JPH11106466A - Production of phenolic resin-based flame-retardant self hardening resin - Google Patents

Production of phenolic resin-based flame-retardant self hardening resin

Info

Publication number
JPH11106466A
JPH11106466A JP27573097A JP27573097A JPH11106466A JP H11106466 A JPH11106466 A JP H11106466A JP 27573097 A JP27573097 A JP 27573097A JP 27573097 A JP27573097 A JP 27573097A JP H11106466 A JPH11106466 A JP H11106466A
Authority
JP
Japan
Prior art keywords
resin
solvent
reaction
flame
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27573097A
Other languages
Japanese (ja)
Inventor
Ken Nanaumi
憲 七海
Kiyoshi Hirozawa
清 広沢
Minoru Kakiya
稔 垣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27573097A priority Critical patent/JPH11106466A/en
Publication of JPH11106466A publication Critical patent/JPH11106466A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily produce the subject flame-retardant resin containing no halogen element by reacting a phenolic compound with an aldehyde and an aromatic amine in a solvent, and subsequently reacting the reaction product with an phosphoric acid ester. SOLUTION: This resin is obtained by reacting (A) a phenolic compound (e.g. phenol) with (B) an aldehyde (e.g. paraformaldehyde) and (C) an aromatic amine (e.g. 4,4'-diaminodiphenylmethane) preferably in (D) an alcoholic solvent (e.g. methanol), and subsequently adding (E) a phosphoric acid ester (e.g. triphenyl phosphate) to the reaction mixture and reacting them with each other. Concretely, into the D component are added the component B and the component A, and a part or the whole of the components A and B is dissolved. Subsequently, the reaction mixture is cooled to <=70 deg.C, then the component C is added, and the reaction is continued at the refluxing temperature. When it reaches a specific getting time, the reaction mixture is concentrated under reduced pressure to remove the component D, water, etc. During this process, the component E is added, and it is made to react with the reaction mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、印刷回路板や多層
印刷回路板等に用いられる積層板、半導体封止材などの
エレクトロニクス用材料に最適なハロゲン元素を含まな
い難燃性、耐熱性を有する熱硬化性樹脂であるフェノー
ル樹脂系難燃性自硬化性樹脂の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame-retardant and heat-resistant material which does not contain a halogen element and which is most suitable for electronic materials such as laminates used for printed circuit boards and multilayer printed circuit boards and semiconductor encapsulants. The present invention relates to a method for producing a phenol resin-based flame-retardant self-curing resin which is a thermosetting resin having the same.

【0002】[0002]

【従来の技術】フェノール樹脂は、フェノール類とホル
ムアルデヒドとを塩基性あるいは酸性触媒の存在下に反
応させて合成する樹脂であり、一般には、塩基性触媒下
では、自硬化性のレゾール型フェノール樹脂、酸性触媒
の存在下では、熱可塑性のノボラック型フェノール樹脂
が得られる。ノボラック型フェノール樹脂は、それ自身
だけでは硬化せず、ヘキサメチレンテトラミンなどの硬
化剤が必要である。これらのフェノール樹脂は、硬化時
に水やホルムアルデヒド、アンモニアなどの低分子量の
ガスを発生させる欠点がある。
2. Description of the Related Art A phenol resin is a resin synthesized by reacting a phenol with formaldehyde in the presence of a basic or acidic catalyst. Generally, a self-curing resol type phenol resin is used under a basic catalyst. In the presence of an acidic catalyst, a thermoplastic novolak-type phenol resin is obtained. The novolak-type phenol resin does not cure by itself, but requires a curing agent such as hexamethylenetetramine. These phenolic resins have the disadvantage of generating low molecular weight gases such as water, formaldehyde, and ammonia during curing.

【0003】[0003]

【発明が解決しようとする課題】硬化時に低分子量のガ
スを発生させるフェノール樹脂に対し、重合可能で低分
子化合物を副生成しないフェノール樹脂として、特開昭
49−47378号公報に開示されている、ホルムアル
デヒドと第一ジアミンとフェノールから合成されるオキ
サジン環を有する樹脂がある。この樹脂は、前述した欠
点がなく良好な性能を示すが、この特許で開示されてい
る方法は、合成した樹脂を単離することが困難であっ
た。すなわち、反応系には、ホルマリン源から発生する
ホルムアルデヒド、フェノール類、芳香族アミン類およ
びホルムアルデヒドから重縮合反応で生成する水分があ
り、反応系内から水分や未反応成分を除去する必要があ
る。通常は、減圧下に加熱して、これら未反応成分と水
分を一緒に系外に留去する方法が採られている。
Japanese Patent Application Laid-Open No. 49-47378 discloses a phenol resin which is polymerizable and does not produce by-products of a low-molecular compound with respect to a phenol resin which generates a low-molecular gas at the time of curing. And resins having an oxazine ring synthesized from formaldehyde, primary diamine and phenol. Although this resin has good performance without the above-mentioned disadvantages, it is difficult to isolate the synthesized resin by the method disclosed in this patent. That is, the reaction system contains water produced by a polycondensation reaction from formaldehyde, phenols, aromatic amines and formaldehyde generated from a formalin source, and it is necessary to remove water and unreacted components from the reaction system. Usually, a method is employed in which the unreacted components and moisture are distilled out together with the system by heating under reduced pressure.

【0004】しかし、これらの減圧留去は、反応系を加
熱しながら行っているため重縮合反応は進行し高分子量
化してくる。このようになると系内の樹脂の溶融粘度は
上昇し、場合によっては撹拌が不可能になったり、でき
た樹脂を系外に取り出して次工程に進めることが困難に
なったり、あるいは収量が減ったりする。そのため、減
圧留去の際は、このようなことが起こらないようにしな
ければならず、温度、粘度管理など細心の注意を要しプ
ロセスを複雑化させ、得られる樹脂のコストアップの要
因となっていた。近年、環境汚染や毒性の面から材料に
使用されるハロゲン化物の規制が高まってきている。中
でも、ダイオキシン等の有機ハロゲン物質の毒性が問題
となっておりハロゲン含有物質の低減、削除が強く求め
られている。しかし、使用中の安全性の確保から使用さ
れる材料には、難燃性が求められる。フェノール樹脂
は、比較的燃えにくい樹脂であるがフェノール樹脂単独
では、UL規格の難燃性V−0を満足することは困難で
あり、ハロゲン元素を全く含まないで難燃性を満足させ
るためには、さらに非ハロゲン系の難燃剤を添加する必
要があった。しかし、これらの添加は、耐溶剤性や耐熱
性等の特性を劣化させてしまう。本発明は、ハロゲン元
素を含まない難燃性樹脂で、しかも合成することが容易
な難燃性樹脂の製造方法を提供することを目的にした。
However, since these vacuum distillations are carried out while heating the reaction system, the polycondensation reaction proceeds to increase the molecular weight. In this case, the melt viscosity of the resin in the system increases, and in some cases, stirring becomes impossible, it is difficult to take out the formed resin out of the system and proceed to the next step, or the yield decreases. Or For this reason, when distilling under reduced pressure, it is necessary to prevent this from happening, which requires careful attention such as temperature and viscosity control, complicates the process, and increases the cost of the obtained resin. I was In recent years, regulations on halides used in materials have been increasing from the viewpoint of environmental pollution and toxicity. Above all, toxicity of organic halogen substances such as dioxin has become a problem, and reduction and elimination of halogen-containing substances have been strongly demanded. However, in order to ensure safety during use, materials used are required to have flame retardancy. A phenol resin is a resin that is relatively inflammable, but it is difficult to satisfy the UL standard flame retardancy V-0 with a phenol resin alone. In order to satisfy the flame retardancy without containing any halogen element, Required the addition of a non-halogen flame retardant. However, these additions deteriorate properties such as solvent resistance and heat resistance. An object of the present invention is to provide a method for producing a flame-retardant resin which is a flame-retardant resin containing no halogen element and which can be easily synthesized.

【0005】[0005]

【課題を解決するための手段】本発明は、フェノール
類、アルデヒド類、第1級アミンを反応させて得られる
オキサジン環を含むフェノール樹脂系自硬化性樹脂の製
造方法において、溶剤中でフェノール類、アルデヒド類
及び芳香族アミン類を反応させ、反応液を得た後、リン
酸エステル類を配合し更に反応させるフェノール樹脂系
難燃性自硬化性樹脂の製造方法である。そして、リン酸
エステル類を配合する時期は、溶剤中でフェノール類、
アルデヒド類及び芳香族アミン類を反応させ、反応液を
減圧化に濃縮し、溶剤、未反応成分及び縮合反応で生成
した水を系外に除去する際に配合すると好ましいフェノ
ール樹脂系難燃性自硬化性樹脂の製造方法である。ま
た、本発明は、この樹脂の製造時に使用する溶剤がアル
コール系溶剤であり、アルコール系溶剤が、メタノー
ル、エタノール、n−、i−プロパノール、n−、i
−、t−ブタノールの中から選ばれる少なくとも1種類
以上であると好ましいものである。更に、本発明では、
アルデヒド類が、92重量%以上のホルムアルデヒドの
含有量であるパラホルムを用い、芳香族アミン類が、
4,4’−ジアミノジフェニルメタンであると好ましい
フェノール樹脂系難燃性自硬化性樹脂の製造方法であ
る。
SUMMARY OF THE INVENTION The present invention provides a method for producing a phenolic resin-based self-curable resin containing an oxazine ring obtained by reacting phenols, aldehydes and primary amines. This is a method for producing a phenolic resin-based flame-retardant self-curing resin in which a phenol resin-based flame-retardant resin is prepared by reacting a phenol, an aldehyde and an aromatic amine to obtain a reaction solution, and then mixing and reacting a phosphoric ester. And when to mix phosphates, phenols,
A phenolic resin-based flame-retardant resin is preferably used when the aldehydes and aromatic amines are reacted, the reaction solution is concentrated under reduced pressure, and the solvent, unreacted components and water generated by the condensation reaction are added to the system when it is removed from the system. This is a method for producing a curable resin. In the present invention, the solvent used in the production of the resin is an alcohol solvent, and the alcohol solvent is methanol, ethanol, n-, i-propanol, n-, i
It is preferable that at least one selected from-and t-butanol is used. Further, in the present invention,
The aldehydes are paraforms having a formaldehyde content of 92% by weight or more, and the aromatic amines are
4,4'-diaminodiphenylmethane is a method for producing a phenol resin-based flame-retardant self-curable resin which is preferable.

【0006】[0006]

【発明の実施の形態】本発明者等は、前述のフェノール
類、アルデヒド類、第一級アミンを反応させて得られる
オキサジン環を有する変性フェノール樹脂系自硬化性樹
脂の反応生成物の粘度を低下させて製造プロセスを簡略
化でき、その上、難燃性を改良できる手段として、リン
酸エステル類を配合し、脱水、脱溶剤等を行う減圧下に
おける濃縮工程でオキサジン環を有する変性フェノール
樹脂とリン酸エステル類を反応させることにより上記目
的を達成できることを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have investigated the viscosity of the reaction product of a modified phenolic resin-based self-curable resin having an oxazine ring obtained by reacting the above-mentioned phenols, aldehydes and primary amines. A modified phenol resin having an oxazine ring in a concentration step under reduced pressure in which a phosphate ester is blended, and dehydration, desolvation, etc. is performed as a means for improving the flame retardancy by lowering the production process. It has been found that the above object can be achieved by reacting the compound with a phosphoric acid ester.

【0007】本発明は、芳香族モノアミン類または芳香
族ジアミン類とフェノール類とアルデヒド類から脱水縮
合して生成する水以外にはできるだけ水分が反応系内に
少ない状態で反応させることが、オキサジン環を有する
ポリマの合成に都合がよく、系内の水分を少なくするた
め、ホルムアルデヒド源として、ホルマリンよりもパラ
ホルムを使用することがより好ましいものである。脱水
縮合反応により生成した水およびホルムアルデヒド源に
含まれていた水分は、前述したように通常減圧下加熱し
て除去される。しかし、加熱脱水、脱溶剤工程中に重縮
合反応が進行し、高分子化と同時に粘度の上昇が起こ
る。粘度が上昇すれば、撹拌が困難になったり、時には
攪拌能力の不足や攪拌羽根に樹脂がからみついて攪拌が
不可能となる。また、合成釜から樹脂を取り出すのが困
難となり、時間がかかり、反応釜から取り出した初期の
段階の樹脂と最後の段階の樹脂では性能が異なることが
あり、ひいては製品のばらつきを生じさせる原因とな
る。本発明者等は、減圧下での粘度上昇と難燃性と製品
安定化を図るために、リン酸エステルを添加しながら、
濃縮すると上記の欠点が解消されることが分かり、本発
明に達した。
According to the present invention, an oxazine ring is provided which comprises reacting an aromatic monoamine or aromatic diamine in a reaction system with as little water as possible other than water produced by dehydration condensation from a phenol and an aldehyde. It is more preferable to use paraform than formalin as a formaldehyde source in order to reduce the water content in the system, which is convenient for the synthesis of a polymer having The water generated by the dehydration condensation reaction and the water contained in the formaldehyde source are usually removed by heating under reduced pressure as described above. However, the polycondensation reaction proceeds during the heating dehydration and solvent removal steps, and the viscosity increases simultaneously with the polymerization. When the viscosity increases, stirring becomes difficult, sometimes the stirring ability is insufficient, and the resin sticks to the stirring blade, and stirring becomes impossible. In addition, it becomes difficult to take out the resin from the synthesis kettle, it takes time, and the performance may be different between the resin at the initial stage and the resin at the last stage taken out from the reaction kettle, which may cause variations in products. Become. The present inventors, while adding a phosphate ester, in order to increase viscosity under reduced pressure, flame retardancy and product stability,
It was found that the above-mentioned disadvantages were eliminated by concentration, and the present invention was reached.

【0008】本発明は、溶剤を用いてアルデヒド類とフ
ェノール類の一部あるいは全部を溶解し、その後、反応
系の温度を70℃以下にして、芳香族モノアミン類また
は芳香族ジアミン類を発熱反応による温度上昇を抑制し
ながら添加する。添加終了後、還流温度で反応を継続す
る。そして、所定のゲル化時間になったところで反応終
点とする。樹脂と溶剤が二層に分離した場合は、できる
だけ濃縮をやりやすくするため、溶剤層をデカンテーシ
ョンやポンプで汲み出してから減圧下、脱水濃縮したほ
うが効率的である。そして、リン酸エステルを添加し
て、減圧濃縮する。
In the present invention, a part or all of aldehydes and phenols are dissolved using a solvent, and then the temperature of the reaction system is reduced to 70 ° C. or lower, and an aromatic monoamine or aromatic diamine is exothermically reacted. While increasing the temperature rise due to the above. After completion of the addition, the reaction is continued at the reflux temperature. Then, the reaction end point is reached when a predetermined gel time has elapsed. When the resin and the solvent are separated into two layers, in order to facilitate concentration, it is more efficient to decant and concentrate the solvent layer under reduced pressure after pumping out the solvent layer by decantation or a pump. Then, a phosphate ester is added and the mixture is concentrated under reduced pressure.

【0009】本発明で使用するフェノール類は、フェノ
ール、o−,m−,p−クレゾール、キシレノール、ノ
ニルフェノール、p−,t−ブチルフェノール、オクチ
ルフェノールなど一価のフェノール類およびビスフェノ
ール−A、ビスフェノール−Fなどの二価フェノール類
やノボラック型フェノール樹脂などの多価フェノール類
が例示できる。
The phenols used in the present invention include monophenols such as phenol, o-, m-, p-cresol, xylenol, nonylphenol, p-, t-butylphenol and octylphenol, and bisphenol-A and bisphenol-F. And polyhydric phenols such as novolak type phenol resin.

【0010】アルデヒド類は、ホルマリン、パラホルム
があげられ、パラホルムが好ましい。パラホルムは、8
0重量%以上のホルムアルデヒド濃度のもの、特に92
重量%以上の濃度のものが好ましい。
The aldehydes include formalin and paraform, with paraform being preferred. Paraholm is 8
With a formaldehyde concentration of 0% by weight or more, especially 92%
Those having a concentration of not less than% by weight are preferred.

【0011】芳香族モノアミン類は、アニリン、トルイ
ジンなどがあげられ、芳香族ジアミン類には、mーフェ
ニレンジアミン、p−フェニレンジアミン、4,4’−
ジアミノジフェニルメタン、4,4’−ジアミノジフェ
ニルエーテル、4,4’−ジアミノジフェニルスルホ
ン、2,2−ビス〔(4−アミノフェノキシ)フェニ
ル〕プロパンなどが挙げられる。この中で4,4’−ジ
アミノジフェニルメタンが反応性、耐熱性等のバランス
に優れており、好適である。
The aromatic monoamines include aniline and toluidine, and the aromatic diamines include m-phenylenediamine, p-phenylenediamine, 4,4'-
Examples thereof include diaminodiphenylmethane, 4,4'-diaminodiphenylether, 4,4'-diaminodiphenylsulfone, and 2,2-bis [(4-aminophenoxy) phenyl] propane. Among them, 4,4'-diaminodiphenylmethane is preferable because of its excellent balance of reactivity, heat resistance and the like.

【0012】反応に用いられる溶剤には、芳香族炭化水
素系溶剤、ケトン系溶剤、アルコール系溶剤、エーテル
系溶剤、塩素系溶剤など使用することができ、特に制限
するものではないが、特にアルコール系溶剤を用いると
アルデヒド類との親和性が良く好ましい。アルコール系
溶剤として、メタノール、エタノール、n−プロパノー
ル、i−プロパノール、n−ブタノール、i−ブタノー
ル、t−ブタノールなどが挙げられる。特に、メタノー
ルが価格、パラホルムとの親和性から好ましい。
As the solvent used in the reaction, there can be used an aromatic hydrocarbon solvent, a ketone solvent, an alcohol solvent, an ether solvent, a chlorinated solvent, and the like. The use of a system solvent is preferred because it has a good affinity for aldehydes. Examples of the alcohol solvent include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol and the like. Particularly, methanol is preferable from the viewpoint of price and affinity with paraform.

【0013】リン酸エステルとしては、トリフェニルホ
スフェート、トリクレジルホスフェート、クレジルジフ
ェニルホスフェート、キシレルジフェニルフォスフェー
ト、CR−757、CR−733S、CR−741、C
R−747、PX−200(以上、大八化学工業株式会
社製商品名)などが挙げられる。低分子のトリフェニル
ホスフェート、クレジルジフェニルホスフェートが粘
度、溶解性がいいことから好ましい。
Examples of the phosphoric ester include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, xylerdiphenyl phosphate, CR-757, CR-733S, CR-741, C-741
R-747, PX-200 (all trade names, manufactured by Daihachi Chemical Industry Co., Ltd.) and the like. Low molecular triphenyl phosphate and cresyl diphenyl phosphate are preferred because of their good viscosity and solubility.

【0014】反応条件は、溶剤中にアルデヒド類とフェ
ノール類を溶解ないし懸濁させた後、芳香族モノアミン
類または芳香族ジアミン類を添加する。芳香族アミン類
の添加は、反応系の温度を20℃〜90℃で行うのが好
ましい。20℃未満では、芳香族アミン類およびアルデ
ヒド類が溶解しないままに反応が進み、未反応のアルデ
ヒド類、芳香族アミン類が反応系内に残り樹脂として好
ましくない。また、90℃を超えると、部分的に反応が
進み、均一な樹脂が得られないおそれがある。使用する
溶剤の量は、アルデヒド類の量の0.5倍〜2.0倍、
特に1.0〜1.5倍が好ましい。0.5倍未満では、
アルデヒド類の未溶解部分が多くなり均一に反応しにく
くなるため樹脂中に未反応の原料が残る。また、2.0
倍を超えると、減圧濃縮時に溶剤を除去するのに多くの
時間を要し廃棄物量が多くなりコストが上昇するなど好
ましくない。
The reaction conditions are as follows: aldehydes and phenols are dissolved or suspended in a solvent, and then aromatic monoamines or aromatic diamines are added. The addition of aromatic amines is preferably performed at a reaction system temperature of 20 ° C to 90 ° C. If the temperature is lower than 20 ° C., the reaction proceeds without dissolving the aromatic amines and aldehydes, and unreacted aldehydes and aromatic amines remain in the reaction system, which is not preferable as a resin. On the other hand, when the temperature exceeds 90 ° C., the reaction partially proceeds, and a uniform resin may not be obtained. The amount of the solvent used is 0.5 to 2.0 times the amount of the aldehyde,
In particular, it is preferably 1.0 to 1.5 times. If less than 0.5 times,
The unreacted raw materials remain in the resin because the undissolved portions of the aldehydes increase to make it difficult to react uniformly. Also, 2.0
If it exceeds twice, it takes a lot of time to remove the solvent at the time of concentration under reduced pressure, the amount of waste increases, and the cost increases, which is not preferable.

【0015】リン酸エステル類の使用量は、特に制限は
ないが、フェノール類と芳香族アミン類の総和を100
重量部として5〜50重量部が適当である。5重量部未
満では、粘度低下の効果が小さく、50重量部を超える
と重縮合反応が進みにくくなり反応時間が長くなる。反
応系内は使用した溶剤量によっては樹脂層と溶剤層に分
離する。分離した場合は、フェノール類、アルデヒド類
及び芳香族アミン類との反応で副生成した水分の除去、
減圧下の濃縮行程を簡単にするため溶剤層をデカンテー
ションやポンプで汲み上げて樹脂層だけにしてリン酸エ
ステル類を添加するのが効率的である。もし分離しない
場合は、反応終了後の反応液に、リン酸エステル類を添
加して減圧下に濃縮して減圧留去操作を行い濃縮する。
The amount of the phosphoric acid ester used is not particularly limited, but the total amount of phenols and aromatic amines is 100%.
5 to 50 parts by weight are appropriate as parts by weight. If the amount is less than 5 parts by weight, the effect of lowering the viscosity is small, and if it exceeds 50 parts by weight, the polycondensation reaction hardly proceeds and the reaction time becomes long. The reaction system is separated into a resin layer and a solvent layer depending on the amount of the solvent used. If separated, removal of water by-products from the reaction with phenols, aldehydes and aromatic amines,
In order to simplify the concentration process under reduced pressure, it is efficient to pump up the solvent layer with a decanter or a pump to make only the resin layer and to add phosphate esters. If separation does not occur, phosphoric acid esters are added to the reaction solution after completion of the reaction, concentrated under reduced pressure, and concentrated under reduced pressure.

【0016】リン酸エステル類の共存下に濃縮すると、
オキサジン環を有する樹脂の高分子量化が抑制されて、
粘度の上昇が少なく、反応物を釜から取り出すのが容易
となる。また、リン酸エステル類が有する難燃性のため
合成したオキサジン環含有樹脂のフェノール樹脂系難燃
性自硬化性樹脂の難燃性が向上し、ハロゲン原子なしで
十分に難燃性を示す樹脂を提供することができる。
When concentrated in the presence of phosphates,
High molecular weight of the resin having an oxazine ring is suppressed,
The increase in viscosity is small, and it is easy to remove the reactants from the kettle. In addition, the flame retardancy of phosphoric acid esters has improved the flame retardancy of the phenolic resin-based flame-retardant self-curing resin of the oxazine ring-containing resin synthesized, and the resin shows sufficient flame retardancy without halogen atoms. Can be provided.

【0017】本発明によるフェノール樹脂系難燃性自硬
化性樹脂は、従来のフェノール樹脂とは異なり、硬化時
に水が副生成することがないので、難燃性、耐熱性を必
要とする種々の分野に応用することができる。たとえ
ば、ガラス布積層板や封止材などのエレクトロニクス分
野、成型材料、摩擦材などの結合材分野に応用すること
ができる。以下に実施例を示し本発明をさらに具体的に
説明する。
The phenolic resin flame-retardant self-curing resin according to the present invention is different from the conventional phenolic resin in that water is not produced as a by-product during curing. Can be applied to the field. For example, the present invention can be applied to the field of electronics such as glass cloth laminates and sealing materials, and the field of binders such as molding materials and friction materials. Hereinafter, the present invention will be described more specifically with reference to Examples.

【0018】[0018]

【実施例】【Example】

(実施例1)温度計、撹拌機、冷却器を備えた5リット
ルのフラスコに、フェノール940g(10モル)、メ
タノール900ml、92重量%含有パラホルム652
g(20モル)をいれ、加熱還流して、パラホルムをフ
ェノールに懸濁した。懸濁液が50℃になったら、4,
4’−ジアミノジフェニルメタン990g(5モル)を
分割して添加した。添加終了後、反応温度を上昇させ、
還流した。反応液は乳化を示し乳化してから反応を2時
間継続した。反応終了後、トリフェニルホスフェート1
50gを添加して減圧下に、溶剤および副生成した水を
留去した。反応の終点は、160℃の熱板上でのゲル化
時間が5分になった時点とした。反応終了後、フラスコ
からテフロンコートした金属性バットに反応生成物を注
入し、放冷後、粉砕して樹脂粉末を得た。上記で得られ
た樹脂粉末50gをメチルエチルケトン(MEK)25
gに溶解しワニスを作製した。そのワニスを離型剤処理
したポリエチレンテレフタレート(PET)フィルムに
塗布し、乾燥機で加熱し、溶剤を揮散させB−ステージ
状態の樹脂を作製した。この樹脂をPETフィルムから
剥離し、ステンレス鏡板に載せた50mm×50mmに
くりぬいたテフロン製の型枠でつくったキャビティに所
定量入れ、さらにステンレス鏡板を重ね、170℃、9
0分間、40Kg/cm2の条件で加熱加圧して厚さ
1.5mmの樹脂板を作製した。樹脂板のガラス転移温
度は、粘弾性法で測定したところ148℃であった。難
燃性は、UL−94の試験法で、V−0を示した。
Example 1 Paraform 652 containing 940 g (10 mol) of phenol, 900 ml of methanol and 92% by weight was placed in a 5-liter flask equipped with a thermometer, a stirrer and a condenser.
g (20 mol) was added and heated under reflux to suspend paraform in phenol. When the suspension reaches 50 ° C,
990 g (5 mol) of 4'-diaminodiphenylmethane were added in portions. After the addition is completed, raise the reaction temperature,
Refluxed. The reaction liquid showed emulsification, and the reaction was continued for 2 hours after emulsification. After the completion of the reaction, triphenyl phosphate 1
After adding 50 g, the solvent and by-product water were distilled off under reduced pressure. The end point of the reaction was the time when the gel time on a hot plate at 160 ° C. became 5 minutes. After completion of the reaction, the reaction product was poured from the flask into a metal vat coated with Teflon, allowed to cool, and then crushed to obtain a resin powder. 50 g of the resin powder obtained above was added to methyl ethyl ketone (MEK) 25
g to prepare a varnish. The varnish was applied to a polyethylene terephthalate (PET) film treated with a release agent, and heated with a drier to evaporate the solvent to prepare a resin in a B-stage state. This resin was peeled off from the PET film, and a predetermined amount was put into a cavity made of a Teflon mold frame cut into a 50 mm × 50 mm placed on a stainless steel end plate.
The resin was heated and pressed under the conditions of 40 kg / cm 2 for 0 minute to produce a resin plate having a thickness of 1.5 mm. The glass transition temperature of the resin plate was 148 ° C. as measured by a viscoelasticity method. The flame retardancy was V-0 according to the UL-94 test method.

【0019】(実施例2)実施例1と同様にして、フラ
スコに、m−,p−クレゾール1080g(10モ
ル)、イソプロパノール500ml、95重量%含有パ
ラホルム631.6g(20モル)を投入し、加熱還流
して、パラホルムをm−,p−クレゾールに懸濁した。
懸濁液が50℃になったら、4,4’−ジアミノジフェ
ニルメタン990g(5モル)を分割して添加した。添
加終了後、反応温度を上昇させ、還流した。反応液は乳
化を示し乳化してから反応を2時間継続した。反応終了
後、フラスコに、クレジルジフェニルホスフェート10
0gを添加した。その後、減圧下に、溶剤および副生成
した水を留去した。反応の終点は、160℃の熱板上で
のゲル化時間が6分になった時点とした。反応終了後、
フラスコからテフロンコートした金属性バットに反応生
成物を注入し、放冷後、粉砕して樹脂粉末を得た。上記
で得られた樹脂粉末50gをメチルエチルケトン(ME
K)25gに溶解しワニスを作製した。そのワニスを離
型剤処理したPETフィルムに塗布し、乾燥機で加熱
し、溶剤を揮散させたB−ステージ状態の樹脂を作製し
た。この樹脂をPETフィルムから剥離し、ステンレス
鏡板に載せた50mm×50mmにくりぬいたテフロン
製の型枠でつくったキャビティに所定量入れ、さらにス
テンレス鏡板を重ね、170℃、90分間、40Kg/
cm2の条件で加熱加圧して厚さ1.5mmの樹脂板を
作製した。樹脂板のガラス転移温度は、粘弾性法で測定
したところ144℃であった。難燃性は、UL−94の
試験法で、V−0を示した。
(Example 2) In the same manner as in Example 1, 1080 g (10 mol) of m-, p-cresol, 500 ml of isopropanol, 631.6 g (20 mol) of paraform containing 95% by weight were charged into a flask. After heating under reflux, paraform was suspended in m-, p-cresol.
When the suspension reached 50 ° C., 990 g (5 mol) of 4,4′-diaminodiphenylmethane were added in portions. After the addition was completed, the reaction temperature was raised to reflux. The reaction liquid showed emulsification, and the reaction was continued for 2 hours after emulsification. After the reaction is completed, cresyl diphenyl phosphate 10
0 g was added. Thereafter, the solvent and by-product water were distilled off under reduced pressure. The end point of the reaction was the point in time when the gel time on a hot plate at 160 ° C. became 6 minutes. After the reaction,
The reaction product was poured from the flask into a metal vat coated with Teflon, allowed to cool, and then crushed to obtain a resin powder. 50 g of the resin powder obtained above was added to methyl ethyl ketone (ME
K) Dissolved in 25 g to produce a varnish. The varnish was applied to a PET film treated with a release agent, and heated with a drier to produce a B-stage resin in which the solvent was evaporated. This resin was peeled off from the PET film, and a predetermined amount was put into a cavity made of a Teflon mold that was cut into a 50 mm × 50 mm placed on a stainless steel end plate.
The resin plate having a thickness of 1.5 mm was produced by heating and pressing under the condition of cm 2 . The glass transition temperature of the resin plate was 144 ° C. as measured by a viscoelasticity method. The flame retardancy was V-0 according to the UL-94 test method.

【0020】(実施例3)実施例1と同様にして、フラ
スコに、m−,p−クレゾール1080g(10モ
ル)、イソプロパノール500ml、95重量%含有パ
ラホルム631.6g(20モル)を投入し、加熱還流
して、パラホルムをm−,p−クレゾールに懸濁した。
懸濁液が50℃になったら、4,4’−ジアミノジフェ
ニルエーテル1000g(5モル)を分割して添加し
た。添加終了後、反応温度を上昇させ、還流した。反応
液は乳化を示し乳化してから反応を2時間継続した。反
応終了後、フラスコ中の反応液にCR−757(大八化
学工業株式会社製商品名)200gを添加した。その
後、減圧下に、溶剤および副生成した水を留去した。反
応の終点は、160℃の熱板上でのゲル化時間が4分に
なった時点とした。反応終了後、フラスコからテフロン
コートした金属性バットに反応生成物を注入し、放冷
後、粉砕して樹脂粉末を得た。上記で得られた樹脂粉末
50gをメチルエチルケトン(MEK)25gに溶解し
ワニスを作製した。そのワニスを離型剤処理したPET
フィルムに塗布し、乾燥機で加熱し、溶剤を揮散させた
B−ステージ状態の樹脂を作製した。この樹脂をPET
フィルムから剥離し、ステンレス鏡板に載せた50mm
×50mmにくりぬいたテフロン製の型枠でつくったキ
ャビティに所定量入れ、さらにステンレス鏡板を重ね、
170℃、90分間、40Kg/cm2の条件で加熱加
圧して厚さ1.5mmの樹脂板を作製した。樹脂板のガ
ラス転移温度は、粘弾性法で測定したところ215℃で
あった。難燃性は、UL−94の試験法で、V−0を示
した。
Example 3 In the same manner as in Example 1, m-, p-cresol (1080 g, 10 mol), isopropanol (500 ml), and paraform containing 631.6 g (20 mol) containing 95% by weight were charged into the flask. After heating under reflux, paraform was suspended in m-, p-cresol.
When the temperature of the suspension reached 50 ° C., 1,000 g (5 mol) of 4,4′-diaminodiphenyl ether was added in portions. After the addition was completed, the reaction temperature was raised to reflux. The reaction liquid showed emulsification, and the reaction was continued for 2 hours after emulsification. After completion of the reaction, 200 g of CR-757 (trade name, manufactured by Daihachi Chemical Industry Co., Ltd.) was added to the reaction solution in the flask. Thereafter, the solvent and by-product water were distilled off under reduced pressure. The end point of the reaction was the time when the gel time on a hot plate at 160 ° C. became 4 minutes. After completion of the reaction, the reaction product was poured from the flask into a metal vat coated with Teflon, allowed to cool, and then crushed to obtain a resin powder. 50 g of the resin powder obtained above was dissolved in 25 g of methyl ethyl ketone (MEK) to prepare a varnish. PET with the varnish treated with a release agent
The resin was applied to a film and heated by a dryer to produce a resin in a B-stage state in which the solvent was volatilized. This resin is PET
50mm peeled from the film and placed on a stainless steel head
A predetermined amount is put into a cavity made of a Teflon mold that has been cut out to × 50 mm, and a stainless steel head plate is further stacked.
It was heated and pressed at 40 ° C./cm 2 at 170 ° C. for 90 minutes to produce a resin plate having a thickness of 1.5 mm. The glass transition temperature of the resin plate was 215 ° C. as measured by a viscoelasticity method. The flame retardancy was V-0 according to the UL-94 test method.

【0021】(実施例4)実施例1と同様にして、フラ
スコに、ビスフェノール−A 1140g(5モル)、
イソプロパノール500ml、95重量%含有パラホル
ム631.6g(20モル)を投入し、加熱還流して、
パラホルム、ビスフェノール−Aをイソプロパノールに
懸濁した。懸濁液が50℃になったら、アニリン 93
0g(10モル)を分割して添加した。添加終了後、反
応温度を上昇させ、還流した。反応液は乳化を示し乳化
してから反応を2時間継続した。反応終了後、フラスコ
に、CR−733S(大八化学工業株式会社製商品名)
300gを添加した。その後、減圧下に、溶剤および副
生成した水を留去した。反応の終点は、160℃の熱板
上でのゲル化時間が4分30秒になった時点とした。反
応終了後、フラスコからテフロンコートした金属性バッ
トに注入し、放冷後、粉砕して樹脂粉末を得た。上記で
得られた樹脂粉末50gをメチルエチルケトン(ME
K)25gに溶解しワニスを作製した。そのワニスを離
型剤処理したPETフィルムに塗布し、乾燥機で加熱
し、溶剤を揮散させたB−ステージ状態の樹脂を作製し
た。この樹脂をPETフィルムから剥離し、ステンレス
鏡板に載せた50mm×50mmにくりぬいたテフロン
製の型枠でつくったキャビティに所定量入れ、さらにス
テンレス鏡板を重ね、170℃、90分間、40Kg/
cm2の条件で加熱加圧して厚さ1.5mmの樹脂板を
作製した。樹脂板のガラス転移温度は、粘弾性法で測定
したところ186℃であった。難燃性は、UL−94の
試験法で、V−0を示した。
Example 4 In the same manner as in Example 1, 1140 g (5 mol) of bisphenol-A was placed in a flask,
500 ml of isopropanol, 631.6 g (20 mol) of paraform containing 95% by weight were added, and the mixture was heated under reflux,
Paraform and bisphenol-A were suspended in isopropanol. When the suspension reaches 50 ° C., aniline 93
0 g (10 mol) were added in portions. After the addition was completed, the reaction temperature was raised to reflux. The reaction liquid showed emulsification, and the reaction was continued for 2 hours after emulsification. After the reaction, CR-733S (trade name, manufactured by Daihachi Chemical Industry Co., Ltd.) is added to the flask.
300 g were added. Thereafter, the solvent and by-product water were distilled off under reduced pressure. The end point of the reaction was a point in time when the gel time on a hot plate at 160 ° C. reached 4 minutes and 30 seconds. After the reaction was completed, the mixture was poured from the flask into a metal vat coated with Teflon, allowed to cool, and then crushed to obtain a resin powder. 50 g of the resin powder obtained above was added to methyl ethyl ketone (ME
K) Dissolved in 25 g to produce a varnish. The varnish was applied to a PET film treated with a release agent, and heated with a drier to produce a B-stage resin in which the solvent was evaporated. This resin was peeled off from the PET film, and a predetermined amount was put into a cavity made of a Teflon mold that was cut into a 50 mm × 50 mm placed on a stainless steel end plate.
The resin plate having a thickness of 1.5 mm was produced by heating and pressing under the condition of cm 2 . The glass transition temperature of the resin plate was 186 ° C. as measured by a viscoelasticity method. The flame retardancy was V-0 according to the UL-94 test method.

【0022】(比較例1)温度計、撹拌機、冷却器を備
えた5リットルのフラスコに、フェノール940g(1
0モル)、メタノール900ml、92重量%含有パラ
ホルム652g(20モル)をいれ、加熱還流して、パ
ラホルムをフェノールに懸濁した。懸濁液が50℃にな
ったら、4,4’−ジアミノジフェニルメタン990g
(5モル)を分割して添加した。添加終了後、反応温度
を上昇させ、還流した。反応液は乳化を示し乳化してか
ら反応を2時間継続した。反応終了後、減圧下に、溶剤
および副生成した水を留去した。反応の終点は、160
℃の熱板上でのゲル化時間が5分になった時点とした。
反応終了後、フラスコからテフロンコートした金属性バ
ットに反応生成物を注入し、放冷後、粉砕して樹脂粉末
を得た。しかし、フラスコからテフロンコートした金属
性バットに注入しようとしたが、樹脂の粘度が高くフラ
スコの器壁に固着して、全部をフラスコ外に取り出すこ
とはできなかった。上記で得られた樹脂粉末50gをメ
チルエチルケトン(MEK)25gに溶解しワニスを作
製した。そのワニスを離型剤処理したポリエチレンテレ
フタレート(PET)フィルムに塗布し、乾燥機で加熱
し、溶剤を揮散させB−ステージ状態の樹脂を作製し
た。この樹脂をPETフィルムから剥離し、ステンレス
鏡板に載せた50mm×50mmにくりぬいたテフロン
製の型枠でつくったキャビティに所定量入れ、さらにス
テンレス鏡板を重ね、170℃、90分間、40Kg/
cm2の条件で加熱加圧して厚さ1.5mmの樹脂板を
作製した。樹脂板のガラス転移温度は、粘弾性法で測定
したところ215℃であった。難燃性は、UL−94の
試験法で、V−1を示した。比較例において、反応の終
点を、160℃の熱板上でのゲル化時間が15分になっ
た時点とした場合、フラスコへの器壁に樹脂が固着する
ことなく取り出すことができた。しかし、未反応フェノ
ールが多く混入し、硬化時にフェノールが発生した。
Comparative Example 1 940 g (1) of phenol was placed in a 5-liter flask equipped with a thermometer, a stirrer, and a cooler.
0 mol), methanol (900 ml), and 652 g (20 mol) of paraform containing 92% by weight, and heated under reflux to suspend paraform in phenol. When the suspension reaches 50 ° C., 990 g of 4,4′-diaminodiphenylmethane
(5 mol) were added in portions. After the addition was completed, the reaction temperature was raised to reflux. The reaction liquid showed emulsification, and the reaction was continued for 2 hours after emulsification. After completion of the reaction, the solvent and by-product water were distilled off under reduced pressure. The end point of the reaction is 160
The time when the gel time on the hot plate at 5 ° C. became 5 minutes was set.
After completion of the reaction, the reaction product was poured from the flask into a metal vat coated with Teflon, allowed to cool, and then crushed to obtain a resin powder. However, an attempt was made to inject the resin from the flask into a metal vat coated with Teflon, but the viscosity of the resin was so high that the resin adhered to the wall of the flask and could not be completely removed from the flask. 50 g of the resin powder obtained above was dissolved in 25 g of methyl ethyl ketone (MEK) to prepare a varnish. The varnish was applied to a polyethylene terephthalate (PET) film treated with a release agent, and heated with a drier to evaporate the solvent to prepare a resin in a B-stage state. This resin was peeled off from the PET film, and a predetermined amount was put into a cavity made of a Teflon mold that was cut into a 50 mm × 50 mm placed on a stainless steel end plate.
The resin plate having a thickness of 1.5 mm was produced by heating and pressing under the condition of cm 2 . The glass transition temperature of the resin plate was 215 ° C. as measured by a viscoelasticity method. The flame retardancy was V-1 in the UL-94 test method. In the comparative example, when the end point of the reaction was a point in time when the gel time on the hot plate at 160 ° C. became 15 minutes, the resin could be taken out without fixing to the vessel wall to the flask. However, a large amount of unreacted phenol was mixed in and phenol was generated during curing.

【0023】[0023]

【発明の効果】本発明のフェノール樹脂系難燃性自硬化
性樹脂の製造方法は、実施例でも示したように、溶剤中
で反応させ合成したオキサジン環を有する樹脂にリン酸
エステル類を添加し反応させることにより、反応生成物
を反応容器から系外に取り出すのが容易になると共にリ
ン元素を有しているので難燃性にも優れる耐熱性、難燃
性、取扱性の向上した樹脂を提供することができる。
According to the method for producing a phenolic resin flame-retardant self-curing resin of the present invention, as shown in the examples, phosphoric esters are added to a resin having an oxazine ring synthesized by reacting in a solvent. This makes it easier to take out the reaction product from the reaction vessel to the outside of the system, and also has excellent heat resistance, flame retardancy, and handleability that is excellent in flame retardancy because it contains phosphorus element. Can be provided.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 フェノール類、アルデヒド類、第1級ア
ミンを反応させて得られるオキサジン環を含むフェノー
ル樹脂系自硬化性樹脂の製造方法において、溶剤中でフ
ェノール類、アルデヒド類及び芳香族アミン類を反応さ
せ、反応液を得た後、リン酸エステル類を配合し更に反
応させることを特徴とするフェノール樹脂系難燃性自硬
化性樹脂の製造方法。
1. A method for producing a phenolic resin-based self-curable resin containing an oxazine ring obtained by reacting a phenol, an aldehyde and a primary amine, wherein the phenol, the aldehyde and the aromatic amine are dissolved in a solvent. A phenolic resin-based flame-retardant self-curing resin, wherein a phosphoric acid ester is blended and further reacted after obtaining a reaction solution.
【請求項2】 溶剤中でフェノール類、アルデヒド類及
び芳香族アミン類を反応させ、反応液を減圧化に濃縮
し、溶剤及び縮合反応で生成した水を系外に除去する際
にリン酸エステル類を配合し減圧濃縮する請求項1に記
載のフェノール樹脂系難燃性自硬化性樹脂の製造方法。
2. A phenol, an aldehyde and an aromatic amine are reacted in a solvent, the reaction solution is concentrated under reduced pressure, and a phosphate ester is used when removing the solvent and water generated by the condensation reaction out of the system. The method for producing a phenolic flame-retardant self-curable resin according to claim 1, wherein the phenolic resin is blended and concentrated under reduced pressure.
【請求項3】 溶剤がアルコール系溶剤である請求項1
または請求項2に記載のフェノール樹脂系難燃性自硬化
性樹脂の製造方法。
3. The solvent according to claim 1, wherein the solvent is an alcohol solvent.
Alternatively, the method for producing a phenolic resin-based flame-retardant self-curable resin according to claim 2.
【請求項4】 アルコール系溶剤が、メタノール、エタ
ノール、n−、i−プロパノール、n−、i−、t−ブ
タノールの中から選ばれる少なくとも1種類以上である
請求項3に記載のフェノール樹脂系難燃性自硬化性樹脂
の製造方法。
4. The phenolic resin according to claim 3, wherein the alcohol solvent is at least one selected from methanol, ethanol, n-, i-propanol, n-, i-, and t-butanol. A method for producing a flame-retardant self-curing resin.
【請求項5】 アルデヒド類が、92重量%以上のホル
ムアルデヒドの含有量であるパラホルムを用いる請求項
1ないし請求項4のいずれかに記載のフェノール樹脂系
難燃性自硬化性樹脂の製造方法。
5. The method for producing a phenolic resin-based flame-retardant self-curable resin according to claim 1, wherein the aldehyde is paraform having a formaldehyde content of 92% by weight or more.
【請求項6】 芳香族アミン類が、4,4’−ジアミノ
ジフェニルメタンである請求項1または請求項5のいず
れかに記載のフェノール樹脂系難燃性自硬化性樹脂の製
造方法。
6. The method for producing a phenolic resin flame-retardant self-curing resin according to claim 1, wherein the aromatic amine is 4,4′-diaminodiphenylmethane.
JP27573097A 1997-10-08 1997-10-08 Production of phenolic resin-based flame-retardant self hardening resin Pending JPH11106466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27573097A JPH11106466A (en) 1997-10-08 1997-10-08 Production of phenolic resin-based flame-retardant self hardening resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27573097A JPH11106466A (en) 1997-10-08 1997-10-08 Production of phenolic resin-based flame-retardant self hardening resin

Publications (1)

Publication Number Publication Date
JPH11106466A true JPH11106466A (en) 1999-04-20

Family

ID=17559594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27573097A Pending JPH11106466A (en) 1997-10-08 1997-10-08 Production of phenolic resin-based flame-retardant self hardening resin

Country Status (1)

Country Link
JP (1) JPH11106466A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335671A (en) * 2005-06-01 2006-12-14 Shikoku Chem Corp Method for producing benzoxazine compound
WO2007018110A1 (en) * 2005-08-05 2007-02-15 Sekisui Chemical Co., Ltd. Thermosetting compound, composition containing the same, and molding
JP2009132753A (en) * 2007-11-28 2009-06-18 Akebono Brake Ind Co Ltd Binder resin for friction material, binder resin, and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335671A (en) * 2005-06-01 2006-12-14 Shikoku Chem Corp Method for producing benzoxazine compound
JP4647398B2 (en) * 2005-06-01 2011-03-09 四国化成工業株式会社 Method for producing benzoxazine compound
WO2007018110A1 (en) * 2005-08-05 2007-02-15 Sekisui Chemical Co., Ltd. Thermosetting compound, composition containing the same, and molding
US8183368B2 (en) 2005-08-05 2012-05-22 Sekisui Chemical Co., Ltd. Thermosetting compound, composition containing the same, and molded article
JP2009132753A (en) * 2007-11-28 2009-06-18 Akebono Brake Ind Co Ltd Binder resin for friction material, binder resin, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2005501934A (en) High nitrogen content triazine-phenol-aldehyde condensate
JP6515255B1 (en) Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
JP2003147165A (en) Thermosetting resin composition
JPH10259248A (en) Thermosetting composition and its hardened material
JPH11106466A (en) Production of phenolic resin-based flame-retardant self hardening resin
JPH11158352A (en) Epoxy resin composition, epoxy resin prepreg and epoxy resin laminate
JPH11228786A (en) Flame-retadant resin composition for copper-clad laminate board and preparation of copper-clad laminate board by using the same
JP3944627B2 (en) Phenolic resin composition
JP4171945B2 (en) Phenol resin composition and method for producing phenol resin
KR101238122B1 (en) Process for producing a benzoxazine resin and benzoxazine resin
JPH08311142A (en) Phenolic resin composition and curing agent for epoxy resin
JP3814979B2 (en) Method for producing phenolic resin-based self-curing resin
JP2002161188A (en) Thermosetting resin composition and its hardened matter
JP2011207995A (en) Thermosetting resin and method for producing the same, thermosetting resin composition, molding, cured product, and electronic equipment
JP2004217941A (en) Thermosetting composition and its cured product
JPS59138218A (en) Curable epoxy resin mixture
TW576844B (en) Phenol amino condensation resin, production process thereof, epoxy resin composition using the same, prepreg and laminate
KR20140086108A (en) Thermosetting Resin Having Benzoxazine Structure and Method for Preparing the Same
JPS6215221A (en) Epoxy resin composition
JPH11147934A (en) Epoxy resin composition and high-molecular-weight epoxy film prepared therefrom
JPH111604A (en) Thermosetting resin composition
TW202419608A (en) Curable composition
JP2002047398A (en) Flame retardant polyester resin
JPH10158352A (en) Production of phenol resin
JP2000017146A (en) Thermosetting resin composition and its cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Effective date: 20060202

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

RD02 Notification of acceptance of power of attorney

Effective date: 20061023

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219