluid circulation. Means is provided, and the main shaft displacement amount in each state when the thermal deformation of the main shaft is substantially stabilized with respect to each rotational speed of the main shaft is obtained and stored in advance. The respective data of the coolant supply start timing, the spindle start timing, and the machining start timing of the cooling means with respect to the spindle displacement that quickly reaches the spindle displacement when the temperature is substantially stabilized are obtained and stored in advance, and the actual machining is performed. , The coolant supply start timing, the spindle start timing, and the machining start in the machining according to the front spindle rotation speed and the next spindle rotation speed. Calculated based on the data obtained by said storing the timing, initiation of the cooling liquid supplied in the computed timing, activation of the main shaft, precision machining method and performing start processing.
【請求項2】 主軸を起動してから主軸の熱変形が速や
かに安定するまでの前記主軸変位量に対する冷却液供給
開始タイミング、主軸起動タイミング、および加工開始
タイミングの各データを主軸の停止時間に応じて複数設
定し、 実際の加工に当たり、主軸の実停止時間、前主軸回転速
度および次主軸回転速度に応じて当該加工における冷却
液供給開始タイミング、主軸起動タイミング、および加
工開始タイミングを前記記憶した各データに基づいて演
算する請求項1記載の精密加工方法。
2. The data of the coolant supply start timing, the spindle start timing, and the machining start timing with respect to the spindle displacement amount from the start of the spindle until the thermal deformation of the spindle is quickly stabilized are converted to the spindle stop time. In actual machining, the actual stop time of the spindle, the coolant supply start timing, the spindle start timing, and the machining start timing in the machining are stored according to the front spindle rotation speed and the next spindle rotation speed. 2. The precision processing method according to claim 1, wherein the calculation is performed based on each data.
【請求項3】 加工に先立って主軸装置をウオーミング
アップして主軸の熱変形がほぼ安定してからワークの加
工を開始するようにした工作機械における精密加工装置
において、 主軸装置の主軸の熱変位を制御するよう主軸または主軸
頭内に温度管理された冷却液を循環供給する冷却液供給
手段、 予め求めた前記主軸の各回転速度に対して主軸の熱変形
がほぼ安定するまでの主軸変位量、主軸を起動してから
主軸の熱変形が速やかに安定するまでの前記主軸変位量
に対する冷却液供給手段の冷却液供給開始タイミング、
前記主軸の起動タイミング、および加工開始タイミング
の各データを予め記憶する記憶手段、 実際の加工に当たり、前主軸回転速度と次主軸回転速度
とに応じて前記主軸装置のウォーモングアップ時間が最
短となるよう冷却液供給開始タイミング、主軸起動タイ
ミング、および加工開始タイミングを前記記憶した各デ
ータに基づいて演算し制御する制御手段、 を備えることを特徴とした精密加工装置。
3. A precision machining device for a machine tool in which a spindle device is warmed up prior to machining to start machining a workpiece after thermal deformation of the spindle is substantially stabilized. A coolant supply means for circulating a coolant whose temperature is controlled in the spindle or the spindle head to control the spindle displacement amount until thermal deformation of the spindle is substantially stabilized for each rotation speed of the spindle determined in advance; The timing of starting the supply of the coolant by the coolant supply means with respect to the displacement of the spindle from the start of the spindle until the thermal deformation of the spindle is quickly stabilized,
Storage means for pre-storing the data of the start-up timing of the spindle and the data of the machining start timing; in actual machining, the warm-up time of the spindle device is minimized according to the front spindle rotation speed and the next spindle rotation speed. Control means for calculating and controlling a coolant supply start timing, a spindle start timing, and a machining start timing based on the stored data.
【請求項4】 前記記憶手段は、更に主軸を起動してか
ら主軸の熱変形が速やかに安定するまでの前記主軸変位
量に対する冷却液供給開始タイミング、主軸起動タイミ
ング、および加工開始タイミングの各データを主軸の停
止時間に応じて複数設定記憶し、前記制御手段は、実際
の加工に当たり、主軸の実停止時間、前主軸回転速度お
よび次主軸回転速度に応じて冷却液供給開始タイミン
グ、主軸起動タイミング、および加工開始タイミングを
前記記憶した各データに基づいて演算制御する請求項3
記載の精密加工装置。
4. The storage means further includes: data of a coolant supply start timing, a spindle start timing, and a machining start timing with respect to the spindle displacement amount from when the spindle is started to when thermal deformation of the spindle is quickly stabilized. Are set and stored according to the stop time of the spindle, and the control means performs the actual machining, the actual stop time of the spindle, the coolant supply start timing and the spindle start timing according to the front spindle rotation speed and the next spindle rotation speed. And controlling the processing start timing based on the stored data.
Precision processing equipment as described.
JP09279385A 1997-09-29 1997-09-29 Precision processing method and equipment Expired - Fee Related JP3091436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09279385A JP3091436B2 (en) 1997-09-29 1997-09-29 Precision processing method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09279385A JP3091436B2 (en) 1997-09-29 1997-09-29 Precision processing method and equipment

Publications (2)

Publication Number Publication Date
JPH11110021A true JPH11110021A (en) 1999-04-23
JP3091436B2 JP3091436B2 (en) 2000-09-25

Family

ID=17610411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09279385A Expired - Fee Related JP3091436B2 (en) 1997-09-29 1997-09-29 Precision processing method and equipment

Country Status (1)

Country Link
JP (1) JP3091436B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259961A (en) * 2000-03-15 2001-09-25 Disco Abrasive Syst Ltd Processing device
JP2004338034A (en) * 2003-05-15 2004-12-02 Toshiba Mach Co Ltd Method and apparatus for cooling main spindle of machine tool, and method of balancing the main spindle
JP2014223705A (en) * 2013-05-16 2014-12-04 株式会社ジェイテクト Rotary shaft device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259961A (en) * 2000-03-15 2001-09-25 Disco Abrasive Syst Ltd Processing device
JP2004338034A (en) * 2003-05-15 2004-12-02 Toshiba Mach Co Ltd Method and apparatus for cooling main spindle of machine tool, and method of balancing the main spindle
JP2014223705A (en) * 2013-05-16 2014-12-04 株式会社ジェイテクト Rotary shaft device

Also Published As

Publication number Publication date
JP3091436B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
US6291959B1 (en) Method and apparatus for controlling numerically controlled machine tool
JP3091436B2 (en) Precision processing method and equipment
JPH0554565B2 (en)
JP4245375B2 (en) Machine tool control method and machine tool
JP2010023158A (en) Cooling system for machine tool
JP4302430B2 (en) Machine tool spindle balancing method
JP3236805B2 (en) Precision processing method and equipment
JP2001062677A (en) Machining method and device in machine tool
JP4553422B2 (en) Cooling control device for rotating shaft
JP2001162490A (en) Method and device for compensating thermal displacement of machine tool main spindle
JP2630217B2 (en) Variable preload spindle unit
JPH09300173A (en) Method and system of cooling main spindle of machine tool
JPH0463659A (en) Main spindle temperature control method for machine tool
JPS6157144B2 (en)
JPH06106447A (en) Machine tool and cooling of machine tool
JPH0847842A (en) Machine tool and method of work
JPH10277886A (en) Machine tool
JPH05253791A (en) Thermal displacement hysteresis improvement method of static pressure main spindle for precision working machine
Tanabe et al. Dual cooling jacket around spindle bearings with feed-forward temperature control system to decrease thermal deformation
JPH09253975A (en) Device for reducing thermal deformation of threaded shaft and method for reducing thermal deformation of the same
JPS62152643A (en) Highly accurate machining device
JPH08135751A (en) Cooling device for ball screw
JP2001059521A (en) Method for controlling lubricating fluid temperature of hydraulic bearing and device therefor
JPH1086037A (en) Temperature controller for machine tool
JP2001277073A (en) Tool position correcting method for machining device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees