JPH11106845A - Method for separating and recovering lead, tin and nickel from solder-containing nickel alloy - Google Patents
Method for separating and recovering lead, tin and nickel from solder-containing nickel alloyInfo
- Publication number
- JPH11106845A JPH11106845A JP27569797A JP27569797A JPH11106845A JP H11106845 A JPH11106845 A JP H11106845A JP 27569797 A JP27569797 A JP 27569797A JP 27569797 A JP27569797 A JP 27569797A JP H11106845 A JPH11106845 A JP H11106845A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- alloy
- nickel alloy
- ferrosilicon
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/82—Recycling of waste of electrical or electronic equipment [WEEE]
Landscapes
- Processing Of Solid Wastes (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ハンダ含有ニッケ
ル合金から乾式製錬法により、ハンダ成分のPb、Sn
およびNi成分を分離回収する方法に関する。[0001] The present invention relates to a method for producing solder components Pb and Sn from a nickel alloy containing solder by a dry smelting method.
And a method for separating and recovering Ni components.
【0002】[0002]
【従来の技術】本発明の対象となるハンダ含有ニッケル
合金は、例えば電子部品などのバレルメッキ時に発生す
るダミーボールのようにハンダ分とニッケル分が混合し
たようなスクラップであり、性状は、金属、合金あるい
は酸化物が混合したものであり、形態は、粉末、粒状あ
るいは塊状などがある。ハンダ含有ニッケル合金は、N
i−Sn系の合金、金属間化合物あるいは混合物であ
り、混合形態は、主に層状となっている。本明細書で
は、特に、メッキ時に発生したダミーボールについて説
明する。2. Description of the Related Art A solder-containing nickel alloy which is an object of the present invention is a scrap in which a solder component and a nickel component are mixed, such as a dummy ball generated at the time of barrel plating of an electronic component or the like. , Alloys or oxides, and may be in the form of powder, particles, or lump. The nickel alloy containing solder is N
It is an i-Sn-based alloy, intermetallic compound or mixture, and the mixed form is mainly layered. In this specification, a dummy ball generated during plating will be particularly described.
【0003】バレルメッキにおいては、セラミックある
いは有機体からなる電子部品の表面に導電性のメッキを
行うが、これらは、メッキの初期には電気を通さないの
で、大きさ0.1mmφ〜1mmφのFe製ボールを使
用する。このFe製ボールの表面にNiあるいはSnが
メッキ毎に積層してしだいに大きくなる。このようにF
e芯のまわりにNiとSn(あるいはPb)が交互に積
層したボールをダミーボールという。このダミーボール
は、通常1mm〜5mm程度に成長すると交換される
が、時には操業上の理由から10mm程度に成長するこ
とがある。交換されたダミーボールの代表的な品位を、
表1に示す。In the barrel plating, conductive plating is performed on the surface of an electronic component made of a ceramic or an organic material. However, these do not conduct electricity at the initial stage of plating, and therefore, a Fe plating having a size of 0.1 mm to 1 mm is used. Use balls made. Ni or Sn is laminated on the surface of the Fe ball for each plating, and gradually becomes larger. Thus F
A ball in which Ni and Sn (or Pb) are alternately stacked around the e-core is called a dummy ball. This dummy ball is usually replaced when it grows to about 1 mm to 5 mm, but sometimes grows to about 10 mm for operational reasons. The representative quality of the replaced dummy ball,
It is shown in Table 1.
【0004】[0004]
【表1】 [Table 1]
【0005】従来、これらのダミーボールは、NiとS
nの分離性が悪く、工場内に積み立て放置されていた。
しかし、電子部品の小型化にともない、ますます、メッ
キ作業が多くなり、工場内での積み立てにも限界があ
る。また、産業廃棄物の低減も社会の要請となってい
る。一方、NiおよびSnは、我が国では天然資源とし
て算出しないので、ほとんど全量海外から輸入している
貴重な資源である。従って、これらの金属のリサイクル
による資源の有効利用が望まれる。Conventionally, these dummy balls are made of Ni and S
n had poor separability and had been left standing in the factory.
However, with the miniaturization of electronic components, plating work is increasingly required, and there is a limit to the accumulation in a factory. Also, reduction of industrial waste has become a social demand. On the other hand, since Ni and Sn are not calculated as natural resources in Japan, almost all of them are valuable resources imported from overseas. Therefore, effective use of resources by recycling these metals is desired.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、ハン
ダ含有ニッケル合金から、PbとSnとNiの各成分を
分離回収し、産業廃棄物を低減すると共にリサイクルに
よる資源の有効利用を可能にする方法を提供することで
ある。SUMMARY OF THE INVENTION An object of the present invention is to separate and recover Pb, Sn and Ni components from a solder-containing nickel alloy, thereby reducing industrial waste and enabling effective use of resources by recycling. Is to provide a way to
【0007】[0007]
【課題を解決するための手段】本発明の方法は、ハンダ
含有ニッケル合金にフェロシリコンを添加し、1400
℃以上1600℃以下の温度に加熱、溶融することによ
り、Ni−Si−Fe系の合金と金属Snを分離回収す
る。このとき、窒素やアルゴンなどの不活性雰囲気で溶
融するのが好ましい。また、Ni−Si−Fe系合金中
のSi品位を25〜35重量%に制御するのが好まし
い。また、Si/Sn重量比を1.1〜1.4に制御す
るのが好ましい。そして、反応が十分に進んだ後、12
00℃〜1300℃に30分以上保持してから室温まで
冷却すると相分離しやすい。According to the method of the present invention, ferrosilicon is added to a solder-containing nickel alloy, and 1400 is added.
By heating and melting to a temperature of not lower than 1600 ° C. and higher, the Ni—Si—Fe-based alloy and metal Sn are separated and recovered. At this time, it is preferable to melt in an inert atmosphere such as nitrogen or argon. Further, it is preferable to control the Si quality in the Ni-Si-Fe alloy to 25 to 35% by weight. Further, it is preferable to control the Si / Sn weight ratio to 1.1 to 1.4. After the reaction has proceeded sufficiently, 12
When the temperature is kept at 00 ° C to 1300 ° C for 30 minutes or more and then cooled to room temperature, phase separation is easy.
【0008】なお、Pbは主に揮発物として分離され
る。[0008] Pb is mainly separated as a volatile substance.
【0009】[0009]
【発明の実施の形態】本発明では、ハンダ含有ニッケル
合金から乾式製錬法により、ハンダ成分のPbとSnと
Niの各成分を分離回収する。すなわち、Ni、Sn、
Siの化学的、熱力学的性質を組み合わせて安価で、簡
便な方法でNi−Si−Fe系合金とSnを分離回収す
る。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, Pb, Sn and Ni as solder components are separated and recovered from a nickel alloy containing solder by a dry smelting method. That is, Ni, Sn,
By combining the chemical and thermodynamic properties of Si, a Ni-Si-Fe-based alloy and Sn are separated and recovered by a simple and inexpensive method.
【0010】本発明では、溶融処理を行う。これは、N
i−Sn系ではいくつかの金属間化合物が存在し、例え
ば、溶離、すなわち融点および比重差などを利用した物
理的分離では、加熱中にNiとSnが合金を生成し、N
i−Snの分離が難しいからである。In the present invention, a melting process is performed. This is N
There are some intermetallic compounds in the i-Sn system. For example, in elution, that is, in physical separation using a melting point and a specific gravity difference, Ni and Sn form an alloy during heating, and N
This is because it is difficult to separate i-Sn.
【0011】Ni−Si系の状態図によれば、いくつか
のNi−Si系金属間化合物が知られている。そして、
本発明者らが行ったNi−Si−Snの三成分系の溶解
試験結果によれば、Siが5重量%〜50重量%の領域
では、NiとSiの親和力がNiとSnの親和力より大
きいことがわかった。According to the Ni-Si phase diagram, several Ni-Si intermetallic compounds are known. And
According to the dissolution test results of the ternary system of Ni—Si—Sn performed by the present inventors, in the region where Si is 5% by weight to 50% by weight, the affinity between Ni and Si is larger than the affinity between Ni and Sn. I understand.
【0012】なお、Sn−Si系の状態図からは、室温
での固相状態ではSiとSnの溶解度はほとんどない。From the Sn-Si phase diagram, there is almost no solubility of Si and Sn in the solid state at room temperature.
【0013】このように各系の熱力学的な性質から、N
i−Sn合金にSiを添加すれば、NiとSiが強力に
化合し、Snが遊離してくる。本発明は、このような親
和力の差を利用する。Thus, from the thermodynamic properties of each system, N
If Si is added to the i-Sn alloy, Ni and Si are strongly combined to release Sn. The present invention utilizes such a difference in affinity.
【0014】Ni−Sn合金に添加するSi源として
は、金属Siやフェロシリコンが入手可能である。例え
ば、金属Siは半導体のスクラップから回収され、フェ
ロシリコンは通常のフェロシリコンメーカーからの入手
が可能である。As the Si source to be added to the Ni—Sn alloy, metallic Si and ferrosilicon are available. For example, metallic Si is recovered from semiconductor scrap, and ferrosilicon is available from ordinary ferrosilicon manufacturers.
【0015】このようにSi源を添加することにより、
ハンダ含有ニッケル合金から乾式製錬法により、Pb、
SnおよびNiの各成分を分離回収する方法について
は、フェロシリコン添加法として本出願人がすでに出願
しているが、本発明ではコストを下げた回収方法を提供
する。By adding the Si source in this way,
Pb, from a solder-containing nickel alloy by dry smelting
The present applicant has already filed a method for separating and recovering Sn and Ni components as a ferrosilicon addition method, but the present invention provides a recovery method with reduced cost.
【0016】フェロシリコンにより熔融還元処理を行う
場合は、好適な態様では、不活性雰囲気内で1400℃
以上1600℃以下の温度に加熱し、Ni−Si−Fe
系合金中のSi品位を25〜35重量%に制御すること
により、あるいはSi/Sn重量比を1.1〜1.4に
制御することにより、Snが5%以下のNi−Si−F
e系合金が得られ、金属Snを溶離により回収できる。In the case of performing the smelting reduction treatment with ferrosilicon, in a preferred embodiment, the temperature is 1400 ° C. in an inert atmosphere.
Is heated to a temperature of at least 1600 ° C.
By controlling the Si grade in the base alloy to 25 to 35% by weight or controlling the Si / Sn weight ratio to 1.1 to 1.4, Ni-Si-F having Sn of 5% or less is obtained.
An e-based alloy is obtained, and metal Sn can be recovered by elution.
【0017】[0017]
[実施例1]図1に示されるフローシートにより、実施
例を説明する。[Embodiment 1] An embodiment will be described with reference to a flow sheet shown in FIG.
【0018】ハンダ含有ニッケル合金450gに、Si
源としてフェロシリコン200gを添加、十分に混合
し、黒鉛ルツボに装入し、高周波誘導加熱炉で溶融し
た。雰囲気はN2 ガスによる不活性雰囲気とし、温度は
1400℃で、30分保持し、溶融することにより、ハ
ンダ含有ニッケル合金とフェロシリコーンを十分に反応
させた後、1200℃で30分間保持した後、室温まで
冷却し、相分離を行った。表2に、ハンダ含有ニッケル
合金とフェロシリコンの品位と物量を示す。To 450 g of the solder-containing nickel alloy, add Si
200 g of ferrosilicon was added as a source, mixed well, charged into a graphite crucible, and melted in a high frequency induction heating furnace. The atmosphere was an inert atmosphere of N 2 gas, the temperature was maintained at 1400 ° C. for 30 minutes, and after melting, the solder-containing nickel alloy and the ferrosilicon were sufficiently reacted, and then maintained at 1200 ° C. for 30 minutes. Then, the mixture was cooled to room temperature, and the phases were separated. Table 2 shows the quality and quantity of the solder-containing nickel alloy and ferrosilicon.
【0019】[0019]
【表2】 [Table 2]
【0020】[0020]
【表3】 [Table 3]
【0021】生成物として表3に示すように低Sn品位
のNi−Si−Fe系合金と高位の金属Snが回収され
た。なお、各相の分析はICP法によった。As shown in Table 3, a low Sn grade Ni-Si-Fe alloy and a high metal Sn were recovered as products. The analysis of each phase was performed by the ICP method.
【0022】表4(装入および溶解条件)および表5
(産出)に、各種条件により行った実施例2〜13を合
わせて示す。Table 4 (Charging and dissolution conditions) and Table 5
(Production) also shows Examples 2 to 13 performed under various conditions.
【0023】Ni−Si−Fe相中のSi品位が27重
量%〜32重量%にかけて高くなるほどSn品位が低く
なる傾向がある。なお、Ni−Si−Fe相中のSn品
位を低く保つためには、該合金中のSi品位を25〜3
5重量%、あるいはSi/Sn重量比を1.1〜1.4
に制御することが好ましい。As the Si grade in the Ni-Si-Fe phase increases from 27% to 32% by weight, the Sn grade tends to decrease. In order to keep the Sn quality in the Ni-Si-Fe phase low, the Si quality in the alloy should be 25 to 3%.
5% by weight, or an Si / Sn weight ratio of 1.1 to 1.4
Is preferably controlled.
【0024】[0024]
【表4】 [Table 4]
【0025】[0025]
【表5】 [Table 5]
【0026】[比較例1〜2]実施例1と同様にして、
表4を示す条件で溶融した後、1200℃にて5分間
(比較例1)および10分間(比較例2)保持した後、
室温まで冷却した。表5に示すように、Ni−Si−F
e相のSn品位が高かった。[Comparative Examples 1-2] In the same manner as in Example 1,
After melting under the conditions shown in Table 4, after holding at 1200 ° C. for 5 minutes (Comparative Example 1) and 10 minutes (Comparative Example 2),
Cooled to room temperature. As shown in Table 5, Ni-Si-F
The Sn grade of the e-phase was high.
【0027】[比較例3、4]溶融温度を1350℃
(比較例3)および1300℃(比較例4)とした以外
は、実施例1と同様にして、表7に示す条件で溶融し
た。表5に示すように、Ni−Si−Fe相のSn品位
が高かった。[Comparative Examples 3 and 4] Melting temperature was 1350 ° C.
Melting was performed under the conditions shown in Table 7 in the same manner as in Example 1 except that (Comparative Example 3) and 1300 ° C. (Comparative Example 4) were used. As shown in Table 5, the Sn grade of the Ni-Si-Fe phase was high.
【0028】[比較例5]実施例1と同様にして、14
00℃〜1600℃の温度に30分保持して溶融した
後、炉内冷却でなく、溶融物を鋳型にて急冷した。しか
しNi−Si−Fe相とSn相の分離は困難だった。[Comparative Example 5]
After melting at a temperature of 00 ° C. to 1600 ° C. for 30 minutes, the melt was quenched in a mold instead of in a furnace. However, it was difficult to separate the Ni-Si-Fe phase and the Sn phase.
【0029】[0029]
【発明の効果】本発明により、ハンダ含有ニッケル合金
から、ハンダ成分のPb、SnおよびNiの各成分を分
離回収可能となり、リサイクルによる資源の有効利用と
産業廃棄物の低減が可能となった。According to the present invention, it is possible to separate and recover the solder components Pb, Sn and Ni from the solder-containing nickel alloy, and it is possible to effectively use resources by recycling and reduce industrial waste.
【図1】 ダミーボール(ハンダ含有ニッケル合金)に
おけるPb、Sn、Niの分離回収のフローシート。FIG. 1 is a flow sheet for separating and recovering Pb, Sn, and Ni in a dummy ball (a solder-containing nickel alloy).
Claims (4)
ッケル合金にフェロシリコンを添加し、1400℃以上
1600℃以下の温度で溶融することにより、Ni−S
i−Fe系の合金と金属Snを分離回収する方法。A ferrosilicon is added to a solder-containing nickel alloy in an inert atmosphere and melted at a temperature of not less than 1400 ° C. and not more than 1600 ° C. to obtain Ni—S
A method for separating and recovering an i-Fe alloy and metal Sn.
5〜35重量%に制御する請求項1記載の方法。2. The Ni-Si-Fe alloy has a Si grade of 2
2. The method according to claim 1, wherein the amount is controlled at 5 to 35% by weight.
を1.1〜1.4に制御する請求項1記載の方法。3. The method according to claim 1, wherein the Si / Sn ratio of the Ni—Si—Fe-based alloy is controlled to 1.1 to 1.4.
300℃以下の温度に保持して相分離を行う請求項1記
載の方法。4. In order to separate and collect, at least 1200 ° C.
The method according to claim 1, wherein the phase separation is performed while maintaining the temperature at 300 ° C or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27569797A JPH11106845A (en) | 1997-10-08 | 1997-10-08 | Method for separating and recovering lead, tin and nickel from solder-containing nickel alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27569797A JPH11106845A (en) | 1997-10-08 | 1997-10-08 | Method for separating and recovering lead, tin and nickel from solder-containing nickel alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11106845A true JPH11106845A (en) | 1999-04-20 |
Family
ID=17559107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27569797A Pending JPH11106845A (en) | 1997-10-08 | 1997-10-08 | Method for separating and recovering lead, tin and nickel from solder-containing nickel alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11106845A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007013433A1 (en) * | 2005-07-26 | 2007-02-01 | Nihon Superior Sha Co., Ltd. | METHOD OF DEPOSITING COPPER IN LEAD-FREE SOLDER, METHOD OF GRANULATING (CuX)6Sn5 COMPOUND AND METHOD OF SEPARATING THE SAME, AND METHOD OF RECOVERING TIN |
CN106282574A (en) * | 2016-08-25 | 2017-01-04 | 安徽华铂再生资源科技有限公司 | Reviver electrolysis anode sludge low smelting heat technique |
-
1997
- 1997-10-08 JP JP27569797A patent/JPH11106845A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007013433A1 (en) * | 2005-07-26 | 2007-02-01 | Nihon Superior Sha Co., Ltd. | METHOD OF DEPOSITING COPPER IN LEAD-FREE SOLDER, METHOD OF GRANULATING (CuX)6Sn5 COMPOUND AND METHOD OF SEPARATING THE SAME, AND METHOD OF RECOVERING TIN |
US7591873B2 (en) | 2005-07-26 | 2009-09-22 | Nihon Superior Sha Co., Ltd. | Method of copper precipitation in lead-free solder, granulation and separation of (CuX)6Sn5 compounds and recovery of tin |
US8163061B2 (en) | 2005-07-26 | 2012-04-24 | Nihon Superior Sha Co., Ltd. | Method of copper precipitation in lead-free solder, granulation and separation of (CuX)6Sn5 compounds and recovery of tin |
JP5006787B2 (en) * | 2005-07-26 | 2012-08-22 | 株式会社日本スペリア社 | Method for depositing copper in lead-free solder, method for granulating and separating (CuX) 6Sn5-based compound, and method for recovering tin |
CN106282574A (en) * | 2016-08-25 | 2017-01-04 | 安徽华铂再生资源科技有限公司 | Reviver electrolysis anode sludge low smelting heat technique |
CN106282574B (en) * | 2016-08-25 | 2018-07-24 | 安徽华铂再生资源科技有限公司 | Reviver electrolysis anode sludge low smelting heat technique |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7376590B2 (en) | Process for recovery of lithium | |
JPS6046346A (en) | Neodymium alloy and manufacture | |
KR101029368B1 (en) | Manufacturing method of ferro molybdenum from molybdenite | |
EP3215646A2 (en) | Processes for producing low nitrogen, essentially nitride-free chromuim and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys | |
CN110643845A (en) | Tungsten-copper composite material and preparation method thereof | |
JPH11106845A (en) | Method for separating and recovering lead, tin and nickel from solder-containing nickel alloy | |
WO2001066809A1 (en) | Chromium-containing metal and method for producing the same | |
JPWO2005068669A1 (en) | Slag fuming method | |
JPS61106461A (en) | Manufacture of aluminum oxynitride refractories | |
CN110592455A (en) | Preparation method of copper-tungsten alloy and copper-tungsten alloy prepared by same | |
JPS60155633A (en) | Manufacture of magnesium | |
JPH11106846A (en) | Method for separating and recovering lead, tin and nickel from solder-containing nickel alloy | |
US1089773A (en) | Method of making titanium and other alloys. | |
JP4525453B2 (en) | Slag fuming method | |
CN109280786B (en) | Aluminum-tungsten intermediate alloy and production method thereof | |
CN113430398A (en) | JCr 98-grade chromium metal containing vanadium element and preparation method thereof | |
JP5092615B2 (en) | Slag fuming method | |
JPH06279894A (en) | Copper alloy excellent in strength and electrical conductivity | |
JP2016191120A (en) | Non-ferrous smelting slag treatment method | |
SE424744B (en) | PROCEDURE FOR MANUFACTURING OF OUTDOOR METALS AND ALLOYS THEREOF | |
JP2000054009A (en) | Production of alloy powder and production of thermoelement using it | |
JPH08225816A (en) | Method of briquetting pre-reduced high-temperature iron ore particle for producing iron ingot | |
JP3292060B2 (en) | Deoxygenation method of scandium metal | |
RU2340694C2 (en) | Method for aluminathermic receiving of carbon-bearing ligature for alloying of titanium alloy | |
US3685985A (en) | Method for the removal of impurities from metallic zinc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050329 |