JPH11106899A - Production of optical thin film - Google Patents

Production of optical thin film

Info

Publication number
JPH11106899A
JPH11106899A JP9269101A JP26910197A JPH11106899A JP H11106899 A JPH11106899 A JP H11106899A JP 9269101 A JP9269101 A JP 9269101A JP 26910197 A JP26910197 A JP 26910197A JP H11106899 A JPH11106899 A JP H11106899A
Authority
JP
Japan
Prior art keywords
film
substrate
plasma
oxygen
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9269101A
Other languages
Japanese (ja)
Other versions
JP3987169B2 (en
Inventor
Takeshi Kawamata
健 川俣
Nobuaki Mitamura
宣明 三田村
Tadashi Watanabe
正 渡邊
Kiyoshi Takao
潔 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP26910197A priority Critical patent/JP3987169B2/en
Publication of JPH11106899A publication Critical patent/JPH11106899A/en
Application granted granted Critical
Publication of JP3987169B2 publication Critical patent/JP3987169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain optical thin film having characteristics such as film hardness or the like equal to those of inorganic fluoride coating formed by executing substrate heating without executing substrate heating. SOLUTION: A substrate 2 is fitted to a substrate holder 3 provided in a vacuum chamber 1, which is evacuated by a vacuum pump not shown in fig., and after that, gaseous oxygen is introduced therein from a gas introducing port 8. Thereafter, high frequency is applied to a high frequency coil 7 to generate plasma on the inside of the high frequency coil 7, and a plasma region of oxygen is formed on the space between the substrate 2 and a film raw material 4. In this state, the film raw material 4 is heated and evaporated by an electron gun to form evaporating particles, and this evaporating particles are passed through the plasma region composed of gaseous oxygen to form film on the substrate 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、反射防止膜等の
光学薄膜の製造方法に関し、さらに詳しくは、基板上に
無機フッ化物を成膜する方法に関する。
The present invention relates to a method for producing an optical thin film such as an antireflection film, and more particularly to a method for forming an inorganic fluoride on a substrate.

【0002】[0002]

【従来の技術】無機フッ化物の光学薄膜は、広い波長域
にわたり光吸収が少なく、また、膜の屈折率が低いため
単層でも十分な反射防止効果を得ることができ、光学薄
膜として極めて有用である。
2. Description of the Related Art An optical thin film made of inorganic fluoride has a low light absorption over a wide wavelength range and has a low refractive index, so that even a single layer can provide a sufficient antireflection effect and is extremely useful as an optical thin film. It is.

【0003】従来、基板上に無機フッ化物の光学薄膜を
形成するには、基板を300℃近くの温度まで加熱する
とともに、無機フッ化物からなる膜原料を抵抗加熱や電
子銃を用いて蒸発させ、この蒸発粒子を上記基板に蒸着
する真空蒸着法が多く用いられてきた。基板加熱を行う
ことにより、膜の硬度や密着性を向上させている。しか
し、この方法では、成膜する基板を300℃近くの温度
まで加熱するため、耐熱性の低いプラスチック部品や、
熱変形により性能劣化が生じる高精度ガラス部品を基板
とすることは不可能である。
Conventionally, to form an optical thin film of inorganic fluoride on a substrate, the substrate is heated to a temperature close to 300 ° C., and a film material made of inorganic fluoride is evaporated by resistance heating or an electron gun. In many cases, a vacuum evaporation method for evaporating the evaporated particles on the substrate has been used. By heating the substrate, the hardness and adhesion of the film are improved. However, in this method, a substrate on which a film is to be formed is heated to a temperature close to 300 ° C.
It is impossible to use a high-precision glass part whose performance is deteriorated by thermal deformation as a substrate.

【0004】このような問題を解決する手法として、例
えば特開平6−102401号公報には、基板は無加熱
のまま、基板表面に電子線を照射しつつフッ化マグネシ
ウムを蒸着する反射防止膜の形成方法が記載されてい
る。
As a technique for solving such a problem, for example, Japanese Patent Application Laid-Open No. 6-102401 discloses an anti-reflection film that deposits magnesium fluoride while irradiating an electron beam to the substrate surface without heating the substrate. A method of formation is described.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記特開平6
−102401号公報に記載の方法では、基板に対して
電子線を照射するための電子銃を別途設ける必要があ
り、装置が複雑となる。また、基板加熱して行う従来の
蒸着法に比べ、膜の硬度が低いという問題点を有してい
た。
However, Japanese Patent Application Laid-Open No.
In the method described in JP-A-102401, it is necessary to separately provide an electron gun for irradiating the substrate with an electron beam, and the apparatus becomes complicated. Further, there is a problem that the hardness of the film is lower than that of the conventional vapor deposition method in which the substrate is heated.

【0006】本発明は、このような問題点に鑑みてなさ
れたものであり、基板加熱することなく、基板加熱を行
って成膜した膜と同等の膜硬度等の特性を有する光学薄
膜の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and is intended to manufacture an optical thin film having characteristics such as film hardness equivalent to a film formed by heating a substrate without heating the substrate. The aim is to provide a method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうち請求項1に記載の発明は、無機フッ化
物からなる膜原料を電子銃により蒸発させて蒸発粒子を
形成し、この蒸発粒子を、酸素、窒素、又は水素の中か
ら選ばれた1種以上のガスからなるプラズマ領域中を通
過させて、基板上に成膜することを特徴とする。
Means for Solving the Problems In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention comprises evaporating a film material comprising an inorganic fluoride by an electron gun to form evaporated particles. The vaporized particles are passed through a plasma region made of one or more gases selected from oxygen, nitrogen, or hydrogen to form a film on a substrate.

【0008】この発明において、膜原料を電子銃により
蒸発させる理由は、蒸発粒子の活性を高めるためであ
る。また、プラズマ領域中を通過させる理由は、プラズ
マ領域において蒸発粒子の活性種をイオン化してエネル
ギーを与えることで、基板加熱することなく、高硬度
で、且つ高密着性の薄膜を形成するためである。
In the present invention, the reason why the film material is evaporated by the electron gun is to increase the activity of the evaporated particles. Also, the reason for passing through the plasma region is to ionize the active species of the evaporating particles in the plasma region and apply energy to form a thin film having high hardness and high adhesion without heating the substrate. is there.

【0009】さらに、酸素、窒素、又は水素の中から選
ばれた1種以上のガスからなるプラズマ領域中を通過さ
せる理由は、プラズマ中で蒸発粒子が金属とフッ素に解
離するのことを防止し、膜の光吸収を低減するためであ
る。つまり、上記プラズマを従来のようにAr等の不活
性ガスプラズマとした場合には、プラズマ中で蒸発粒子
が金属とフッ素に解離してしまい、この解離した金属と
フッ素は基板上で再結合する確率が低いため、膜中のフ
ッ素が不足して光吸収を生じる。対して本発明の方法で
は解離を防止して光吸収を低減する。
Furthermore, the reason for passing through a plasma region consisting of one or more gases selected from oxygen, nitrogen or hydrogen is to prevent dissociation of evaporated particles into metal and fluorine in plasma. This is for reducing the light absorption of the film. In other words, if the plasma is an inert gas plasma such as Ar as in the prior art, the evaporated particles are dissociated into metal and fluorine in the plasma, and the dissociated metal and fluorine recombine on the substrate. Since the probability is low, light absorption occurs due to lack of fluorine in the film. In contrast, the method of the present invention prevents light dissociation and reduces light absorption.

【0010】請求項2に記載の発明は、無機フッ化物か
らなる膜原料を抵抗加熱により蒸発させて蒸発粒子を形
成し、この蒸発粒子を、水素又はヘリウムの少なくとも
一方を含む、酸素、窒素、又は水素の中から選ばれた1
種以上のガスからなるプラズマ領域中を通過させて、基
板上に成膜することを特徴とする。
According to a second aspect of the present invention, a film material made of an inorganic fluoride is evaporated by resistance heating to form evaporated particles, and the evaporated particles are formed of oxygen, nitrogen, at least one of hydrogen and helium. Or one selected from hydrogen
It is characterized in that a film is formed on a substrate by passing through a plasma region composed of at least one kind of gas.

【0011】この発明において、膜原料を抵抗加熱によ
り蒸発させる理由は、電子銃により蒸発させるよりも、
加熱された膜原料からの輻射熱が小さく、基板の温度上
昇を抑えることが可能となるためである。これは、耐熱
性の低い基板に成膜するときに特に有効である。
In the present invention, the reason for evaporating the film material by resistance heating is more than that of evaporating by a gun.
This is because the radiant heat from the heated film material is small, and the temperature rise of the substrate can be suppressed. This is particularly effective when forming a film on a substrate having low heat resistance.

【0012】また、プラズマ中に水素又はヘリウムの少
なくとも一方を含ませる理由は、蒸発粒子の活性をさら
に高めるためである。つまり請求項1に記載の発明のよ
うに電子銃により蒸発させた蒸発粒子に比べ、抵抗加熱
により蒸発させた蒸発粒子は活性が低い。それを補うた
めに、プラズマ中に水素又はヘリウムの少なくとも一方
を含ませている。なお、プラズマ領域中を通過させる理
由、および酸素、窒素、又は水素の中から選ばれた1種
以上のガスを用いてプラズマを形成する理由は、請求項
1に記載の発明と同じである。
The reason for including at least one of hydrogen and helium in the plasma is to further enhance the activity of the evaporated particles. That is, as compared with the vaporized particles vaporized by the electron gun as in the first aspect of the present invention, the vaporized particles vaporized by resistance heating have lower activity. To compensate for this, at least one of hydrogen and helium is included in the plasma. The reason for passing through the plasma region and the reason for forming plasma using at least one gas selected from oxygen, nitrogen and hydrogen are the same as those of the first aspect.

【0013】請求項3に記載の発明は、無機フッ化物か
らなる膜原料を、プラズマ発生手段により酸素、窒素、
又は水素の中から選ばれた1種以上のガスから発生させ
たプラズマにより加熱して蒸発粒子を形成し、この蒸発
粒子を、上記プラズマ領域中を通過させて、基板上に成
膜することを特徴とする。
According to a third aspect of the present invention, a film material comprising an inorganic fluoride is converted into oxygen, nitrogen,
Alternatively, heating by plasma generated from at least one gas selected from hydrogen to form evaporated particles, and passing the evaporated particles through the plasma region to form a film on a substrate. Features.

【0014】この発明のように、膜原料をプラズマによ
り加熱することによっても、活性の高い蒸発粒子を得る
ことができる。なお、プラズマ領域中を通過させる理
由、および酸素、窒素、又は水素の中から選ばれた1種
以上のガスを用いてプラズマを形成する理由は、請求項
1に記載の発明と同じである。
As in the present invention, highly active evaporated particles can be obtained also by heating the film material by plasma. The reason for passing through the plasma region and the reason for forming plasma using at least one gas selected from oxygen, nitrogen and hydrogen are the same as those of the first aspect.

【0015】請求項4に記載の発明は、無機フッ化物か
らなる膜原料をクラスター状になるように蒸発させて蒸
発粒子を形成し、この蒸発粒子を、酸素、窒素、又は水
素の中から選ばれた1種以上のガスを主成分とするプラ
ズマ領域中を通過させて、基板上に成膜することを特徴
とする。
According to a fourth aspect of the present invention, a film material comprising an inorganic fluoride is evaporated to form clusters to form evaporated particles, and the evaporated particles are selected from oxygen, nitrogen, and hydrogen. A film is formed on a substrate by passing through a plasma region containing one or more kinds of gases as a main component.

【0016】この発明において、膜原料をクラスター状
にするためには、小さいルツボの中で膜原料を蒸発さ
せ、ルツボ内部を比較的高い圧力にして小さい孔から吹
き出させることで可能となる。このクラスター状の蒸発
粒子は、103個程度の原子団であり、従来の方法で形
成した蒸発粒子よりもプラズマにさらされる表面積が小
さく、それだけプラズマ中で金属とフッ素に解離しにく
い。したがって、Ar等の不活性ガスが少量であればプ
ラズマ中に存在していても良い。但し、この量は経験的
には全圧の20%程度以下であり、やはり酸素、窒素、
水素の中から選ばれた1種以上のガスからなるプラズマ
の方が好ましい。
In the present invention, the film material can be made into a cluster by evaporating the film material in a small crucible and blowing the crucible from a small hole with a relatively high pressure. These evaporating particles in the form of clusters are composed of about 10 3 atomic groups, and have a smaller surface area exposed to plasma than the evaporating particles formed by the conventional method, and are less likely to dissociate into metal and fluorine in the plasma. Therefore, if a small amount of inert gas such as Ar may be present in the plasma. However, this amount is empirically less than about 20% of the total pressure.
Plasma composed of one or more gases selected from hydrogen is more preferable.

【0017】[0017]

【発明の実施の形態】以下に、図面を参照しつつ本発明
の具体的な実施の形態を説明する。 (実施の形態1)図1には、本発明の実施の形態1にお
ける成膜装置を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 shows a film forming apparatus according to Embodiment 1 of the present invention.

【0018】この成膜装置は、内部を減圧状態に維持可
能な真空槽としての真空チャンバー1と、基板2を保持
するために、上記真空チャンバー1の内部上面に設けた
基板ホルダー3と、膜原料4を収納するために、真空チ
ャンバー1内の下部に上記基板ホルダー3と対峙する状
態に配置した蒸発源であるモリブデンボートのハース5
と、上記膜原料4を加熱して蒸発させるための電子銃6
と、上記基板2とハース5との間にプラズマ領域を形成
するために、上記真空チャンバー1の内部中央に設けた
高周波コイル7と、上記真空チャンバー1内に所望のガ
スを導入するためのガス導入口8とを有する。上記高周
波コイル7は、プラズマ発生手段に該当する。
This film forming apparatus comprises: a vacuum chamber 1 as a vacuum chamber capable of maintaining the inside in a reduced pressure state; a substrate holder 3 provided on the upper surface of the vacuum chamber 1 for holding a substrate 2; A hearth 5 of a molybdenum boat, which is an evaporation source, is disposed in the lower portion of the vacuum chamber 1 so as to face the substrate holder 3 so as to store the raw material 4.
And an electron gun 6 for heating and evaporating the film material 4
A high-frequency coil 7 provided in the center of the vacuum chamber 1 to form a plasma region between the substrate 2 and the hearth 5; and a gas for introducing a desired gas into the vacuum chamber 1. And an inlet 8. The high-frequency coil 7 corresponds to a plasma generating unit.

【0019】次に、上記基板2としてはポリカーボネー
ト製のレンズを、上記膜原料4としては無機フッ化物の
うちMgF2を、上記ガスとしては酸素ガスをそれぞれ
用いて、レンズ上にMgF2の光学薄膜を成膜する方法
について説明する。
Next, a polycarbonate lens as the substrate 2, the MgF 2 of inorganic fluoride as the film material 4, as the gas with oxygen gas, respectively, optics MgF 2 on the lens A method for forming a thin film will be described.

【0020】基板ホルダー3に基板2であるレンズを取
り付け、不図示の真空ポンプにより真空チャンバー1内
部の排気を開始する。真空チャンバー1内の圧力が1×
10 -3Paに達したら、ガス導入口8から酸素ガスを真
空チャンバー1内に導入し、内部圧力を6×10-2Pa
に設定する。
The lens as the substrate 2 is mounted on the substrate holder 3.
And inside the vacuum chamber 1 by a vacuum pump (not shown).
Start exhausting the section. The pressure in the vacuum chamber 1 is 1 ×
10 -3When the pressure reaches Pa, the oxygen gas is removed from the gas inlet 8.
It is introduced into the empty chamber 1 and the internal pressure is 6 × 10-2Pa
Set to.

【0021】その後、高周波コイル7に対して、不図示
の高周波電源から13.56MHzの高周波を印加する
ことにより高周波コイル7の内部にプラズマを発生さ
せ、基板2と蒸発源であるハース5との間に酸素のプラ
ズマ領域を形成する。この状態で、ハース5にあらかじ
めセットされていた膜原料4であるMgF2を電子銃6
で加熱して蒸発させ、蒸発粒子を形成した。そして蒸発
粒子を、上記プラズマ領域中を通過させて、基板2の表
面に光学膜厚で130nmになるまで成膜を行った。
Thereafter, a high frequency power of 13.56 MHz is applied from a high frequency power supply (not shown) to the high frequency coil 7 to generate plasma inside the high frequency coil 7, and the plasma is generated between the substrate 2 and the hearth 5 as an evaporation source. An oxygen plasma region is formed therebetween. In this state, MgF 2 , which is the film raw material 4 previously set in the hearth 5, is supplied to the electron gun 6.
And evaporated to form evaporated particles. Then, the evaporated particles were passed through the above-mentioned plasma region, and a film was formed on the surface of the substrate 2 until the optical film thickness became 130 nm.

【0022】成膜した基板表面の反射率は波長520n
mに対し1%程度であった。また、成膜した基板2に対
して各種耐久試験を行った。耐久試験としては、セロハ
ンテープを成膜基板に密着させ、テープを基板2の表面
から垂直に一気に剥がし、膜の剥離状態を確認するテー
プ剥離試験、40℃、相対湿度90%の雰囲気に30時
間放置する高温高湿試験、成膜した基板2上に径1/8
インチのアルミナ・ボール圧子を25gの加圧力で20
回往復運動させ、傷の有無を確認する擦傷性試験を採用
した。
The reflectance of the surface of the substrate on which the film is formed has a wavelength of 520 n.
m was about 1%. Various durability tests were performed on the substrate 2 on which the film was formed. As a durability test, a cellophane tape is closely adhered to a film forming substrate, and the tape is peeled off at once from the surface of the substrate 2 at a stretch, and a tape peeling test for confirming a film peeling state is performed. High temperature and high humidity test to leave, 1/8 diameter on substrate 2 on which film was formed
20 inch inch alumina ball indenter with 25g pressing force
A reciprocating motion was performed, and an abrasion test for confirming the presence or absence of scratches was employed.

【0023】上記テープ剥離試験による膜密着性、高温
高湿試験の膜密着性、擦傷性試験による膜硬度評価を行
ったが、各試験結果は、ガラス基板を加熱して真空蒸着
法により成膜されたものと同等であった。また膜の光吸
収に関しても可視域で0.3%以下であり、まったく問
題のないレベルであった。
The film adhesion by the tape peeling test, the film adhesion by the high-temperature and high-humidity test, and the film hardness by the abrasion test were evaluated. The results of each test were obtained by heating the glass substrate and forming a film by the vacuum evaporation method. It was equivalent to what was done. Further, the light absorption of the film was 0.3% or less in the visible region, which was a level without any problem.

【0024】なお、酸素に代えて、窒素または水素を用
いても、これらの混合ガスを用いても、同様の結果が得
られた。また、MgF2に代えてAlF3、CaF2等の
無機フッ化物を用いても同様の結果が得られた。
Similar results were obtained by using nitrogen or hydrogen instead of oxygen or by using a mixed gas of these. Similar results were obtained by using an inorganic fluoride such as AlF 3 or CaF 2 instead of MgF 2 .

【0025】(実施の形態2)上記実施の形態1と同様
の方法で、基板2であるアモルファスポリオレフィン製
のプリズムの表面に、低屈折率膜であるMgF2と高屈
折率膜であるWO3とを組み合わせた5層構成の反射防
止膜を形成した。この膜構成を表1に示す。
(Embodiment 2) In the same manner as in Embodiment 1, on the surface of an amorphous polyolefin prism as the substrate 2, MgF 2 as a low refractive index film and WO 3 as a high refractive index film are formed. And a 5-layer antireflection film formed by combining the above. Table 1 shows the film configuration.

【0026】基板2上に形成した反射防止膜は、波長4
50nmから650nmの間での平均反射率が0.2%
以下であり、高性能な反射防止膜を形成することができ
た。また、上記実施の形態1と同様に、テープ剥離試験
による膜密着性、高温高湿試験の膜密着性、擦傷性試験
による膜硬度評価を行ったが、各試験結果は、基板加熱
して真空蒸着法により成膜されたものと同等であった。
また、膜の光吸収に関しても問題ないレベルであった。
The antireflection film formed on the substrate 2 has a wavelength of 4
0.2% average reflectance between 50 nm and 650 nm
As described below, a high-performance antireflection film could be formed. Further, in the same manner as in the first embodiment, the film adhesion by the tape peeling test, the film adhesion by the high temperature and high humidity test, and the film hardness by the abrasion test were evaluated. It was equivalent to the one formed by the vapor deposition method.
Further, the light absorption of the film was at a level without any problem.

【0027】[0027]

【表1】 [Table 1]

【0028】(実施の形態3)本実施の形態3で用いる
成膜装置は、図1の電子銃6による膜原料4の加熱を抵
抗加熱に変えたものである。基板2は、表示装置のカバ
ー等に用いるPMMA製の板とした。
(Embodiment 3) In the film forming apparatus used in Embodiment 3, heating of the film raw material 4 by the electron gun 6 in FIG. 1 is changed to resistance heating. The substrate 2 was a plate made of PMMA used for a cover or the like of a display device.

【0029】成膜を行うには、基板ホルダー3に基板2
であるPMMA製の板を取り付け、真空チャンバー1内
の排気を行う。その後、酸素と水素の混合ガス(圧力比
9:1)をガス導入口8から真空チャンバー1内に導入
し、内部圧力を3×10-2Paに設定する。
To form a film, the substrate 2 is placed on the substrate holder 3.
Is attached, and the inside of the vacuum chamber 1 is evacuated. Thereafter, a mixed gas of oxygen and hydrogen (pressure ratio: 9: 1) is introduced into the vacuum chamber 1 from the gas inlet 8 and the internal pressure is set to 3 × 10 −2 Pa.

【0030】その後、高周波コイル7により蒸発源であ
るハース5と基板2との間に混合ガスのプラズマ領域を
形成する。この状態で、ハース5であるモリブデンボー
トに予めセットされていた膜原料のMgF2を加熱して
蒸発させ、蒸発粒子を形成した。そして蒸発粒子を、上
記プラズマ領域中を通過させて、基板2上に光学膜厚で
130nmになるまで成膜を行った。
Thereafter, a plasma region of the mixed gas is formed between the substrate 5 and the hearth 5 as an evaporation source by the high frequency coil 7. In this state, MgF 2 as a film material previously set in the molybdenum boat as the hearth 5 was heated and evaporated to form evaporated particles. Then, the evaporated particles were passed through the above-mentioned plasma region to form a film on the substrate 2 until the optical film thickness became 130 nm.

【0031】成膜した基板表面の反射率は波長520n
mに対し1.2%程度であった。また、成膜した基板2
に対する耐久試験を上記実施の形態1と同様に行った
が、各試験とも良好な結果であった。膜の光吸収に関し
ても可視域で0.3%以下であり、まったく問題のない
レベルであった。
The reflectance of the surface of the substrate on which the film was formed was 520 n
m was about 1.2%. In addition, the substrate 2 on which the film is formed
Endurance tests were performed in the same manner as in the first embodiment, but each test showed good results. The light absorption of the film was 0.3% or less in the visible region, which was a level that was completely satisfactory.

【0032】なお、酸素と水素の混合ガスに代えて、酸
素とヘリウム、窒素と水素、窒素とヘリウム、水素とヘ
リウム、酸素と窒素と水素、酸素と窒素とヘリウム、酸
素と水素とヘリウム、窒素と水素とヘリウム、酸素と窒
素と水素とヘリウムの各混合ガス、又は単独の水素ガス
を用いても、いずれも同様の結果が得られた。酸素と窒
素を共に用いる場合には、市販の乾燥空気を使用する
と、入手性が容易でかつ低コストであるため、実用上有
益である。また、MgF2に代えてAlF3、CaF2
の無機フッ化物を用いても同様の結果が得られた。
Instead of the mixed gas of oxygen and hydrogen, oxygen and helium, nitrogen and hydrogen, nitrogen and helium, hydrogen and helium, oxygen and nitrogen and hydrogen, oxygen and nitrogen and helium, oxygen and hydrogen and helium, and nitrogen The same results were obtained by using a mixed gas of hydrogen, hydrogen and helium, oxygen, nitrogen, hydrogen and helium, or a single hydrogen gas. When both oxygen and nitrogen are used, commercially available dry air is practically useful because it is easily available and low in cost. Similar results were obtained by using an inorganic fluoride such as AlF 3 or CaF 2 instead of MgF 2 .

【0033】本実施の形態3によれば、抵抗加熱法を用
いて膜原料を蒸発させるので、輻射熱によって基板が加
熱されるのを低減でき、樹脂の中でも特に耐熱性の低い
PMMA上に耐久性の高い膜を形成することが出来た。
また、本手法を用いれば、熱変形のしやすいフィルム状
の樹脂基板にも耐久性の高いMgF2膜を形成すること
が可能である。
According to the third embodiment, since the film material is evaporated by using the resistance heating method, the substrate can be prevented from being heated by radiant heat. Was formed.
Also, by using this method, it is possible to form a highly durable MgF 2 film even on a film-like resin substrate that is easily deformed by heat.

【0034】さらに、同様の手法で、低屈折率膜である
MgF2と高屈折率膜であるTiO2とを組み合わせた5
層構成の反射防止膜を形成した場合には、波長450n
mから650nmの間での平均反射率が0.6%以下の
膜が得られ、より高性能な反射防止膜を形成することが
できた。
Further, in the same manner, a combination of MgF 2 as a low refractive index film and TiO 2 as a high refractive index film was used.
When an antireflection film having a layer structure is formed, a wavelength of 450 n
A film having an average reflectance of 0.6% or less between m and 650 nm was obtained, and a higher-performance antireflection film could be formed.

【0035】(実施の形態4)図2には、本発明の実施
の形態4における成膜装置を示す。この成膜装置は、内
部を減圧状態に維持可能な真空チャンバー11と、基板
12を保持するために、上記真空チャンバー11の内部
上面に設けた基板ホルダー13と、膜原料14を収納す
るために、真空チャンバー11内の下部に上記基板ホル
ダー13と対峙する状態に配置した蒸発源であるルツボ
15と、上記膜原料14を加熱して蒸発させるためのプ
ラズマを発生させるため、真空チャンバー11の壁面の
中間部に配置したプラズマ銃16と、このプラズマ銃1
6により発生させたプラズマを上記膜原料14に導くた
めの収束コイル17と、上記真空チャンバー11内に所
望のガスを導入するためのガス導入口18とを有する。
上記プラズマ銃16は、プラズマ発生手段に該当する。
(Embodiment 4) FIG. 2 shows a film forming apparatus according to Embodiment 4 of the present invention. This film forming apparatus includes a vacuum chamber 11 capable of maintaining the inside in a reduced pressure state, a substrate holder 13 provided on the upper surface of the vacuum chamber 11 for holding the substrate 12, and a film holder 14 for accommodating the film raw material 14. A crucible 15 as an evaporation source disposed in a lower portion of the vacuum chamber 11 so as to face the substrate holder 13; and a wall of the vacuum chamber 11 for generating plasma for heating and evaporating the film raw material 14. And a plasma gun 1 arranged in the middle of the plasma gun 1
It has a focusing coil 17 for guiding the plasma generated by 6 to the film raw material 14 and a gas inlet 18 for introducing a desired gas into the vacuum chamber 11.
The plasma gun 16 corresponds to a plasma generating means.

【0036】このプラズマ銃16は、内部に高周波コイ
ルを有し、この高周波コイルにより、その内部に導入し
たガスに対して放電を起こして、電子、イオン、ラジカ
ル等が混在したプラズマを発生させるものである。
The plasma gun 16 has a high-frequency coil inside, and the high-frequency coil causes a discharge of a gas introduced therein to generate a plasma in which electrons, ions, radicals, and the like are mixed. It is.

【0037】次に、上記基板12としてBK7の光学ガ
ラスを、上記膜原料14として無機フッ化物のうちMg
2を、上記ガスとして酸素ガスをそれぞれ用いて、ガ
ラス上にMgF2の光学薄膜を成膜する方法について説
明する。
Next, an optical glass of BK7 is used as the substrate 12, and Mg of inorganic fluoride is used as the film raw material 14.
A method of forming an optical thin film of MgF 2 on glass using F 2 as an oxygen gas as the above gas will be described.

【0038】基板ホルダー13に基板12であるガラス
を取り付け、不図示の真空ポンプにより真空チャンバー
11内部の排気を開始する。真空チャンバー11内の圧
力が7×10-4Paに達したら、ガス導入口18から酸
素ガスを真空チャンバー11内に導入し、内部圧力を7
×10-2Paに設定する。
The glass as the substrate 12 is mounted on the substrate holder 13, and the inside of the vacuum chamber 11 is evacuated by a vacuum pump (not shown). When the pressure in the vacuum chamber 11 reaches 7 × 10 −4 Pa, oxygen gas is introduced into the vacuum chamber 11 from the gas inlet 18 to reduce the internal pressure to 7 × 10 −4 Pa.
Set to × 10 -2 Pa.

【0039】その後、プラズマ銃16に酸素ガスを導入
しながら発生させたプラズマを、収束コイル17の作用
により偏向させてルツボ15の上方にプラズマ領域を形
成するとともに、そのプラズマをルツボ15内の膜原料
14に導く。このプラズマの熱により膜原料14を加熱
して蒸発させ、蒸発粒子を形成した。そして蒸発粒子
を、上記プラズマ領域中を通過させて、基板12の表面
に光学膜厚で130nmになるまで成膜を行った。
Thereafter, the plasma generated while introducing oxygen gas into the plasma gun 16 is deflected by the action of the focusing coil 17 to form a plasma region above the crucible 15, and the plasma is applied to the film in the crucible 15. Lead to raw material 14. The film material 14 was heated and evaporated by the heat of the plasma to form evaporated particles. Then, the evaporated particles were passed through the above-mentioned plasma region, and a film was formed on the surface of the substrate 12 until the optical film thickness became 130 nm.

【0040】成膜した基板表面の反射率は波長520n
mに対し1.2%程度であった。また、成膜した基板1
2に対する耐久試験を上記実施の形態1と同様に行った
が、各試験とも良好な結果であった。膜の光吸収に関し
ても可視域で0.1%以下であり、まったく問題のない
レベルであった。
The reflectivity of the surface of the formed substrate is 520 n
m was about 1.2%. In addition, the substrate 1 on which the film is formed
The durability test for No. 2 was performed in the same manner as in the first embodiment, but each test showed good results. The light absorption of the film was 0.1% or less in the visible light range, which was a level without any problem.

【0041】なお、酸素に代えて窒素、または水素を用
いても、これらの混合ガスを用いても、同様の結果が得
られた。また、MgF2に代えてAlF3、CaF2等の
無機フッ化物を用いても同様の結果が得られた。
Similar results were obtained when nitrogen or hydrogen was used instead of oxygen, or when these mixed gases were used. Similar results were obtained by using an inorganic fluoride such as AlF 3 or CaF 2 instead of MgF 2 .

【0042】本実施の形態4によれば、プラズマ銃16
により発生させたプラズマにより膜原料14を加熱する
ので、電子銃や抵抗加熱等の膜原料加熱手段が不要であ
るという利点がある。また、蒸発粒子は蒸発してすぐに
プラズマ領域19を通過することになるので、最も温度
の高い状態でプラズマにさらされることになるが、この
温度の高い状態が最もMgとFとに解離しにくいことか
ら、光吸収を低減するという観点からしても、本実施の
形態の手法は有効である。
According to the fourth embodiment, the plasma gun 16
Since the film material 14 is heated by the plasma generated by the method, there is an advantage that a film material heating means such as an electron gun or resistance heating is not required. Further, since the evaporated particles pass through the plasma region 19 immediately after being evaporated, they are exposed to the plasma at the highest temperature. However, this high temperature state is most dissociated into Mg and F. Therefore, the method of the present embodiment is effective from the viewpoint of reducing light absorption.

【0043】(実施の形態5)図3には、本発明の実施
の形態5における成膜装置を示す。この成膜装置は、内
部を減圧状態に維持可能な真空チャンバー21と、基板
22を保持するために、上記真空チャンバー21の内部
上面に設けた基板ホルダー23と、膜原料24を収納す
るために、真空チャンバー21内の下部に上記基板ホル
ダー23と対峙する状態に配置した蒸発源であるルツボ
25と、このルツボ25を介して上記膜原料24を加熱
する高周波コイル26と、真空チャンバー21の壁面の
中間部位置に対向配置した収束コイル27を有するプラ
ズマ銃28及び対向電極29と、上記真空チャンバー2
1内に所望のガスを導入するためのガス導入口30とを
有する。上記プラズマ銃28及び対向電極29は、プラ
ズマ発生手段に該当する。また、上記基板22と真空チ
ャンバー21とは電気的に絶縁されている。
(Embodiment 5) FIG. 3 shows a film forming apparatus according to Embodiment 5 of the present invention. This film forming apparatus includes a vacuum chamber 21 capable of maintaining the inside in a reduced pressure state, a substrate holder 23 provided on the upper surface of the inside of the vacuum chamber 21 for holding a substrate 22, and a film material 24 for accommodating a film raw material 24. A crucible 25 serving as an evaporation source disposed in a lower portion of the vacuum chamber 21 so as to face the substrate holder 23, a high-frequency coil 26 for heating the film material 24 via the crucible 25, and a wall surface of the vacuum chamber 21. A plasma gun 28 having a converging coil 27 and a counter electrode 29 opposed to each other at an intermediate position of the vacuum chamber 2
1 has a gas inlet 30 for introducing a desired gas. The plasma gun 28 and the counter electrode 29 correspond to plasma generating means. The substrate 22 and the vacuum chamber 21 are electrically insulated.

【0044】上記ルツボ25の上部には、加熱された膜
原料24によってルツボ25の内部圧力が高くなるよう
に、また蒸発粒子を吹き出させるための小さな孔31が
開いている。
At the top of the crucible 25, a small hole 31 is formed so that the internal pressure of the crucible 25 is increased by the heated film raw material 24 and also to blow out evaporated particles.

【0045】次に、上記基板22としてSF系の光学ガ
ラスからなるレンズを、上記膜原料24として無機フッ
化物のうちMgF2を、上記ガスとして酸素とアルゴン
の混合ガスをそれぞれ用いて、レンズ上にMgF2の光
学薄膜を成膜する方法について説明する。
Next, a lens made of SF-based optical glass was used as the substrate 22, MgF 2 of inorganic fluoride was used as the film raw material 24, and a mixed gas of oxygen and argon was used as the gas. A method for forming an optical thin film of MgF 2 will now be described.

【0046】基板ホルダー23に基板22であるレンズ
を取り付け、不図示の真空ポンプにより真空チャンバー
21内部の排気を開始する。真空チャンバー21内の圧
力が7×10-4Paに達したら、ガス導入口30から酸
素とアルゴンの混合ガス(圧力比8:2)を真空チャン
バー21内に導入し、内部圧力を4×10-2Paに設定
する。
The lens which is the substrate 22 is mounted on the substrate holder 23, and the inside of the vacuum chamber 21 is evacuated by a vacuum pump (not shown). When the pressure in the vacuum chamber 21 reaches 7 × 10 −4 Pa, a mixed gas of oxygen and argon (pressure ratio: 8: 2) is introduced into the vacuum chamber 21 from the gas inlet 30 to reduce the internal pressure to 4 × 10 −4 Pa. Set to -2 Pa.

【0047】その後、プラズマ銃28に酸素ガスを導入
しながらプラズマを発生させ、このプラズマを、高電圧
を印加している対向電極29に向けて放射し、基板22
と膜原料24を収納しているルツボ25との間にプラズ
マ領域32を形成する。この状態で、高周波コイル26
に高周波を印加することによりルツボ25を介して膜原
料24であるMgF2を加熱し、断熱膨張によりクラス
ター状になるように蒸発させて蒸発粒子を形成し、この
蒸発粒子を孔31から吹き出させる。
Thereafter, plasma is generated while introducing oxygen gas into the plasma gun 28, and this plasma is radiated toward the counter electrode 29 to which a high voltage is applied.
A plasma region 32 is formed between the film material 24 and the crucible 25 containing the film material 24. In this state, the high-frequency coil 26
The high frequency is applied to heat the MgF2, which is the film raw material 24, through the crucible 25 and evaporate it into a cluster by adiabatic expansion to form evaporated particles, and the evaporated particles are blown out from the holes 31.

【0048】そして、孔31から吹き出したクラスター
状の蒸発粒子により、基板22の表面に光学膜厚で13
0nmになるまで成膜を行った。成膜した基板表面の反
射率は波長520nmに対し1.2%程度であった。ま
た、成膜した基板22に対する耐久試験を上記実施の形
態1と同様に行ったが、各試験とも良好な結果であっ
た。膜の光吸収に関しても可視域で0.3%以下であ
り、まったく問題のないレベルであった。
The cluster-like evaporating particles blown out from the holes 31 cause the surface of the substrate 22 to have an optical thickness of 13 nm.
Film formation was performed until the thickness reached 0 nm. The reflectance of the surface of the substrate on which the film was formed was about 1.2% for a wavelength of 520 nm. In addition, a durability test was performed on the substrate 22 on which the film was formed in the same manner as in the first embodiment. The light absorption of the film was 0.3% or less in the visible region, which was a level that was completely satisfactory.

【0049】なお、導入するガスは酸素のみでも、また
酸素に代えて窒素や水素を用いても、それらの混合ガス
を用いても、同様の結果が得られた。また、MgF2
代えてAlF3、CaF2等でも同様の結果が得られた。
Similar results were obtained when the gas to be introduced was only oxygen, nitrogen or hydrogen was used in place of oxygen, or a mixed gas thereof was used. Similar results were obtained with AlF 3 , CaF 2, etc. instead of MgF 2 .

【0050】このような形態により実施される本発明
は、その他にも本発明の要旨を逸脱しない範囲で種々の
変形実施が可能である。MgF2等の無機フッ化物の場
合、得られる膜の屈折率は一般に低く、この薄膜は単層
でも十分な反射防止効果を有し、レンズやプリズム、光
ファイバー、眼鏡、サングラス、ゴーグル等の光学部
品、機器類、ブラウン管、液晶等の表示素子、各種窓
材、スクリーン等への反射防止膜として使用できるもの
である。また、高屈折率膜と組み合わせた多層構成にす
ることで、より高性能な反射防止膜、ハーフミラー、エ
ッジフィルター等の光学薄膜を形成することができる。
The present invention implemented in such a form can be variously modified without departing from the gist of the present invention. In the case of inorganic fluorides such as MgF 2, the refractive index of the obtained film is generally low, and this thin film has a sufficient antireflection effect even with a single layer, and optical components such as lenses, prisms, optical fibers, glasses, sunglasses, and goggles. It can be used as an antireflection film for devices, display devices such as cathode ray tubes and liquid crystals, various window materials, screens and the like. Further, by forming a multilayer structure in combination with a high refractive index film, it is possible to form an optical thin film such as an antireflection film, a half mirror, and an edge filter with higher performance.

【0051】なお、基板を必ずしも加熱する必要がない
ことから、本技術を適用できる材質についてはなんら制
限はない。光学ガラスや窓ガラス等のガラス類、PMM
Aやポリカーボネート、ポリオレフィン等の各種樹脂
類、その他金属、セラミックス等どのようなものにも適
用できる。基板の形状についても、板状、フィルム状、
球状など特に制限はない。
Since the substrate does not always need to be heated, there is no limitation on the material to which the present technology can be applied. Glasses such as optical glass and window glass, PMM
It can be applied to any resin such as A, polycarbonate, polyolefin, and other metals, ceramics and the like. Regarding the shape of the substrate, plate, film,
There is no particular limitation such as a spherical shape.

【0052】さらに、本発明の製造方法は、基板の材質
が耐熱性のものであれば、基板加熱した状態で行うこと
も可能である。以上、本発明の実施形態に基づいて説明
したが本明細書中には以下の発明が含まれる。すなわ
ち、 (1) 真空槽中で無機フッ化物からなる膜原料を電子
銃により蒸発させるとともに、この蒸発粒子を、プラズ
マ発生手段により蒸発源と成膜基板との間に形成され
た、酸素・窒素・水素の中から選ばれた1種以上のガス
からなるプラズマ領域中を通過させて、基板上に成膜す
ることを特徴とする光学薄膜の製造方法。 (2) 真空槽中で無機フッ化物からなる膜原料を抵抗
加熱により蒸発させるとともに、この蒸発粒子を、プラ
ズマ発生手段により蒸発源と成膜基板との間に形成され
た、酸素及び/または窒素と、水素またはヘリウムから
なるプラズマ領域中を通過させて、基板上に成膜するこ
とを特徴とする光学薄膜の製造方法。 (3) 真空槽中で無機フッ化物からなる膜原料をプラ
ズマ発生手段により発生させた酸素・窒素・水素の中か
ら選ばれた1種以上のガスからなるプラズマにより加熱
し蒸発させ、この蒸発粒子を、基板上に成膜することを
特徴とする光学薄膜の製造方法。 (4) 真空槽中で無機フッ化物からなる膜原料をクラ
スター状になるように蒸発させ、この蒸発粒子を、プラ
ズマ発生手段により発生された酸素・窒素・水素の中か
ら選ばれた1種以上のガスを主成分とするプラズマ領域
中を通過させて、基板上に成膜することを特徴とする光
学薄膜の製造方法。 (5) 無機フッ化物からなる膜原料を蒸発させて蒸発
粒子を形成し、この蒸発粒子を、窒素、又は水素の中か
ら選ばれた1種以上のガスからなるプラズマ領域中を通
過させて、基板上に成膜することを特徴とする薄膜の製
造方法。 (6) 上記無機フッ化物は、フッ化マグネシウムであ
る上記(1)〜(5)の薄膜の製造方法。
Further, the manufacturing method of the present invention can be carried out while the substrate is heated, as long as the material of the substrate is heat-resistant. As described above, the present invention has been described based on the embodiments, but the present invention includes the following inventions. That is, (1) a film material made of inorganic fluoride is evaporated by an electron gun in a vacuum chamber, and the evaporated particles are separated from oxygen / nitrogen formed between an evaporation source and a film forming substrate by a plasma generating means. -A method for producing an optical thin film, characterized in that a film is formed on a substrate by passing through a plasma region comprising at least one gas selected from hydrogen. (2) The film material made of inorganic fluoride is evaporated by resistance heating in a vacuum chamber, and the evaporated particles are separated from oxygen and / or nitrogen formed between the evaporation source and the film formation substrate by the plasma generating means. And forming a film on a substrate by passing through a plasma region made of hydrogen or helium. (3) In a vacuum chamber, the film material composed of inorganic fluoride is heated and evaporated by plasma composed of one or more gases selected from oxygen, nitrogen and hydrogen generated by the plasma generating means, and the evaporated particles Is formed on a substrate. (4) Evaporating the inorganic fluoride film material into clusters in a vacuum chamber and separating the evaporated particles from at least one selected from oxygen, nitrogen and hydrogen generated by the plasma generating means. A method for producing an optical thin film, comprising: forming a film on a substrate by passing through a plasma region mainly containing the above gas. (5) evaporating the film material composed of inorganic fluoride to form vaporized particles, and passing the vaporized particles through a plasma region composed of at least one gas selected from nitrogen or hydrogen; A method for producing a thin film, comprising forming a film on a substrate. (6) The method for producing a thin film according to any one of (1) to (5), wherein the inorganic fluoride is magnesium fluoride.

【0053】[0053]

【発明の効果】本発明によれば、基板加熱することな
く、基板加熱を行って成膜した膜と同等の膜硬度、耐久
性、光吸収等の特性を有する光学薄膜が得られる。ま
た、基板加熱を行わないので、基板材料に制限がなく、
従来無機フッ化物の成膜が困難とされていたプラスチッ
ク部品や高精度ガラス部品への成膜が可能となる。
According to the present invention, it is possible to obtain an optical thin film having characteristics such as film hardness, durability, and light absorption that are equivalent to those of a film formed by heating a substrate without heating the substrate. Also, since the substrate is not heated, there is no restriction on the substrate material,
It is possible to form a film on a plastic part or a high-precision glass part, for which it has been conventionally difficult to form a film of an inorganic fluoride.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1に係る成膜装置を示
す。
FIG. 1 shows a film forming apparatus according to Embodiment 1 of the present invention.

【図2】 本発明の実施の形態4に係る成膜装置を示
す。
FIG. 2 shows a film forming apparatus according to a fourth embodiment of the present invention.

【図3】 本発明の実施の形態5に係る成膜装置を示
す。
FIG. 3 shows a film forming apparatus according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 2 基板 3 基板ホルダー 4 膜原料 6 電子銃 7 高周波コイル DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Substrate 3 Substrate holder 4 Film raw material 6 Electron gun 7 High frequency coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高尾 潔 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ────────────────────────────────────────────────── ─── Continued on front page (72) Inventor Kiyoshi Takao 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無機フッ化物からなる膜原料を電子銃に
より蒸発させて蒸発粒子を形成し、この蒸発粒子を、酸
素、窒素、又は水素の中から選ばれた1種以上のガスか
らなるプラズマ領域中を通過させて、基板上に成膜する
ことを特徴とする光学薄膜の製造方法。
A film material comprising an inorganic fluoride is vaporized by an electron gun to form vaporized particles, and the vaporized particles are converted into a plasma comprising at least one gas selected from oxygen, nitrogen and hydrogen. A method for producing an optical thin film, comprising forming a film on a substrate by passing through an area.
【請求項2】 無機フッ化物からなる膜原料を抵抗加熱
により蒸発させて蒸発粒子を形成し、この蒸発粒子を、
水素又はヘリウムの少なくとも一方を含む、酸素、窒
素、又は水素の中から選ばれた1種以上のガスからなる
プラズマ領域中を通過させて、基板上に成膜することを
特徴とする光学薄膜の製造方法。
2. Evaporating particles of a film material made of an inorganic fluoride by resistance heating to form evaporated particles.
An optical thin film comprising a film formed on a substrate by passing through a plasma region comprising at least one gas selected from oxygen, nitrogen, and hydrogen, including at least one of hydrogen and helium; Production method.
【請求項3】 無機フッ化物からなる膜原料を、プラズ
マ発生手段により酸素、窒素、又は水素の中から選ばれ
た1種以上のガスから発生させたプラズマにより加熱し
て蒸発粒子を形成し、この蒸発粒子を、上記プラズマ領
域中を通過させて、基板上に成膜することを特徴とする
光学薄膜の製造方法。
3. A film material comprising an inorganic fluoride is heated by a plasma generated from one or more gases selected from oxygen, nitrogen or hydrogen by a plasma generating means to form evaporated particles. A method for producing an optical thin film, comprising passing the evaporated particles through the plasma region to form a film on a substrate.
【請求項4】 無機フッ化物からなる膜原料をクラスタ
ー状になるように蒸発させて蒸発粒子を形成し、この蒸
発粒子を、酸素、窒素、又は水素の中から選ばれた1種
以上のガスを主成分とするプラズマ領域中を通過させ
て、基板上に成膜することを特徴とする光学薄膜の製造
方法。
4. Evaporating the film material made of inorganic fluoride into clusters to form evaporated particles, and forming the evaporated particles into at least one gas selected from oxygen, nitrogen, and hydrogen. A method for producing an optical thin film, comprising: forming a film on a substrate by passing through a plasma region containing as a main component.
JP26910197A 1997-10-02 1997-10-02 Optical thin film manufacturing method Expired - Fee Related JP3987169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26910197A JP3987169B2 (en) 1997-10-02 1997-10-02 Optical thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26910197A JP3987169B2 (en) 1997-10-02 1997-10-02 Optical thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH11106899A true JPH11106899A (en) 1999-04-20
JP3987169B2 JP3987169B2 (en) 2007-10-03

Family

ID=17467690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26910197A Expired - Fee Related JP3987169B2 (en) 1997-10-02 1997-10-02 Optical thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP3987169B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498278B1 (en) * 2001-09-20 2005-07-01 가부시끼가이샤 히다치 세이사꾸쇼 Film Deposition Method and Film Deposition System for Depositing a Halogen Compound Film, and Magnesium Fluoride Film
KR100654518B1 (en) * 2001-09-20 2006-12-05 신메이와 인더스트리즈,리미티드 Optical System
JP2015501001A (en) * 2011-05-31 2015-01-08 コーニング インコーポレイテッド Durable MgO-MgF2 composite film for infrared antireflection coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375358A (en) * 1989-08-16 1991-03-29 Arubatsuku Seimaku Kk Formation of thin film of fluoride or its mixture by using plasma electron beam
JPH0961604A (en) * 1995-08-28 1997-03-07 Toyo Metallizing Co Ltd Plastic antireflection film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375358A (en) * 1989-08-16 1991-03-29 Arubatsuku Seimaku Kk Formation of thin film of fluoride or its mixture by using plasma electron beam
JPH0961604A (en) * 1995-08-28 1997-03-07 Toyo Metallizing Co Ltd Plastic antireflection film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498278B1 (en) * 2001-09-20 2005-07-01 가부시끼가이샤 히다치 세이사꾸쇼 Film Deposition Method and Film Deposition System for Depositing a Halogen Compound Film, and Magnesium Fluoride Film
KR100654518B1 (en) * 2001-09-20 2006-12-05 신메이와 인더스트리즈,리미티드 Optical System
US7223449B2 (en) 2001-09-20 2007-05-29 Shinmaywa Industries, Ltd. Film deposition method
JP2015501001A (en) * 2011-05-31 2015-01-08 コーニング インコーポレイテッド Durable MgO-MgF2 composite film for infrared antireflection coating
US9963773B2 (en) 2011-05-31 2018-05-08 Corning Incorporated Durable MgO—MgF2 composite film for infrared anti-reflection coatings

Also Published As

Publication number Publication date
JP3987169B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
KR100278135B1 (en) Method for manufacturing a reflection reducing coating on a lens and apparatus therefor
JP3808917B2 (en) Thin film manufacturing method and thin film
JP2010102157A (en) Optical article and method for manufacturing the same
JP2008180795A (en) Optical article and manufacturing method thereof
JP3987169B2 (en) Optical thin film manufacturing method
JPH11172421A (en) Production method and producing device of fluoride thin film
JP2009217018A (en) Optical article and method for manufacturing optical article
JP2010072636A (en) Optical article and method for manufacturing the same
JPH1036962A (en) Device for producing optical thin coating film and its production
JP2010072635A (en) Optical article and method for manufacturing the same
JP2002080970A (en) Method for producing optical article having antireflection layer
JP4556763B2 (en) Method for producing fluorine-based optical polymer film and reflection mirror for ultraviolet region
JP3933218B2 (en) Optical thin film manufacturing method and optical thin film
JPH0545503A (en) Optical element and production thereof
JPH08136703A (en) Film formation of antireflection film
JPH0827566A (en) Production of observation window of vacuum device
JPH1095638A (en) Coating structure, optical apparatus or element and their production
JPH09263936A (en) Production of thin film and thin film
JP3689923B2 (en) Method for producing plastic film having antireflection film
JP2001509198A (en) Process for modifying the surface of a substrate made from a polymer or copolymer containing a methacrylate component
JPH095502A (en) Formation of anti-reflection film
JPS58224169A (en) Method for forming thin film having refractive index distribution
JPH03162561A (en) Film formation to plastic substrate
JP3670697B2 (en) Optical thin film manufacturing method
JPH0961603A (en) Formation of antireflection film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees