JPH09253975A - Device for reducing thermal deformation of threaded shaft and method for reducing thermal deformation of the same - Google Patents

Device for reducing thermal deformation of threaded shaft and method for reducing thermal deformation of the same

Info

Publication number
JPH09253975A
JPH09253975A JP8067543A JP6754396A JPH09253975A JP H09253975 A JPH09253975 A JP H09253975A JP 8067543 A JP8067543 A JP 8067543A JP 6754396 A JP6754396 A JP 6754396A JP H09253975 A JPH09253975 A JP H09253975A
Authority
JP
Japan
Prior art keywords
nut
shaped member
thermal deformation
screw shaft
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8067543A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakazawa
弘 中澤
Kazuhide Orita
一秀 折田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Seiki Kogyo Co Ltd
Original Assignee
Mitsui Seiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Seiki Kogyo Co Ltd filed Critical Mitsui Seiki Kogyo Co Ltd
Priority to JP8067543A priority Critical patent/JPH09253975A/en
Publication of JPH09253975A publication Critical patent/JPH09253975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict heat generated by friction between a threaded shaft and a nut member threadably engaged with the shaft to a specified value under a control of a supplying amount of compressed cooling air and its timing, reduce a thermal displacement at the threaded shaft and improve a position setting precision. SOLUTION: A ball nut 7 thredably engaged with a ball screw 9 is enclosed by a nut cover member formed with an air flowing-in passage. Compressed cooling air flowed from a compressor 21 is supplied to an air flowing-in passage of the nut cover member so as to cool a contacted location between the ball nut 7 and the ball screw 9 contacted with the ball nut 7. In turn, a difference in temperature between the nut cover member and a table 6 or the like is deleted by a thermocouple 26 or the like, and an ON/OFF control of the compressed cooling air is carried out in reference to whether or not the difference exceeds a reference value. With such an arrangement as above, a heat generated at the ball nut and the ball screw 9 is reduced and a position setting precision is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種工作機械等に
使用され、機械の移動部の移動位置決めを行なう送りね
じ軸の熱膨脹による変形を低減させる簡便なねじ軸の熱
変形低減装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simple device and method for reducing thermal deformation of a screw shaft, which is used in various machine tools or the like and reduces deformation of a feed screw shaft for thermal positioning of a moving part of the machine due to thermal expansion. .

【0002】[0002]

【従来の技術】工作機械のように、移動体を所定位置に
高精度に移動位置決めする必要のある部位にはボールね
じのような送りねじ軸が使用されている。この送りねじ
軸による位置決め精度を向上させるにはこの熱変形を防
止することが必要である。この手段としては従来より各
種の熱変形低減手段が採用されている。例えば、過大な
予圧を避けるもの、リードの大きなボールねじを選定し
回転数を下げるもの、温度上昇による熱膨脹量を予め見
込み、その分だけ累積基準リード誤差を所定量だけマイ
ナスさせて製作するもの、予め若干短く作ったねじ軸に
熱応力より大きな内部応力を生じるように予張力を加え
るもの、適切な潤滑剤を選定使用するもの、ウォーミン
グアップを行ない温度が安定してから使用するもの、ね
じ軸を中空にしその中に冷却媒体を流通させるもの、ね
じ軸の外周面に空気や潤滑油を流してねじ軸を冷却する
もの、ダブルナット予圧ボールねじの間座に設けた穴か
ら空気やオイルミストを流して冷却するもの、クローズ
トループ制御方式による熱膨脹量補完制御を行なうもの
等各種手段が工夫され、具体的に適用されている。
2. Description of the Related Art A feed screw shaft such as a ball screw is used in a portion such as a machine tool where a moving body needs to be moved and positioned at a predetermined position with high precision. In order to improve the positioning accuracy of the feed screw shaft, it is necessary to prevent this thermal deformation. As this means, various kinds of thermal deformation reducing means have been conventionally used. For example, one that avoids excessive preloading, one that selects a ball screw with a large lead to reduce the number of revolutions, one that anticipates the amount of thermal expansion due to temperature rise in advance, and one that is produced by subtracting the accumulated reference lead error by a predetermined amount. A pre-tension is applied to a screw shaft that is made slightly shorter in advance so as to generate an internal stress larger than the thermal stress, a proper lubricant is selected and used, a warm shaft is used after the temperature is stabilized, and a screw shaft is selected. A hollow type that allows a cooling medium to flow through it, a type that cools the screw shaft by allowing air or lubricating oil to flow on the outer peripheral surface of the screw shaft, and an air or oil mist that is provided through a hole in the spacer of the double nut preloaded ball screw. Various means have been devised and applied concretely, such as those that flow and cool and those that perform complementary control of thermal expansion amount by a closed loop control method.

【0003】[0003]

【発明が解決しようとする課題】前記した従来のねじ軸
の発熱低減手段は夫々効果を有するものであるが、特殊
形状のねじ軸が必要であったり、その制御手段について
も複雑であり、コストアップによる問題点がある。ま
た、安直に、且つ安価に適用しにくい問題点を有してい
る。一方、ねじ軸の熱変形の原因となる主なる熱源は、
ボールねじにおけるナット状部材とねじ軸およびその間
のボールとの間の駆動時における摩擦熱によるものが殆
どであり、この部分の熱を強制的に、且つ安直な手段で
低減させることができればねじ軸の熱変形が大幅に低減
されることができる。工場ではコンプレッサは常設され
るものであり、その圧縮空気を所定温度に冷却させる冷
却器も一般に常設される場合が多い。なお、ボルテック
スチューブ等を用いる場合には特設が必要である。そこ
でこの圧縮冷却空気を用いてねじ軸に接しているナット
状部材を直接冷却することにより前記問題点が解決され
ることが予備実験の段階で明らかになった。即ち、互い
に係合する部材間ではヒートシンクすることにより低温
側に多くの熱が流れる。従って、ナット状部材を冷却す
るとナット状部材がねじ軸よりも低温になり、ナット状
部材側に熱が流れる。ナット状部材に伝導された熱は外
部に放散される。以上により、ナット状部材の温度コン
トロールを行なうことにより、それに螺合しているねじ
軸側への熱の伝導が少なくなりその温度コントロールが
行なわれることが解った。
Although the above-described conventional heat generation reducing means for the screw shaft have their respective effects, the screw shaft having a special shape is required, and the control means thereof is complicated, and the cost is reduced. There is a problem with up. In addition, there is a problem that it is difficult to apply inexpensively and inexpensively. On the other hand, the main heat source that causes thermal deformation of the screw shaft is
Most of this is due to frictional heat during driving between the nut-shaped member of the ball screw and the screw shaft and the balls between them, and if the heat in this part can be forcibly and easily reduced, the screw shaft The thermal deformation of the can be significantly reduced. A compressor is always installed in a factory, and a cooler that cools the compressed air to a predetermined temperature is usually installed in many cases. If a vortex tube or the like is used, special provision is necessary. Therefore, it was clarified in the stage of preliminary experiments that the above-mentioned problems can be solved by directly cooling the nut-shaped member in contact with the screw shaft using this compressed cooling air. That is, a large amount of heat flows to the low temperature side by heat sinking between the members that engage with each other. Therefore, when the nut-shaped member is cooled, the temperature of the nut-shaped member becomes lower than that of the screw shaft, and heat flows to the nut-shaped member side. The heat conducted to the nut-shaped member is dissipated to the outside. From the above, it has been found that by controlling the temperature of the nut-shaped member, the heat conduction to the screw shaft side screwed to the nut-shaped member is reduced and the temperature is controlled.

【0004】ねじ軸とこれに螺合するナット状部材との
接触部位に生ずる発熱量Qは一般に次の式により求めら
れる。 Q∝n・T・・・(1) ここで、nはねじ軸の回転数であり、Tは螺合部位に負
荷されるトルク値である。また、この場合におけるねじ
軸の温度上昇Δθは次の式により求められる。 Δθ=Q/β[1−exp(1−t・β/CM)]・・・(2) ここで、βは放熱量,CMは熱容量,tは経過時間であ
る。ここで経過時間tを大きくするとΔθ=Q/βとな
り飽和する。一方、ねじ軸の長さをLとし、熱膨脹率を
αとするとねじ軸の熱膨脹量ΔLは次の式のようにな
る。 ΔL=α・Δθ・L・・・(3) 図7は前記の(1)乃至(3)式を基にした時間tとね
じ軸の伸びとの関係を示すもので、曲線Aにより従来の
ねじ軸の変化が示されている。
The heat generation amount Q generated at the contact portion between the screw shaft and the nut-shaped member screwed to the screw shaft is generally obtained by the following equation. Q∝n · T (1) Here, n is the number of rotations of the screw shaft, and T is the torque value applied to the screwing portion. Further, the temperature increase Δθ of the screw shaft in this case is obtained by the following formula. Δθ = Q / β [1-exp (1-t · β / CM)] (2) where β is the heat radiation amount, CM is the heat capacity, and t is the elapsed time. Here, if the elapsed time t is increased, Δθ = Q / β and the saturation occurs. On the other hand, when the length of the screw shaft is L and the coefficient of thermal expansion is α, the thermal expansion amount ΔL of the screw shaft is as follows. ΔL = α · Δθ · L (3) FIG. 7 shows the relationship between the time t and the elongation of the screw shaft based on the above equations (1) to (3). The change in screw axis is shown.

【0005】以上のことから発熱量Qを強制的に低減
し、QからQj分の熱を除去しQ′=Q−QjとしΔL
=α・Q′/β・LとすることによりΔLの値を大幅に
小さくすることができる。
From the above, the calorific value Q is forcibly reduced, the heat for Qj is removed from Q, and Q '= Q-Qj is set to ΔL.
By setting = α · Q ′ / β · L, the value of ΔL can be significantly reduced.

【0006】本発明は、以上の事情に鑑みて創案された
ものであり、ナット状部材にコンプレッサおよび冷却器
による常設の圧縮冷却空気を供給し、ナット状部材を強
制的に冷却し、その温度を所定の基準値内に保持するよ
うに圧縮冷却空気の供給のオンオフ制御をする簡便な手
段および方法によりねじ軸の熱変形を大幅に低減するよ
うにしたねじ軸の熱変形低減装置及び方法を提供するこ
とを目的とする。
The present invention was devised in view of the above circumstances, and the permanent compressed cooling air by the compressor and the cooler is supplied to the nut-shaped member to forcibly cool the nut-shaped member and the temperature thereof is maintained. A method and apparatus for reducing thermal deformation of a screw shaft by a simple means and method for controlling the on / off control of the supply of compressed cooling air so as to keep the temperature within a predetermined reference value. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、以上の目的を
達成するために、機械の移動側に保持されるナット状部
材と前記機械の不動側に保持され前記ナット状部材に螺
合して回転駆動されるねじ軸との駆動時における発熱を
低減させるための熱変形低減装置であって、コンプレッ
サおよび冷却器からの圧縮冷却空気を前記ナット状部材
の外面に均一に接触係合させて該ナット状部材を冷却す
るナット状部材冷却手段と、前記ナット状部材側と前記
機械側との温度差を検出すると共に該検出値に基づき前
記ナット状部材冷却手段の圧縮冷却空気の供給をオンオ
フ制御する制御部とを設けてなるねじ軸の熱変形低減装
置を構成するものである。更に具体的に、前記ナット状
部材冷却手段が、前記ナット状部材の外周を被包するナ
ットカバー部材と、該ナットカバー部材と前記ナット部
材との接触部位に形成され該ナット状部材の外周に沿っ
て均一に形成される空気流入路と、該空気流入路に圧縮
冷却空気を出入させるコンプレッサおよび冷却器とから
なり、前記制御部が、前記空気流入路と前記コンプレッ
サとの間に介設される制御弁と、前記ナット状部材及び
/又は前記ナットカバー部材の温度とこれ等が連結され
る機械側との温度との差を基にして前記制御弁のオンオ
フ制御を行なうコントロール部とからなるねじ軸の熱変
形低減装置を特徴とするものである。また、機械の移動
側に保持されるナット状部材と前記機械の不動側に保持
され前記ナット状部材に螺合して回転駆動されるねじ軸
の駆動時における発熱を低減させるための熱変形低減方
法であって、前記ねじ軸とナット状部材の係合部位とこ
れ等が保持される機械側との温度差を検出し、該検出値
を基にして前記係合部位に供給される圧縮冷却空気をオ
ンオフ制御し、前記温度差を基準値以内に保持するねじ
軸の熱変形低減方法を特徴とするものである。
In order to achieve the above object, the present invention has a nut-shaped member held on the moving side of a machine and a nut-shaped member held on the stationary side of the machine and screwed onto the nut-shaped member. A thermal deformation reducing device for reducing heat generation during driving with a screw shaft that is rotationally driven by uniformly compressing compressed cooling air from a compressor and a cooler into an outer surface of the nut-shaped member. Nut-shaped member cooling means for cooling the nut-shaped member, detecting a temperature difference between the nut-shaped member side and the machine side, and turning on / off the supply of compressed cooling air of the nut-shaped member cooling means based on the detected value. The present invention constitutes a device for reducing thermal deformation of a screw shaft provided with a control unit for controlling. More specifically, the nut-shaped member cooling means is formed on a nut cover member that encloses the outer circumference of the nut-shaped member, and a contact portion between the nut cover member and the nut member, and is formed on the outer circumference of the nut-shaped member. And an air inflow passage formed uniformly along the air inflow passage, and a compressor and a cooler for letting compressed cooling air into and out of the air inflow passage, and the control unit is provided between the air inflow passage and the compressor. Control valve, and a control unit for performing on / off control of the control valve based on the difference between the temperature of the nut-shaped member and / or the nut cover member and the temperature of the machine side to which these are connected. It is characterized by a device for reducing thermal deformation of the screw shaft. Further, thermal deformation reduction for reducing heat generation during driving of a nut-shaped member held on the moving side of the machine and a screw shaft held on the stationary side of the machine and screwed into the nut-shaped member and driven to rotate. A method for detecting the temperature difference between the engaging portion of the screw shaft and the nut-shaped member and the machine side where these are held, and compressing and cooling supplied to the engaging portion based on the detected value. The present invention is characterized by a method of reducing thermal deformation of a screw shaft by controlling air on / off and maintaining the temperature difference within a reference value.

【0008】ナット状部材に係合するナット状部材冷却
手段によりナット状部材の外周に均一に圧縮冷却空気を
供給し、ナット状部材を均一に冷却する。機械の駆動時
に、ナット状部材の温度を計測し、その温度が所定の基
準値に保持されるように圧縮冷却空気の供給をオンオフ
制御する。以上により、極めて簡便な手段と方法により
ナット状部材およびそれに螺合するねじ軸の螺合部まわ
りに発生する発熱を低減させることが確実にできる。
Compressed cooling air is evenly supplied to the outer periphery of the nut-shaped member by the nut-shaped member cooling means that engages with the nut-shaped member to uniformly cool the nut-shaped member. When the machine is driven, the temperature of the nut-shaped member is measured, and the supply of compressed cooling air is controlled to be turned on and off so that the temperature is maintained at a predetermined reference value. As described above, it is possible to reliably reduce the heat generated around the nut-shaped member and the screwed portion of the screw shaft screwed to the nut-shaped member by a very simple means and method.

【0009】[0009]

【発明の実施の形態】以下、本発明に係るねじ軸の熱変
形低減装置及び方法の実施の形態を図面を参照して詳述
する。まず、図1により本発明の熱変形低減装置の実施
の形態の構成を説明する。熱変形低減装置1は、大別し
てナット状部材冷却手段2と、圧縮冷却空気供給部3
と、圧縮冷却空気の供給量を制御する制御部4等からな
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a thermal deformation reducing device and method for a screw shaft according to the present invention will be described in detail below with reference to the drawings. First, the configuration of an embodiment of the thermal deformation reducing device of the present invention will be described with reference to FIG. The thermal deformation reduction device 1 is roughly divided into a nut-shaped member cooling means 2 and a compressed cooling air supply part 3.
And a control unit 4 for controlling the amount of compressed cooling air supplied.

【0010】まず、熱変形低減装置1が適用される機械
の送り機構部5を図1により説明する。図略の加工物等
を搭載するテーブル6には図2に示すようにボールナッ
ト7が固定される。一方、機械の不動側の支持台8,8
間にはボールねじ9の両端が枢支され、ボールねじ9の
一端側にはサーボモータ10が連結される。サーボモー
タ10はサーボアンプ11を介してNC装置12に連結
する。NC装置12はサーボモータ10の回転数を制御
する。以上の構造により、サーボモータ10を回転する
ことによりボールねじ9が回転し、これに螺合するボー
ルナット7およびテーブル6がボールねじ9の軸線に沿
って移動される。なお、テーブル6の移動位置決めはN
C装置12によるサーボモータ10の回転数制御により
行なわれる。以上の構造により、前記したようにボール
ねじ9が熱変形するとサーボモータ10の回転数が同一
であってもボールナット7およびテーブル6の移動長さ
が変化し、正しい位置への位置決めが出来ない問題点が
生ずる。
First, the feed mechanism portion 5 of a machine to which the thermal deformation reducing device 1 is applied will be described with reference to FIG. As shown in FIG. 2, a ball nut 7 is fixed to the table 6 on which an unillustrated workpiece or the like is mounted. On the other hand, the stationary bases 8 and 8 of the machine
Both ends of the ball screw 9 are pivotally supported therebetween, and a servo motor 10 is connected to one end of the ball screw 9. The servo motor 10 is connected to the NC device 12 via a servo amplifier 11. The NC device 12 controls the rotation speed of the servo motor 10. With the above-described structure, the ball screw 9 is rotated by rotating the servo motor 10, and the ball nut 7 and the table 6 screwed to the ball screw 9 are moved along the axis of the ball screw 9. In addition, the movement positioning of the table 6 is N
This is performed by controlling the rotation speed of the servo motor 10 by the C device 12. According to the above structure, when the ball screw 9 is thermally deformed as described above, the moving lengths of the ball nut 7 and the table 6 change even if the rotation speed of the servo motor 10 is the same, and the positioning cannot be performed at the correct position. Problems arise.

【0011】次に、ナット状部材冷却手段2の一例を説
明する。図2に示すように、本例における前記ナット状
部材の一例であるボールナット7はフランジ部7aと軸
部7bからなり、その内周側にはねじ軸の一例であるボ
ールねじ9に螺合する内ねじが形成されると共に軸部7
bの外周には円周方向に等分割された長溝13が軸線方
向に沿って複数本凹設される。一方、ナットカバー部材
14はボールナット7の主に軸部7bを被包する筒体で
あり、フランジ部14aと軸部7bに嵌まり込む筒状体
14bとからなり、カバー15を付設する。
Next, an example of the nut-shaped member cooling means 2 will be described. As shown in FIG. 2, a ball nut 7 which is an example of the nut-shaped member in the present example includes a flange portion 7a and a shaft portion 7b, and a ball screw 9 which is an example of a screw shaft is screwed on an inner peripheral side thereof. The inner thread is formed and the shaft portion 7
On the outer circumference of b, a plurality of long grooves 13 equally divided in the circumferential direction are provided along the axial direction. On the other hand, the nut cover member 14 is a tubular body that mainly encloses the shaft portion 7b of the ball nut 7, and includes a flange portion 14a and a tubular body 14b fitted in the shaft portion 7b, and a cover 15 is attached.

【0012】図3および図4はボールナット7にナット
カバー部材14を嵌め込んだ状態を示す。ナットカバー
部材14はそのフランジ部14aがボールナット7のフ
ランジ部7aに当接するまでボールナット7に嵌め込ま
れ、その筒状体14bはボールナット7の軸部7bを被
包する。なお、図2に示すようにOリング16,17が
ボールナット7側に嵌め込まれ、ボールナット7とナッ
トカバー部材14との両端側のシールを行なう。また、
カバー15をナットカバー部材14側に固定することに
よりボールナット7の長溝13の両端はシールされる。
3 and 4 show a state in which the nut cover member 14 is fitted in the ball nut 7. The nut cover member 14 is fitted into the ball nut 7 until the flange portion 14a contacts the flange portion 7a of the ball nut 7, and the tubular body 14b covers the shaft portion 7b of the ball nut 7. As shown in FIG. 2, the O-rings 16 and 17 are fitted on the ball nut 7 side to seal both ends of the ball nut 7 and the nut cover member 14. Also,
By fixing the cover 15 to the nut cover member 14 side, both ends of the long groove 13 of the ball nut 7 are sealed.

【0013】図3乃至図5に示すように、ナットカバー
部材14のフランジ部14aと軸部筒状体14bの一端
側には内部に連通する空気入口部18と空気出口部19
が設けられている。ボールナット7にナットカバー部材
14を嵌め込むことにより長溝13とその両端側と空気
入口部18および空気出口部19とを連通させる空気流
入路20が形成される。以上の構造により、空気入口部
18に空気を導入すると図5に示すように空気は矢印方
向に進み、長溝13を通り、空気出口部19から排出さ
れる。
As shown in FIGS. 3 to 5, the flange portion 14a of the nut cover member 14 and the one end side of the shaft portion cylindrical body 14b are connected to the air inlet portion 18 and the air outlet portion 19 which communicate with the inside.
Is provided. By fitting the nut cover member 14 into the ball nut 7, an air inflow passage 20 is formed which connects the long groove 13 and both ends thereof to the air inlet portion 18 and the air outlet portion 19. With the above structure, when air is introduced into the air inlet 18, the air advances in the direction of the arrow as shown in FIG. 5, passes through the long groove 13, and is discharged from the air outlet 19.

【0014】次に、圧縮冷却空気供給部3を説明する。
図1に示すように圧縮冷却空気供給部3はコンプレッサ
21と、その圧縮空気を所望の温度に冷却する冷却器2
2と、コンプレッサ21および冷却器22からの冷却空
気をナットカバー部材14の空気入口部18に導入する
ための導入通路23と、導入通路23内に介設される制
御弁の一例である電磁弁24等とからなる。なお、コン
プレッサ21,冷却器22および電磁弁24はNC装置
12側に連結されコントロールされる。
Next, the compressed cooling air supply unit 3 will be described.
As shown in FIG. 1, the compressed cooling air supply unit 3 includes a compressor 21 and a cooler 2 for cooling the compressed air to a desired temperature.
2, an introduction passage 23 for introducing cooling air from the compressor 21 and the cooler 22 to the air inlet portion 18 of the nut cover member 14, and a solenoid valve which is an example of a control valve provided in the introduction passage 23. It consists of 24 mag. The compressor 21, the cooler 22, and the solenoid valve 24 are connected to and controlled by the NC device 12 side.

【0015】制御部4は本例では温度測定・冷却空気制
御用コンピュータ25と、温度検出器の一例である熱電
対26等とからなり、NC装置12と連結される。な
お、レーザ測長器27や伸び測定用コンピュータ28が
付設され、伸び測定用コンピュータ28は温度測定・冷
却空気制御用コンピュータ25側と連結される。また、
熱電対26は本例ではナットカバー部材14,空気入口
部18,テーブル6およびボールねじ9を支持する支持
台8に連結され、それ等の部位における温度検出を行な
う。この検出値は温度測定・冷却空気制御用コンピュー
タ25に入力される。一方、レーザ測長器27はナット
カバー部材14に係合し、ナットカバー部材14の位置
測定を行なうものであり、その測定値は伸び測定用コン
ピュータ28に入力される。なお、実際時においてはレ
ーザ測長器27は不要であり、温度測定・冷却空気制御
用コンピュータは小さなICデバイスに変更可能であ
る。
In this example, the control section 4 comprises a temperature measuring / cooling air control computer 25, a thermocouple 26 which is an example of a temperature detector, and the like, and is connected to the NC unit 12. A laser length measuring device 27 and an elongation measuring computer 28 are additionally provided, and the elongation measuring computer 28 is connected to the temperature measuring / cooling air controlling computer 25 side. Also,
In this example, the thermocouple 26 is connected to the nut cover member 14, the air inlet portion 18, the support base 8 that supports the table 6 and the ball screw 9, and detects the temperature at those portions. This detected value is input to the computer 25 for temperature measurement / cooling air control. On the other hand, the laser length measuring device 27 engages with the nut cover member 14 to measure the position of the nut cover member 14, and the measured value is input to the elongation measuring computer 28. It should be noted that the laser length measuring device 27 is not necessary in actual use, and the computer for temperature measurement / cooling air control can be changed to a small IC device.

【0016】次に、本発明の熱変形低減装置1の作用を
説明する。サーボモータ10を駆動し、ボールねじ9を
回転し、ボールナット7がボールねじ9に沿って移動す
るとボールねじ9とボールナット7との間に摩擦力が生
じ、その接触部位が発熱する。その発熱によりボールナ
ット7の温度が上昇する。熱電対26はボールナット7
の温度上昇の度合をナットカバー部材14を介して検出
すると共に熱電対26はテーブル6等の温度変化の比較
的低い部分の温度測定を行なう。一方、ボールナット7
まわりの温度上昇によるナットカバー部材14等の位置
ずれ量はレーザ測長器27により測定され、伸び測定用
コンピュータ28に入力される。一方、コンプレッサ2
1からの圧縮空気は冷却器22を介しナットカバー部材
14の空気入口部18に送られ、その空気流入路20に
導入される。この圧縮冷却空気はボールナット7の軸部
7bの外周に均一に形成された長溝13内を流れ、その
流通中にボールナット7とボールねじ9との接触部位に
発生した熱量を吸収する。なお、長溝13は軸部7bの
円周に等分割に形成されているため、ボールナット7お
よびボールねじ9は均一に冷却される。ボールナット7
とボールねじ9の摩擦熱を吸収した圧縮冷却空気は空気
出口部19からコンプレッサ21側に戻入され再循環さ
れる。コンプレッサ21からの圧縮冷却空気の供給量を
コントロールすると共に、その供給時間やタイミングを
コントロールすることによりナットカバー部材14の温
度を所望の温度にコントロールすることができる。この
ためにボールねじに伝導される熱量が大巾に低減されて
ボールねじの熱変形が最小に抑えられる。また、コント
ロール後における位置ずれ量の変化はレーザ測長器27
により測定される。
Next, the operation of the thermal deformation reducing device 1 of the present invention will be described. When the servomotor 10 is driven, the ball screw 9 is rotated, and the ball nut 7 moves along the ball screw 9, a frictional force is generated between the ball screw 9 and the ball nut 7, and the contact portion generates heat. The heat generation causes the temperature of the ball nut 7 to rise. Thermocouple 26 is ball nut 7
The degree of temperature rise is detected through the nut cover member 14, and the thermocouple 26 measures the temperature of the portion of the table 6 where the temperature change is relatively low. On the other hand, ball nut 7
The amount of positional deviation of the nut cover member 14 and the like due to a rise in ambient temperature is measured by the laser length measuring device 27 and input to the elongation measuring computer 28. On the other hand, the compressor 2
The compressed air from 1 is sent to the air inlet portion 18 of the nut cover member 14 via the cooler 22 and introduced into the air inflow passage 20. This compressed cooling air flows in the long groove 13 formed uniformly on the outer periphery of the shaft portion 7b of the ball nut 7, and absorbs the amount of heat generated at the contact portion between the ball nut 7 and the ball screw 9 during its circulation. In addition, since the long groove 13 is formed in the circumference of the shaft portion 7b at equal intervals, the ball nut 7 and the ball screw 9 are cooled uniformly. Ball nut 7
The compressed cooling air that has absorbed the frictional heat of the ball screw 9 is returned from the air outlet 19 to the compressor 21 side and is recirculated. The temperature of the nut cover member 14 can be controlled to a desired temperature by controlling the supply amount and timing of the compressed cooling air supplied from the compressor 21. For this reason, the amount of heat conducted to the ball screw is greatly reduced, and thermal deformation of the ball screw is suppressed to a minimum. In addition, the change in the positional deviation amount after control is determined by the laser length measuring device 27.
Is measured by

【0017】次に、本発明の熱変形低減装置1における
ボールねじ9等の熱変形低減方法の一例を図6乃至図8
により説明する。図6は縦軸にボールねじ9の伸び[μ
m]をとり、横軸に経過時間[min]をとり、ボール
ねじ9の駆動を1時間行ない、その後30分駆動停止を
行なう動作パターンを繰返し行なった場合の伸び時間線
図を示す。図において曲線Cは、圧縮冷却空気をボール
ねじ9側に供給しなかった場合を示し、D曲線は、圧縮
冷却空気を本発明の熱変形低減方法に基づきコントロー
ルして供給した場合を示し、E曲線は、制御なしで常時
圧縮冷却空気を供給した場合を夫々示す。線図で明らか
なように、本発明の熱変形低減方法によれば、伸びを極
めて小さい範囲に抑え込むことが可能になる。
Next, an example of a method for reducing thermal deformation of the ball screw 9 and the like in the thermal deformation reducing apparatus 1 of the present invention will be described with reference to FIGS.
This will be described below. In FIG. 6, the vertical axis shows the elongation of the ball screw 9 [μ
m], the elapsed time [min] is plotted on the horizontal axis, the ball screw 9 is driven for 1 hour, and then an operation pattern is repeated in which driving is stopped for 30 minutes. In the figure, a curve C shows the case where the compressed cooling air is not supplied to the ball screw 9 side, and a curve D shows the case where the compressed cooling air is controlled and supplied according to the thermal deformation reduction method of the present invention. The curves show the cases where compressed cooling air is always supplied without control. As is clear from the diagram, the method for reducing thermal deformation of the present invention makes it possible to suppress elongation in an extremely small range.

【0018】図8は本発明の熱変形低減方法の具体例を
示すフローチャートである。まず、機械起動を行なう
(ステップ100)。機械駆動に伴ってコンプレッサ2
1がONされ、電磁弁24が開いて圧縮冷却空気が供給
される。即ち、空気ON(ステップ101)が行なわれ
る。次に、機械が停止しない場合(noの場合)はステ
ップ103に進み、機械の温度(例えば、テーブル6の
温度)とボールねじ9との温度(具体的にはナットカバ
ー部材14の温度)が比較される。一方、機械が停止し
ている場合(yesの場合)はコンプレッサ21の作動
を停止し、電磁弁24が閉じて空気OFFとなる(ステ
ップ104)。次に、機械側とボールねじ9側との温度
比較がなされその温度差が求められ、その温度差が基準
値以内か否かが判断される(ステップ105)。基準値
以内の場合(yesの場合)は過冷却を防止するためス
テップ104に進み空気の供給を停止し、基準値以上の
場合(noの場合)は、冷却不足と判断し空気ONを続
行する(ステップ106)。以上のコントロールを繰返
し行なうことにより、ボールねじ9の温度上昇は一定値
以内に抑制される。
FIG. 8 is a flow chart showing a specific example of the thermal deformation reducing method of the present invention. First, the machine is activated (step 100). Compressor 2 along with mechanical drive
1 is turned on, the solenoid valve 24 is opened, and compressed cooling air is supplied. That is, the air is turned on (step 101). Next, when the machine does not stop (in the case of no), the routine proceeds to step 103, where the temperature of the machine (for example, the temperature of the table 6) and the temperature of the ball screw 9 (specifically, the temperature of the nut cover member 14) are determined. Be compared. On the other hand, when the machine is stopped (in the case of yes), the operation of the compressor 21 is stopped, the electromagnetic valve 24 is closed, and the air is turned off (step 104). Next, the temperature of the machine side and that of the ball screw 9 are compared to determine the temperature difference, and it is determined whether or not the temperature difference is within a reference value (step 105). When it is within the reference value (in the case of yes), the process proceeds to step 104 to stop the air supply to prevent overcooling, and when it is more than the reference value (in the case of no), it is determined that the cooling is insufficient and the air is turned on. (Step 106). By repeating the above control, the temperature rise of the ball screw 9 is suppressed within a certain value.

【0019】[0019]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)ボールねじでの荒加工を想定したときの発熱を強制
冷却により吸収することで、軸温度を元の温度に保ち、
熱膨脹を約10[μm]以下(測定軸長500[mm]
において)に抑えて制御することができた(構造用炭素
鋼の線膨脹係数は1.2×10−6[mm/℃]である
ことから軸温を2[℃]以内で制御されていることが示
された)。なお、冷却器の能力を大きくすることにより
荒加工においても更に高精度の軸温コントロールが可能
になる。 2)仕上げ加工を想定したときの発熱に対しては冷却能
力の方が上回っており、ON・OFF制御を行なうこと
で±2[μm]以内に抑えることができた。 3)ナットカバー部材表面の温度を測定しオンオフする
ので、制御が簡単でオンオフの温度幅を小さく設定する
ことで軸の伸びをある程度一定に抑えることができた。 4)本発明は常設のコンプレッサや簡便構造のナット状
冷却手段を用いるだけの簡単なもので安価に、且つ安直
に実施できる。 5)強制冷却を行なうことは直接発熱量を奪うので、他
の方法に比べて熱を残さない。 6)既設の機械に対しても適用可能である。
According to the present invention, the following remarkable effects are obtained. 1) Maintaining the shaft temperature at the original temperature by absorbing the heat generated when rough machining with a ball screw is assumed by forced cooling,
Thermal expansion of about 10 [μm] or less (measurement axis length 500 [mm]
In this case, the axial temperature was controlled within 2 [° C] because the linear expansion coefficient of structural carbon steel was 1.2 × 10 -6 [mm / ° C]. Was shown). In addition, by increasing the capacity of the cooler, it becomes possible to control the shaft temperature with higher accuracy even in rough machining. 2) The cooling capacity was higher than the heat generated when finishing was envisioned, and it was possible to suppress it to within ± 2 [μm] by performing ON / OFF control. 3) Since the temperature of the surface of the nut cover member is measured and turned on and off, the control is easy and the elongation of the shaft can be suppressed to a certain extent by setting a small on / off temperature range. 4) The present invention is a simple one that uses a permanent compressor or a nut-shaped cooling means having a simple structure, and can be implemented inexpensively and easily. 5) Forced cooling directly deprives the calorific value, and therefore does not leave heat as compared with other methods. 6) It can also be applied to existing machines.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱変形低減装置の全体構造を示す構成
図。
FIG. 1 is a configuration diagram showing an overall structure of a thermal deformation reducing device of the present invention.

【図2】本発明のナット状部材冷却手段の詳細構造を示
す平面図。
FIG. 2 is a plan view showing the detailed structure of the nut-shaped member cooling means of the present invention.

【図3】本発明のナット状部材冷却手段の外観図。FIG. 3 is an external view of nut-shaped member cooling means of the present invention.

【図4】図3の矢視Fの正面図。FIG. 4 is a front view of arrow F in FIG.

【図5】本発明のナット状部材冷却手段の空気流入路を
示す模式図。
FIG. 5 is a schematic view showing an air inflow path of the nut-like member cooling means of the present invention.

【図6】本発明と従来技術との効果を比較表示した伸び
時間線図。
FIG. 6 is an extension time diagram showing the effects of the present invention and the prior art in comparison.

【図7】本発明と従来技術との効果を比較表示した伸び
時間線図。
FIG. 7 is an extension time diagram showing the effects of the present invention and the prior art in comparison.

【図8】本発明の熱変形低減方法を説明するためのフロ
ーチャート。
FIG. 8 is a flowchart for explaining the thermal deformation reduction method of the present invention.

【符号の説明】[Explanation of symbols]

1 熱変形低減装置 2 ナット状部材冷却手段 3 圧縮冷却空気供給部 4 制御部 5 送り機構部 6 テーブル 7 ボールナット 7a フランジ部 7b 軸部 8 支持台 9 ボールねじ 10 サーボモータ 11 サーボアンプ 12 NC装置 13 長溝 14 ナットカバー部材 14a フランジ部 14b 筒状体 15 カバー 16 Oリング 17 Oリング 18 空気入口部 19 空気出口部 20 空気流入路 21 コンプレッサ 22 冷却器 23 導入通路 24 電磁弁 25 温度測定・冷却空気制御用コンピュータ 26 熱電対 27 レーザ測長器 28 伸び測定用コンピュータ DESCRIPTION OF SYMBOLS 1 Thermal deformation reducing device 2 Nut-shaped member cooling means 3 Compressed cooling air supply part 4 Control part 5 Feed mechanism part 6 Table 7 Ball nut 7a Flange part 7b Shaft part 8 Support base 9 Ball screw 10 Servo motor 11 Servo amplifier 12 NC device 13 Long Groove 14 Nut Cover Member 14a Flange Part 14b Cylindrical Body 15 Cover 16 O-ring 17 O-ring 18 Air Inlet 19 Air Outlet 20 Air Inlet 21 Compressor 22 Cooler 23 Inlet 24 Solenoid Valve 25 Temperature Measurement / Cooling Air Control computer 26 Thermocouple 27 Laser length measuring instrument 28 Elongation measuring computer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 機械の移動側に保持されるナット状部材
と前記機械の不動側に保持され前記ナット状部材に螺合
して回転駆動されるねじ軸との駆動時における発熱を低
減させるための熱変形低減装置であって、コンプレッサ
および冷却器からの圧縮冷却空気を前記ナット状部材の
外面に均一に接触係合させて該ナット状部材を冷却する
ナット状部材冷却手段と、前記ナット状部材側と前記機
械側との温度差を検出すると共に該検出値に基づき前記
ナット状部材冷却手段の圧縮冷却空気の供給をオンオフ
制御する制御部とを設けることを特徴とするねじ軸の熱
変形低減装置。
1. To reduce heat generation during driving of a nut-shaped member held on a moving side of a machine and a screw shaft held on a stationary side of the machine and screwed into the nut-shaped member to be rotationally driven. And a nut-shaped member cooling means for cooling the nut-shaped member by causing compressed cooling air from a compressor and a cooler to uniformly contact and engage the outer surface of the nut-shaped member. A thermal deformation of the screw shaft, comprising: a temperature difference between the member side and the machine side; and a control unit for controlling on / off of the supply of compressed cooling air of the nut-shaped member cooling means based on the detected value. Reduction device.
【請求項2】 前記ナット状部材冷却手段が、前記ナッ
ト状部材の外周を被包するナットカバー部材と、該ナッ
トカバー部材と前記ナット部材との接触部位に形成され
該ナット状部材の外周に沿って均一に形成される空気流
入路と、該空気流入路に圧縮冷却空気を出入させるコン
プレッサおよび冷却器とからなり、前記制御部が、前記
空気流入路と前記コンプレッサとの間に介設される制御
弁と、前記ナット状部材及び/又は前記ナットカバー部
材の温度とこれ等が連結される機械側との温度との差を
基にして前記制御弁のオンオフ制御を行なうコントロー
ル部とからなることを特徴とする請求項1に記載のねじ
軸の熱変形低減装置。
2. The nut-shaped member cooling means is formed at a nut cover member that encloses the outer periphery of the nut-shaped member and a contact portion between the nut cover member and the nut member, and the nut-shaped member is provided on the outer periphery of the nut-shaped member. And an air inflow passage formed uniformly along the air inflow passage, and a compressor and a cooler for letting compressed cooling air into and out of the air inflow passage, and the control unit is provided between the air inflow passage and the compressor. Control valve, and a control unit for performing on / off control of the control valve based on the difference between the temperature of the nut-shaped member and / or the nut cover member and the temperature of the machine side to which these are connected. The thermal deformation reduction device for a screw shaft according to claim 1, wherein
【請求項3】 機械の移動側に保持されるナット状部材
と前記機械の不動側に保持され前記ナット状部材に螺合
して回転駆動されるねじ軸の駆動時における発熱を低減
させるための熱変形低減方法であって、前記ねじ軸とナ
ット状部材の係合部位とこれ等が保持される機械側との
温度差を検出し、該検出値を基にして前記係合部位に供
給される圧縮冷却空気をオンオフ制御し、前記温度差を
基準値以内に保持することを特徴とするねじ軸の熱変形
低減方法。
3. A nut-shaped member that is held on the moving side of a machine and a screw shaft that is held on the stationary side of the machine and screwed into the nut-shaped member to be driven to rotate are reduced in heat generation during driving. A thermal deformation reducing method, which detects a temperature difference between an engaging portion of the screw shaft and the nut-shaped member and a machine side where these are held, and supplies the temperature to the engaging portion based on the detected value. A method for reducing thermal deformation of a screw shaft, wherein the compressed cooling air is controlled to be turned on and off, and the temperature difference is maintained within a reference value.
JP8067543A 1996-03-25 1996-03-25 Device for reducing thermal deformation of threaded shaft and method for reducing thermal deformation of the same Pending JPH09253975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8067543A JPH09253975A (en) 1996-03-25 1996-03-25 Device for reducing thermal deformation of threaded shaft and method for reducing thermal deformation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8067543A JPH09253975A (en) 1996-03-25 1996-03-25 Device for reducing thermal deformation of threaded shaft and method for reducing thermal deformation of the same

Publications (1)

Publication Number Publication Date
JPH09253975A true JPH09253975A (en) 1997-09-30

Family

ID=13347995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8067543A Pending JPH09253975A (en) 1996-03-25 1996-03-25 Device for reducing thermal deformation of threaded shaft and method for reducing thermal deformation of the same

Country Status (1)

Country Link
JP (1) JPH09253975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273770A (en) * 2001-03-16 2002-09-25 Japan Steel Works Ltd:The Cooling apparatus and method of ball thread of electromotive injection-molding machine
EP1644710A1 (en) * 2003-07-11 2006-04-12 Thermtech Pty Ltd Means and method for monitoring the assembly of threaded components
AU2004256146B2 (en) * 2003-07-11 2006-06-22 Thermtech Pty Ltd Means and method for monitoring the assembly of threaded components
CN101907514A (en) * 2010-07-19 2010-12-08 陕西科技大学 High-speed vertical machining center performance test-bed
KR101336406B1 (en) * 2012-05-04 2013-12-04 경상대학교산학협력단 Ball screw for machine tool
CN113146282A (en) * 2021-05-31 2021-07-23 南京鸿创精密科技有限公司 Self-pressure-supply type angle head

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263557A (en) * 1975-11-20 1977-05-26 Setagaya Seisakusho Kk Temperature control apparatus for feeding nut
JPS631956U (en) * 1986-06-20 1988-01-08
JPH01117847U (en) * 1988-01-30 1989-08-09
JPH07100730A (en) * 1991-12-13 1995-04-18 Enshu Ltd Air cooling controller of feed member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263557A (en) * 1975-11-20 1977-05-26 Setagaya Seisakusho Kk Temperature control apparatus for feeding nut
JPS631956U (en) * 1986-06-20 1988-01-08
JPH01117847U (en) * 1988-01-30 1989-08-09
JPH07100730A (en) * 1991-12-13 1995-04-18 Enshu Ltd Air cooling controller of feed member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273770A (en) * 2001-03-16 2002-09-25 Japan Steel Works Ltd:The Cooling apparatus and method of ball thread of electromotive injection-molding machine
EP1644710A1 (en) * 2003-07-11 2006-04-12 Thermtech Pty Ltd Means and method for monitoring the assembly of threaded components
AU2004256146B2 (en) * 2003-07-11 2006-06-22 Thermtech Pty Ltd Means and method for monitoring the assembly of threaded components
EP1644710A4 (en) * 2003-07-11 2006-09-13 Thermtech Pty Ltd Means and method for monitoring the assembly of threaded components
EA009546B1 (en) * 2003-07-11 2008-02-28 Термтек Пти Лтд. Means and method for monitoring the assembly of threaded components
CN101907514A (en) * 2010-07-19 2010-12-08 陕西科技大学 High-speed vertical machining center performance test-bed
KR101336406B1 (en) * 2012-05-04 2013-12-04 경상대학교산학협력단 Ball screw for machine tool
CN113146282A (en) * 2021-05-31 2021-07-23 南京鸿创精密科技有限公司 Self-pressure-supply type angle head

Similar Documents

Publication Publication Date Title
US5239892A (en) Rotating device
JP2011167799A (en) Main spindle device
JPH09253975A (en) Device for reducing thermal deformation of threaded shaft and method for reducing thermal deformation of the same
JP3778757B2 (en) Linear motion device and drive control method thereof
KR20170082801A (en) Pre-load change device for spindle bearing
US5038746A (en) Precision grinding wheel dresser with molded bearing and method of making same
JPS63144916A (en) Precision working device
JP2015020254A (en) Spindle device
JPH05208339A (en) Temperature control device for spindle of machine tool
JP3236805B2 (en) Precision processing method and equipment
JP2006064127A (en) Preload adjusted bearing device
JP2004338034A (en) Method and apparatus for cooling main spindle of machine tool, and method of balancing the main spindle
US5310264A (en) Method for improving the transient thermal properties of air-lubricated hydrostatic bearings for the main spindles of precision machine tools
Tamura et al. A thermally stable aerostatic spindle system equipped with self-cooling function
JPS6157144B2 (en)
JPH11114791A (en) Spherical shape machining method and device therefor
JP2824983B2 (en) Spindle structure of machine tool
JP2000024876A (en) Feed shaft cooling device for machine tool
JP2544064B2 (en) High precision swaging method and device
JPH05318275A (en) Cutting tool supporting structure
JPH042438A (en) Cooling structure for machine tool spindle driving motor
JP2000018364A (en) Ball screw device
JPH10138013A (en) Radial cross feed device for machine tool
JPH0333405Y2 (en)
US4576530A (en) Indexing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050830