JP4556763B2 - Method for producing fluorine-based optical polymer film and reflection mirror for ultraviolet region - Google Patents

Method for producing fluorine-based optical polymer film and reflection mirror for ultraviolet region Download PDF

Info

Publication number
JP4556763B2
JP4556763B2 JP2005138817A JP2005138817A JP4556763B2 JP 4556763 B2 JP4556763 B2 JP 4556763B2 JP 2005138817 A JP2005138817 A JP 2005138817A JP 2005138817 A JP2005138817 A JP 2005138817A JP 4556763 B2 JP4556763 B2 JP 4556763B2
Authority
JP
Japan
Prior art keywords
fluorine
film
based optical
gas
optical film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005138817A
Other languages
Japanese (ja)
Other versions
JP2006316306A (en
Inventor
亮 立野
邦宏 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005138817A priority Critical patent/JP4556763B2/en
Publication of JP2006316306A publication Critical patent/JP2006316306A/en
Application granted granted Critical
Publication of JP4556763B2 publication Critical patent/JP4556763B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、主に紫外域での使用に適したミラー、レンズ、プリズム、フィルタ等の光学要素の基材表面に適用する反射防止膜又は反射膜に関する。   The present invention relates to an antireflection film or a reflection film applied to the surface of a substrate of an optical element such as a mirror, a lens, a prism, and a filter that is mainly suitable for use in the ultraviolet region.

画像形成装置や投影露光装置において、線幅を小さくし、集積度を上げるために、より短波長の紫外光の使用が要望されている。このような装置の光学系には、特に紫外光に対する反射率や透過率を上昇させるため、金属膜や誘電体膜をコーティングすることが従来から行われている。これらのコーティングは、使用する光の波長や用途に応じてその膜厚や屈折率を適宜設計した上で行うが、その素材としては、紫外光の吸収が小さいことからフッ化マグネシウム(MgF2)やフッ化カルシウム(CaF2)等の金属フッ化物がよく用いられる。 In image forming apparatuses and projection exposure apparatuses, it is desired to use ultraviolet light having a shorter wavelength in order to reduce the line width and increase the degree of integration. Conventionally, an optical system of such an apparatus is coated with a metal film or a dielectric film in order to increase the reflectance and transmittance with respect to ultraviolet light. These coatings are performed after the film thickness and refractive index are appropriately designed according to the wavelength and application of the light used, but the material is magnesium fluoride (MgF 2 ) because of its low ultraviolet light absorption. And metal fluorides such as calcium fluoride (CaF 2 ) are often used.

これら金属フッ化物膜のコーティングには、従来、真空蒸着法、スパッタリング法、イオンプレーティング法等が用いられている(非特許文献1)。
"Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al", Juan I. Larruquert, Ritva A.M. Keski-Kuha, Optics Communications, 215 (2003) 93-99
Conventionally, a vacuum deposition method, a sputtering method, an ion plating method, or the like is used for coating these metal fluoride films (Non-Patent Document 1).
"Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al", Juan I. Larruquert, Ritva AM Keski-Kuha, Optics Communications, 215 (2003) 93-99

上記いずれの方法によっても、製造された金属フッ化物膜にはフッ素原子あるいはイオンの欠損(フッ素欠損)が生じ、それにより本来の材料特性からは生じ得ない光の吸収や散乱が生じる。このような吸収や散乱は可視域よりも紫外域において大きな問題となり、光学部品として利用できない場合も生ずる。   In any of the above methods, the metal fluoride film produced has a deficiency of fluorine atoms or ions (fluorine deficiency), thereby causing light absorption and scattering that cannot occur from the original material properties. Such absorption and scattering become a big problem in the ultraviolet region rather than the visible region, and may not be used as an optical component.

また、上記方法によるフッ化物膜の成膜は基材を加熱した状態で行うが、フッ化物膜と基材との熱膨張係数が大きく異なる場合、成膜後に冷却する際にそれぞれの収縮量に差が生じ、膜内に大きな応力が発生する。その結果、製造後のフッ化物膜と基材との密着性が悪くなったり、膜に亀裂が生じやすくなる等の問題もある。   In addition, the film formation of the fluoride film by the above method is performed in a state where the base material is heated. However, when the thermal expansion coefficients of the fluoride film and the base material are greatly different, the respective shrinkage amounts are reduced when cooling after the film formation. A difference occurs and a large stress is generated in the film. As a result, there are problems such as poor adhesion between the manufactured fluoride film and the substrate, and the film is likely to crack.

本発明は、フッ素欠損を極力抑制し、かつ、剥離等が生じにくい反射防止膜又は反射膜として機能するフッ素系光学重合膜の製造方法を提供する。   The present invention provides a method for producing a fluorine-based optical polymer film that functions as an antireflection film or a reflection film that suppresses fluorine deficiency as much as possible and hardly causes peeling.

上記課題を解決するために成された本発明に係るフッ素系光学膜の製造方法は、真空容器内にフッ素系ガスを導入した状態でRF電圧を印加して当該ガスをプラズマ化する工程と、前記真空容器内に配置された加熱蒸発源と基材を保持する処理台との間に直流電圧を印加する工程と、前記加熱蒸発源により金属フッ化物を気化及びイオン化する工程とを有し、これにより、前記基材の表面にフッ素系重合膜を形成することを特徴とする。 A method for producing a fluorine-based optical film according to the present invention made to solve the above-mentioned problems is a step of applying an RF voltage in a state where a fluorine-based gas is introduced into a vacuum vessel to convert the gas into plasma, A step of applying a direct-current voltage between a heating evaporation source disposed in the vacuum vessel and a processing stage holding a substrate, and a step of vaporizing and ionizing metal fluoride by the heating evaporation source, Thereby , a fluoropolymer film is formed on the surface of the substrate.

なお、前記フッ素系ガスに加えて、有機系ガスを導入してもよい。   In addition to the fluorine-based gas, an organic gas may be introduced.

本発明に係る光学膜は、その厚さを適切に設定することにより、レンズやプリズム、フィルターの表面にコーティングする反射防止膜として利用することもできるし、ミラーの表面にコーティングする反射膜として利用することもできる。   The optical film according to the present invention can be used as an antireflection film for coating on the surface of lenses, prisms, and filters by appropriately setting the thickness thereof, and can also be used as a reflection film for coating on the surface of mirrors. You can also

従って、本発明に係るフッ素系光学膜をコーティングする基材としては、レンズやプリズム、フィルターの場合には従来用いられている合成石英ガラスやフッ化カルシウム(CaF2)、フッ化リチウム(LiF)等のフッ化物単結晶等を使用することができ、ミラーの場合には同様に従来より用いられているアルミニウム等の金属を使用することができる。 Therefore, as a substrate for coating the fluorine-based optical film according to the present invention, in the case of lenses, prisms, and filters, conventionally used synthetic quartz glass, calcium fluoride (CaF 2 ), lithium fluoride (LiF) In the case of mirrors, conventionally used metals such as aluminum can be used as well.

光学膜の基本材料である金属フッ化物としては、なるべく低い屈折率を有するものが望ましく、フッ化マグネシウム(MgF2)、フッ化カルシウム(CaF2)、フッ化アルミニウム(AlF3)、フッ化リチウム(LiF)等が好適である。その中でも、MgF2は最も屈折率が低いため好適である。 The metal fluoride that is the basic material of the optical film preferably has a refractive index as low as possible. Magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), aluminum fluoride (AlF 3 ), lithium fluoride (LiF) or the like is preferable. Among these, MgF 2 is preferable because it has the lowest refractive index.

フッ素系ガスとしては、四フッ化炭素(CF4)やフルオロカーボン等の有機物、又はフッ素ガス(F 2 )や三フッ化窒素(NF3)等の無機物を用いることができる。 As the fluorine-based gas, an organic substance such as carbon tetrafluoride (CF 4 ) or fluorocarbon, or an inorganic substance such as fluorine gas (F 2 ) or nitrogen trifluoride (NF 3 ) can be used.

付加的に用いる有機系ガスとしては、ポリマーの前駆体となり得る不飽和の有機物、例えばエチレン(CH2=CH2)、プロピレン(CH3CH=CH2)等のアルケンを用いることができる。 As the organic gas used additionally, an unsaturated organic substance that can be a polymer precursor, for example, an alkene such as ethylene (CH 2 ═CH 2 ), propylene (CH 3 CH═CH 2 ), or the like can be used.

本発明の方法を用いることにより、フッ素欠損の非常に少ないフッ素系光学を製造することができ、一方、その膜の空間充填密度を小さくすることもできる。よって、成膜後の冷却時に膜内で発生する応力を小さくすることができ、光学膜の基材からの剥離を有効に防止することができる。また、従来の金属フッ化物膜よりも屈折率を小さくすることができるため、反射膜、反射防止膜のいずれの場合においても損失の少ない光学膜とすることができる。 By using the method of the present invention, it is possible to produce a fluorine-based optical film with very little fluorine deficiency, while reducing the space filling density of the film. Therefore, the stress generated in the film at the time of cooling after film formation can be reduced, and peeling of the optical film from the substrate can be effectively prevented. In addition, since the refractive index can be made smaller than that of a conventional metal fluoride film, an optical film with less loss can be obtained in either case of a reflection film or an antireflection film.

更に、付加的に有機系ガスを用いた場合には、さらに膜の空間充填密度を小さくし、屈折率をより低くすることができる。これにより、透過又は反射の際の損失を従来の金属フッ化物膜よりも抑えることができ、反射防止膜あるいは反射膜としてより好適に利用することができる。   Further, when an organic gas is additionally used, the space filling density of the film can be further reduced and the refractive index can be further reduced. Thereby, the loss at the time of permeation | transmission or reflection can be suppressed rather than the conventional metal fluoride film | membrane, and it can utilize more suitably as an antireflection film or a reflecting film.

本発明のフッ素系光学膜の製造方法を実施するための装置の一つの形態を図1を用いて説明する。図1は、複合式イオンプレーティング装置を示している。真空容器である処理室11内の上部には、被コーティング物を固定する処理台12が設けられ、それに対向する直下には、コーティング膜主剤を加熱するための加熱ボート13が設けられている。加熱ボート13には、高抵抗材料を用いた抵抗加熱法を採用することが望ましい。加熱ボート13と処理台12の間には、直流電圧を印加する直流電圧源DCが設けられており、処理台12と加熱ボート13の間にはプラズマ生成用のRF電極14が配置されている。   One embodiment of an apparatus for carrying out the method for producing a fluorine-based optical film of the present invention will be described with reference to FIG. FIG. 1 shows a composite ion plating apparatus. A processing table 12 for fixing an object to be coated is provided in the upper part of the processing chamber 11 which is a vacuum vessel, and a heating boat 13 for heating the coating film main agent is provided immediately below the processing table 12. It is desirable to employ a resistance heating method using a high resistance material for the heating boat 13. A DC voltage source DC for applying a DC voltage is provided between the heating boat 13 and the processing table 12, and a plasma generating RF electrode 14 is disposed between the processing table 12 and the heating boat 13. .

本装置を用いて凹面鏡の反射面のコーティング膜を作製する方法を次に説明する。被コーティング物であるガラス製凹面鏡Sの基材を、処理面を下にして処理台12の下面に固定する。なお、凹面鏡Sの表面には予めアルミニウム反射膜を形成しておく。ポンプPにより処理室11内を10-4Pa程度まで真空排気した後、四フッ化炭素(CF4)等のフッ素系ガスをガス導入口G1から処理室11内に導入する。また、必要に応じてエチレン(CH2=CH2)、メタン(CH4)等の有機系ガスをガス導入口G2から処理室11内に導入する。処理室11内の圧力が5×10-2Pa程度となったところでこれらのガス(反応ガス)の導入を停止する。 A method for producing a coating film on the reflecting surface of the concave mirror using this apparatus will now be described. The substrate of the glass concave mirror S that is the object to be coated is fixed to the lower surface of the processing table 12 with the processing surface facing down. An aluminum reflecting film is formed in advance on the surface of the concave mirror S. After the processing chamber 11 is evacuated to about 10 −4 Pa by the pump P, a fluorine-based gas such as carbon tetrafluoride (CF 4 ) is introduced into the processing chamber 11 from the gas inlet G1. Further, if necessary, an organic gas such as ethylene (CH 2 = CH 2 ), methane (CH 4 ) or the like is introduced into the processing chamber 11 from the gas inlet G2. When the pressure in the processing chamber 11 reaches about 5 × 10 −2 Pa, the introduction of these gases (reactive gases) is stopped.

次に、加熱ボート13を加熱することにより、そこに予め載置しておいたコーティング膜主剤であるフッ化マグネシウム(MgF2)を気化させる。加熱ボート13の温度が十分上昇した時点で、加熱ボート13と処理台12の間に約100VのDC電圧を印加するとともに、高周波電源RFからプラズマ発生用RF電極14に13.56MHz、約50Wの高周波電流を流す。このDC電圧の印加により、加熱ボート13と処理台12の間にはグロー放電が発生し、一方、プラズマ発生用RF電極14へのRF電力の投入により四フッ化炭素等の反応ガスがプラズマ化する。加熱により気化及びイオン化したフッ化マグネシウムはDC電圧により加速されて凹面鏡Sの反射面に膜を形成するが、その際、プラズマ化した反応ガスが膜生成に関与し、プラズマ重合反応が生じる。これにより、フッ素欠損が補われて原子的には緻密な膜が形成されるとともに、それよりもやや大きいスケールにおいて膜の充填率が低下するという効果が得られる。この原因の一つは次のようなプロセスによるものと考えられる。すなわち、フッ素系ガスや有機系ガスのモノマー分子はプラズマ中で一旦分解されるが、この分解物は活性化過程を経るため、膜内において生成されるプラズマ重合膜の高分子鎖を構成する原子配列は、モノマー分子の配列とは異なったものとなる。 Next, the heating boat 13 is heated to vaporize magnesium fluoride (MgF 2 ), which is a main component of the coating film previously placed thereon. When the temperature of the heating boat 13 rises sufficiently, a DC voltage of about 100 V is applied between the heating boat 13 and the processing table 12, and a high frequency of 13.56 MHz and about 50 W is applied from the high frequency power source RF to the plasma generating RF electrode 14. Apply current. By applying this DC voltage, glow discharge is generated between the heating boat 13 and the processing table 12, while the reaction gas such as carbon tetrafluoride is turned into plasma by applying RF power to the plasma generating RF electrode 14. To do. Magnesium fluoride vaporized and ionized by heating is accelerated by a DC voltage to form a film on the reflecting surface of the concave mirror S. At that time, a plasma reaction gas is involved in film formation, and a plasma polymerization reaction occurs. Thereby, fluorine deficiency is compensated to form an atomically dense film, and an effect that the filling rate of the film is reduced at a slightly larger scale can be obtained. One reason for this is thought to be due to the following process. That is, monomer molecules of fluorine-based gas and organic gas are once decomposed in plasma, but this decomposition product undergoes an activation process, and thus atoms constituting the polymer chain of the plasma polymerized film generated in the film. The sequence will be different from the sequence of the monomer molecules.

上記処理を予め定められた時間だけ継続することにより、凹面鏡Sの反射面上に所定の厚さのフッ素系重合膜から成る反射膜を形成することができる。   By continuing the above process for a predetermined time, a reflective film made of a fluorine-based polymer film having a predetermined thickness can be formed on the reflective surface of the concave mirror S.

本発明に係る方法で形成した光学膜は、上記のように充填率がやや低いため、処理後の冷却時に生じる内部応力が小さく、剥離や亀裂の発生が抑制される。また、従来の光学膜よりも屈折率が低いという特徴を有する。   Since the optical film formed by the method according to the present invention has a slightly low filling rate as described above, the internal stress generated during cooling after processing is small, and the occurrence of peeling and cracking is suppressed. Moreover, it has the characteristic that a refractive index is lower than the conventional optical film.

図2に、アルミ反射面に従来の方法で反射膜を形成した場合と本発明に係る方法で反射膜を形成した場合の計算による波長反射率の計算結果を示す。アルミ反射面のみの場合(Al)は全体として反射率が低く、400nm以下の短波長側で波をうっている(リップリング)。従来方法で150nmの厚さのMgF2(屈折率を1.38とした)膜を形成した場合(MgF2-150nm)は更に大きなリップリングが生じ、反射鏡として実際上用いることはできない。同じく従来方法で形成し、その厚さを50nmとしたMgF2膜(屈折率は同じく1.38)の場合(MgF2-50nm)、リップリングはかなり収まっているが、400nm以下の短波長において未だやや波をうっている。それに対し、本発明の方法により作成し、MgF2膜の屈折率を1.1として、厚さを50nmとした場合、リップリングは殆ど無くなるとともに、全体として反射率が向上している。 FIG. 2 shows the calculation results of the wavelength reflectance by calculation when the reflective film is formed on the aluminum reflecting surface by the conventional method and when the reflective film is formed by the method according to the present invention. In the case of only the aluminum reflecting surface (Al), the reflectance is low as a whole, and waves are generated on the short wavelength side of 400 nm or less (lip ring). When an MgF 2 film having a thickness of 150 nm (with a refractive index of 1.38) is formed by a conventional method (MgF 2 -150 nm), a larger lip ring is generated and cannot be used as a reflector. Similarly, in the case of an MgF 2 film formed by a conventional method and having a thickness of 50 nm (refractive index is also 1.38) (MgF 2 -50 nm), the lip ring is fairly small, but still slightly at short wavelengths of 400 nm or less. The waves are coming up. On the other hand, when the refractive index of the MgF 2 film prepared by the method of the present invention is 1.1 and the thickness is 50 nm, the lip ring is almost eliminated and the reflectance is improved as a whole.

本発明のフッ素系光学重合膜の製造方法の一実施態様である複合式イオンプレーティング装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the composite ion plating apparatus which is one embodiment of the manufacturing method of the fluorine-type optical polymer film of this invention. アルミ反射面に従来の方法と本発明の方法によりMgF2光学膜を生成した場合の波長反射率の計算結果の図。Figure calculation result of the wavelength reflectance when generating the MgF 2 optical film according to the method of conventional methods and the present invention the aluminum reflecting surface.

符号の説明Explanation of symbols

11…処理室(真空容器)
12…処理台
13…加熱ボート
14…プラズマ発生用RF電極
11 ... Processing chamber (vacuum container)
12 ... Processing table 13 ... Heating boat 14 ... RF electrode for plasma generation

Claims (4)

真空容器内にフッ素系ガスを導入した状態でRF電圧を印加して当該ガスをプラズマ化する工程と、
前記真空容器内に配置された加熱蒸発源と基材を保持する処理台との間に直流電圧を印加する工程と、
前記加熱蒸発源により金属フッ化物を気化及びイオン化する工程と、
を有し、
これにより、前記基材の表面にフッ素系重合膜を形成することを特徴とするフッ素系光学膜の製造方法。
A step of applying RF voltage in a state where a fluorine-based gas is introduced into a vacuum vessel to convert the gas into plasma;
Applying a DC voltage between a heating evaporation source disposed in the vacuum vessel and a processing stage holding the substrate;
Vaporizing and ionizing metal fluoride by the heating evaporation source;
Have
Thus, a method for producing a fluorine-based optical film , comprising forming a fluorine-based polymer film on the surface of the substrate.
前記フッ素系ガスに加えて、有機系ガスも導入することを特徴とする請求項1に記載のフッ素系光学膜の製造方法。   The method for producing a fluorine-based optical film according to claim 1, wherein an organic gas is also introduced in addition to the fluorine-based gas. 前記金属フッ化物がフッ化マグネシウムであることを特徴とする請求項1又は2に記載のフッ素系光学膜の製造方法。   The method for producing a fluorine-based optical film according to claim 1, wherein the metal fluoride is magnesium fluoride. 請求項1〜3のいずれかに記載の方法で製造されたフッ素系光学膜が反射面上にコーティングされていることを特徴とする紫外領域用反射ミラー。   A reflection mirror for an ultraviolet region, wherein the fluorine-based optical film produced by the method according to claim 1 is coated on a reflection surface.
JP2005138817A 2005-05-11 2005-05-11 Method for producing fluorine-based optical polymer film and reflection mirror for ultraviolet region Expired - Fee Related JP4556763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138817A JP4556763B2 (en) 2005-05-11 2005-05-11 Method for producing fluorine-based optical polymer film and reflection mirror for ultraviolet region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138817A JP4556763B2 (en) 2005-05-11 2005-05-11 Method for producing fluorine-based optical polymer film and reflection mirror for ultraviolet region

Publications (2)

Publication Number Publication Date
JP2006316306A JP2006316306A (en) 2006-11-24
JP4556763B2 true JP4556763B2 (en) 2010-10-06

Family

ID=37537235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138817A Expired - Fee Related JP4556763B2 (en) 2005-05-11 2005-05-11 Method for producing fluorine-based optical polymer film and reflection mirror for ultraviolet region

Country Status (1)

Country Link
JP (1) JP4556763B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111286700B (en) * 2020-03-18 2020-10-16 中国科学院上海光学精密机械研究所 Surface shape compensation method of optical coating element based on mixture single-layer film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295032A (en) * 2000-02-10 2001-10-26 Itochu Fine Chemical Corp Optical composite thin film deposition method and optical article using it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295032A (en) * 2000-02-10 2001-10-26 Itochu Fine Chemical Corp Optical composite thin film deposition method and optical article using it

Also Published As

Publication number Publication date
JP2006316306A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
US4096315A (en) Process for producing a well-adhered durable optical coating on an optical plastic substrate
JP3808917B2 (en) Thin film manufacturing method and thin film
JP3689524B2 (en) Aluminum oxide film and method for forming the same
JPH08220304A (en) Optical product, exposure device or optical system using same, and production thereof
JP2021047422A (en) Methods of forming optical system components
JP4434949B2 (en) Methods for obtaining thin, stable, fluorine-doped silica layers, the resulting thin layers, and their application in ophthalmic optics
CN109136840B (en) Preparation method of vacuum ultraviolet aluminum reflector
JP2009175729A (en) Antireflection plate and method for manufacturing antireflection structure thereof
JP4556763B2 (en) Method for producing fluorine-based optical polymer film and reflection mirror for ultraviolet region
JP7418098B2 (en) Method for forming optical multilayer film and method for manufacturing optical element
JPH11172421A (en) Production method and producing device of fluoride thin film
US7561611B2 (en) Extended-lifetime elements for excimer lasers
JP2009179866A (en) Method for producing reflection preventing film for ultraviolet wavelength region
Liao et al. Process for deposition of AlF 3 thin films
WO2015087534A1 (en) Optical multilayer coating, optical lens, and method of manufacturing optical multilayer coating
JP3608504B2 (en) Manufacturing method of optical component for infrared laser
JP3987169B2 (en) Optical thin film manufacturing method
JPH11223707A (en) Optical member and its production
JP3933218B2 (en) Optical thin film manufacturing method and optical thin film
Schulz et al. Plasma surface modification of PMMA for optical applications
JP2019007041A (en) Method for manufacturing optical element having fluoride film and method for manufacturing fluoride film
JPH0545503A (en) Optical element and production thereof
JP2001011602A (en) Thin fluoride film, its production, optical thin film and optical device
Liao et al. Optical and mechanical properties of AlF 3 films produced by pulse magnetron sputtering of Al targets with CF 4/O 2 gas
JP3880006B2 (en) Method for manufacturing optical article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R151 Written notification of patent or utility model registration

Ref document number: 4556763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees