JPH11105039A - Mold for injection molding and its manufacture - Google Patents

Mold for injection molding and its manufacture

Info

Publication number
JPH11105039A
JPH11105039A JP26852997A JP26852997A JPH11105039A JP H11105039 A JPH11105039 A JP H11105039A JP 26852997 A JP26852997 A JP 26852997A JP 26852997 A JP26852997 A JP 26852997A JP H11105039 A JPH11105039 A JP H11105039A
Authority
JP
Japan
Prior art keywords
mold
layer
nickel layer
copper
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26852997A
Other languages
Japanese (ja)
Inventor
Kenji Ito
研二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26852997A priority Critical patent/JPH11105039A/en
Publication of JPH11105039A publication Critical patent/JPH11105039A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve corrosion resistance while abrasion resistance is secured, by forming an additional surface layer consisting of the nitride of titanium or chromium which forms a molding face by coating a nickel layer. SOLUTION: In a core 13 and a molding piece 15, the whole backing is constituted of a copper alloy having a proper rigidity such as berylium-copper and phosphorus-bronze. In other words, the surface of the backing 19 is coated with an electroless plating nickel layer 20. The layer 20 is coated with a chromium nitride layer 21 as a surface layer, and the surface of the layer 21 forms a molding surface 22 to be a cavity. With the use of the core 13 and the molding piece 15, even when an ABS resin of a flame retardant grade is injection- molded, a molding having good durability and abrasion resistance is obtained. Even when a resin generating a corrosive gas is molded, the corrosion of a mold backing can be prevented surely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導率の高い銅
を主体とする金型基材と、この金型基材の表面を覆うニ
ッケル層とを具えた射出成形用金型およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection mold having a mold base mainly composed of copper having a high thermal conductivity and a nickel layer covering the surface of the mold base, and a method of manufacturing the mold. About the method.

【0002】[0002]

【従来の技術】樹脂の射出成形サイクルを短縮するため
には、キャビティ内に射出された溶融樹脂を金型から取
り出し可能な温度にまで速やかに冷却・固化させること
が必要である。
2. Description of the Related Art In order to shorten the injection molding cycle of a resin, it is necessary to rapidly cool and solidify a molten resin injected into a cavity to a temperature at which the molten resin can be taken out of a mold.

【0003】このため、成形品のキャビティを形成する
金型の成形駒や成形コアとして、熱伝導率の高い銅を主
体するもので構成し、この成形駒や成形コアに冷媒通路
を形成して水などの冷媒を流し、キャビティ内に射出さ
れた溶融樹脂の熱を速やかに冷媒に伝えることにより、
成形品の冷却を促進させることが行われている。
For this reason, a molding piece or a molding core of a mold for forming a cavity of a molded article is mainly made of copper having high thermal conductivity, and a refrigerant passage is formed in the molding piece or the molding core. By flowing a coolant such as water and quickly transmitting the heat of the molten resin injected into the cavity to the coolant,
Promoting cooling of molded articles has been performed.

【0004】しかし、銅を主体とする金型材料は、熱伝
導率が良い反面、硬度の低さと耐食性の低さが問題とな
る。例えば、熱伝導率が良好な金型材料として代表的な
ベリリウム銅やリン青銅などの銅合金は、一般的な金型
材料であるプリハードン鋼の約2倍〜4倍、すなわち
0. 20〜0. 45(cal/cm・sec ・℃)の熱伝導率を
有するものの、硬度がプリハードン鋼の約1/2しかな
い。しかも、ハロゲン系難燃剤を含む成形樹脂が熱分解
を起こす際に発生するハロゲン化水素、すなわち強酸の
下では簡単に腐食してしまうことはもとより、弱酸の下
でも腐食し易いことは周知の事実である。
[0004] However, a mold material mainly composed of copper has good thermal conductivity, but has problems of low hardness and low corrosion resistance. For example, copper alloys such as beryllium copper and phosphor bronze, which are typical mold materials having good thermal conductivity, are about two to four times as large as pre-hardened steel, which is a typical mold material, that is, 0.20 to 0.20. Although it has a thermal conductivity of 45 (cal / cm · sec · ° C), its hardness is only about half that of pre-hardened steel. Moreover, it is a well-known fact that, in addition to hydrogen halide generated when a molding resin containing a halogen-based flame retardant undergoes thermal decomposition, that is, it easily corrodes under a strong acid and also easily under a weak acid. It is.

【0005】このため、従来の金型の断面構造の一例を
表す図6に示すように、銅を主体とする金型基材1の成
形面2に硬質防蝕層3、例えば5〜10μm 程度の膜厚
の硬質クロムメッキ層や、3〜5μm 程度の膜厚のチタ
ンやクロムの窒化物層を形成し、摩擦による成形面2の
損傷を防止すると共に成形面2の耐食性を向上させるよ
うにしていた。
For this reason, as shown in FIG. 6, which shows an example of a cross-sectional structure of a conventional mold, a hard corrosion-resistant layer 3, for example, about 5 to 10 μm, is formed on a molding surface 2 of a mold base 1 mainly made of copper. A hard chrome plating layer having a thickness of about 3 to 5 μm and a nitride layer of titanium or chromium having a thickness of about 3 to 5 μm are formed to prevent the molding surface 2 from being damaged by friction and to improve the corrosion resistance of the molding surface 2. Was.

【0006】一方、高い加工精度が要求されるものや、
複雑な加工形状を対象とする射出成形においては、金型
を電鋳法によって製造することが行われている。この電
鋳法は、成形品と同一形状の母型の表面に金型となる金
属を電鋳し、母型を剥離した後の電鋳塊を金型として使
用するものである。この電鋳法で用いられる金属として
は、金型に要求される硬度や耐久性などの点から一般的
にはニッケルなどが用いられ、成形時の成形圧力に耐え
られるように、通常はこれを5mm以上の厚みに析出させ
ている。
[0006] On the other hand, those requiring high processing accuracy,
2. Description of the Related Art In injection molding for a complicated processing shape, a mold is manufactured by an electroforming method. In this electroforming method, a metal serving as a mold is electroformed on the surface of a matrix having the same shape as a molded product, and the electroformed ingot obtained after peeling the matrix is used as a mold. As the metal used in this electroforming method, nickel or the like is generally used in terms of hardness and durability required for a mold, and is usually used so as to withstand molding pressure during molding. Precipitated to a thickness of 5 mm or more.

【0007】[0007]

【発明が解決しようとする課題】図6に示す従来の金型
においては、硬質防蝕層3を構成する硬質クロムメッキ
層やチタンやクロムの窒化物層は、微視的にポーラスで
あってガスの浸透が起こるため、腐食性の強いガスを発
生する樹脂を射出成形する場合、この樹脂から発生する
ガスが硬質防蝕層3に存在するマイクロクラックを通っ
て金型基材1に達し、金型基材1を腐食してしまう虞が
あった。
In the conventional mold shown in FIG. 6, the hard chromium plating layer and the titanium or chromium nitride layer constituting the hard corrosion-resistant layer 3 are microscopically porous and gaseous. When a resin that generates a highly corrosive gas is injection-molded, the gas generated from the resin reaches the mold substrate 1 through microcracks existing in the hard corrosion-resistant layer 3 and is injected into the mold substrate. There was a possibility that the base material 1 would be corroded.

【0008】一方、電鋳法によって作った金型の場合、
特にニッケル電鋳塊の内部応力は非常に大きく、しかも
この内部応力は析出させた厚みに比例して大きくなる傾
向を有する。このため、ニッケル電鋳塊を母型から剥離
すると、ニッケル電鋳塊がその内部応力によって歪んで
しまい、母型表面の形状がニッケル電鋳塊に精度良く転
写されない。このニッケル電鋳塊の内部応力を小さくす
る方法としては、電鋳時の電流密度を小さくすることが
有効であるが、この方法では、ニッケルを必要な厚みま
で析出させるのに非常に長い時間を要してしまう。
On the other hand, in the case of a mold made by electroforming,
Particularly, the internal stress of the nickel electroformed ingot is very large, and the internal stress tends to increase in proportion to the deposited thickness. For this reason, when the nickel electroformed ingot is separated from the matrix, the nickel electroformed ingot is distorted by its internal stress, and the shape of the surface of the matrix is not accurately transferred to the nickel electroformed ingot. As a method of reducing the internal stress of the nickel electroformed ingot, it is effective to reduce the current density at the time of electroforming, but this method requires a very long time to precipitate nickel to a required thickness. I need it.

【0009】しかも、母型を剥離した後のニッケル電鋳
塊を金型として使用するためには、型板に取り付けるた
めの端面加工や穴明け加工などの二次加工を施す必要が
あるが、ニッケルはその加工効率が余り良くないという
欠点がある上、熱伝導率が銅を主体とする金型よりも小
さく、樹脂の射出成形サイクルを短縮化し得ない。
Furthermore, in order to use the nickel electroformed ingot obtained after the mother die has been peeled off as a mold, it is necessary to perform secondary processing such as end face processing and drilling for mounting on the template. Nickel has the disadvantage that its processing efficiency is not so good, and its thermal conductivity is smaller than that of a mold mainly composed of copper, so that the injection molding cycle of resin cannot be shortened.

【0010】[0010]

【発明の目的】本発明の第1の目的は、耐摩耗性を確保
しつつ耐食性を従来のものよりも向上させることができ
る射出成形用金型およびその製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an injection molding die and a method for producing the same, which can improve the corrosion resistance as compared with the conventional one while ensuring the wear resistance.

【0011】本発明の第2の目的は、樹脂の射出成形サ
イクルを短縮化し得る電鋳法による高精度な射出成形用
金型およびその製造方法を提供することにある。
A second object of the present invention is to provide a high-precision injection molding die by an electroforming method capable of shortening a resin injection molding cycle and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】本発明による第1の形態
は、少なくとも銅を主体とする金型基材と、この金型基
材の表面を覆うニッケル層とを具えた射出成形用金型で
あって、前記ニッケル層を覆って成形面を形成するチタ
ンあるいはクロムの窒化物からなる表面層をさらに具え
たことを特徴とする射出成形用金型にある。
According to a first aspect of the present invention, there is provided an injection mold having at least a copper-based mold base and a nickel layer covering the surface of the mold base. And a surface layer made of a nitride of titanium or chromium which forms a molding surface by covering the nickel layer.

【0013】本発明によると、銅を主体とする金型基材
によって、射出成形用金型自体の温度調節の容易性が確
保される。ニッケル層は、金型基材と表面層との剥離を
抑制する。また、成形面を形成するチタンあるいはクロ
ムの窒化物からなる表面層は、摩耗に対して充分なHv
2000前後の硬度を有する。
According to the present invention, the mold base mainly made of copper ensures the ease of temperature control of the injection mold itself. The nickel layer suppresses separation between the mold base material and the surface layer. In addition, the surface layer made of nitride of titanium or chromium which forms the molding surface has a sufficient Hv against wear.
It has a hardness of around 2000.

【0014】本発明による第2の形態は、少なくとも銅
を主体とする金型基材の表面に無電解メッキ層を形成す
るステップと、この無電解メッキ層の表面に成形面を構
成するチタンあるいはクロムの窒化物からなる表面層を
PVD法によって形成するステップとを具えたことを特
徴とする射出成形用金型の製造方法にある。
According to a second aspect of the present invention, there is provided a step of forming an electroless plating layer on at least a surface of a mold base mainly composed of copper, and forming titanium or titanium forming a molding surface on the surface of the electroless plating layer. Forming a surface layer made of chromium nitride by a PVD method.

【0015】本発明による第3の形態は、少なくとも銅
を主体とする金型基材と、この金型基材の表面を覆うニ
ッケル層とを具えた射出成形用金型であって、前記金型
基材は、銅を電鋳することによって形成され、成形面を
形成する前記ニッケル層は、電鋳によって形成されてい
ることを特徴とする射出成形用金型にある。
According to a third aspect of the present invention, there is provided an injection mold comprising at least a mold base mainly composed of copper, and a nickel layer covering the surface of the mold base, wherein The mold base is formed by electroforming copper, and the nickel layer forming the molding surface is formed by electroforming.

【0016】本発明によると、射出成形用金型の大部
分、つまり金型基材を内部応力が小さくしかも加工性の
良好な銅電鋳で形成することにより、射出成形用金型自
体の温度調節の容易性が確保される。また、高い硬度が
必要な成形面をニッケル電鋳で形成しており、発生する
応力が低減される。
According to the present invention, the temperature of the injection molding die itself can be improved by forming most of the injection molding die, that is, the die base material by copper electroforming having low internal stress and good workability. Easy adjustment is ensured. Further, since the molding surface requiring high hardness is formed by nickel electroforming, the generated stress is reduced.

【0017】本発明による第4の形態は、成形面と対応
した表面形状を有する母型の表面にニッケル層を電鋳す
るステップと、このニッケル層の表面に銅を電鋳して金
型基材を形成するステップと、前記ニッケル層から前記
母型を剥離するステップとを具えたことを特徴とする射
出成形用金型の製造方法にある。
According to a fourth aspect of the present invention, there is provided a step of electroforming a nickel layer on a surface of a matrix having a surface shape corresponding to a molding surface, and electroforming copper on the surface of the nickel layer to form a mold base. A method of manufacturing a metal mold for injection molding, comprising a step of forming a material and a step of peeling the master from the nickel layer.

【0018】[0018]

【発明の実施の形態】本発明の第1の形態による射出成
形用金型において、金型基材がベリリウム銅あるいはリ
ン青銅であってもよい。また、ニッケル層を無電解メッ
キによって形成してもよく、これによって緻密で均一な
膜厚となる。この場合、無電解メッキによるニッケル層
の硬度を熱処理によってHv750〜Hv850の範囲
に収めることが、金型基材の硬度の低さをカバーする点
で望ましい。この無電解メッキによるニッケル層の膜厚
は、成形時に発生するガス腐食に耐えることができる程
度の厚みがあればよく、5〜10μm の範囲にあること
が好ましい。5μm 未満では金型基材の表面粗さが粗い
場合、ニッケル層にピンホールが発生して金型基材が腐
食し易くなり、膜厚が10μm を越えると熱伝導率が低
下してしまう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the injection molding die according to the first embodiment of the present invention, the die base may be beryllium copper or phosphor bronze. Further, the nickel layer may be formed by electroless plating, whereby a dense and uniform film thickness is obtained. In this case, it is desirable that the hardness of the nickel layer formed by electroless plating be kept in the range of Hv750 to Hv850 by heat treatment in order to cover the low hardness of the mold base material. The thickness of the nickel layer formed by the electroless plating may be a thickness that can withstand gas corrosion generated during molding, and is preferably in the range of 5 to 10 μm. If it is less than 5 μm, when the surface roughness of the mold substrate is rough, pinholes are generated in the nickel layer and the mold substrate is easily corroded.

【0019】さらに、表面層をPVD法によって形成し
てもよく、これによって金型基材の軟化温度よりも低い
温度で表面層が形成され、金型基材の軟化や変形を防止
する。PVD法による表面層の膜厚は3〜5μm の範囲
にあることが好ましい。表面層の膜厚が3μm 未満では
充分な耐摩耗性を得ることが困難となり、逆に5μmを
越えると応力の発生に伴ってニッケル層から剥離し易く
なってしまう。
Further, the surface layer may be formed by a PVD method, whereby the surface layer is formed at a temperature lower than the softening temperature of the mold base, and the softening and deformation of the mold base are prevented. The thickness of the surface layer by the PVD method is preferably in the range of 3 to 5 μm. If the thickness of the surface layer is less than 3 μm, it will be difficult to obtain sufficient wear resistance. Conversely, if it exceeds 5 μm, it will be easy to peel off the nickel layer with the generation of stress.

【0020】本発明の第2の形態による射出成形用金型
の製造方法において、金型基材がベリリウム銅あるいは
リン青銅であってもよい。また、無電解ニッケル層を熱
処理によってHv750〜Hv850の硬度に収めるス
テップを追加することも有効であり、これによって金型
基材の硬度の低さをカバーする。
In the method of manufacturing a mold for injection molding according to the second embodiment of the present invention, the mold base may be beryllium copper or phosphor bronze. It is also effective to add a step of keeping the electroless nickel layer to a hardness of Hv750 to Hv850 by heat treatment, thereby covering the low hardness of the mold base material.

【0021】本発明の第3の形態による射出成形用金型
において、金型基材の厚みを5mm以上にし、ニッケル層
の厚みを0. 5〜2mmの範囲に収めることが有効であ
る。
In the injection molding die according to the third embodiment of the present invention, it is effective that the thickness of the die substrate is 5 mm or more and the thickness of the nickel layer is within the range of 0.5 to 2 mm.

【0022】本発明の第4の形態による射出成形用金型
の製造方法において、金型基材の厚みを5mm以上にし、
ニッケル層の厚みを0. 5〜2mmの範囲に収めることが
有効である。
In the method for manufacturing an injection mold according to a fourth embodiment of the present invention, the thickness of the mold base is set to 5 mm or more,
It is effective to keep the thickness of the nickel layer in the range of 0.5 to 2 mm.

【0023】[0023]

【実施例】本発明による射出成形用金型の実施例につい
て、図1〜図5を参照しながら詳細に説明するが、本発
明はこのような実施例に限らず、同様な課題を内包する
他の分野の技術にも応用することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an injection mold according to the present invention will be described in detail with reference to FIGS. 1 to 5. However, the present invention is not limited to such an embodiment, but includes similar problems. It can be applied to technologies in other fields.

【0024】本実施例の概略構造を図1に示す。すなわ
ち、図示しない射出装置の先端のノズルが接続される固
定側型枠11には、溶融樹脂のランナ12を形成したコ
ア13が一体的に取り付けられている。このコア13と
で成形品のキャビティ14を形成する成形駒15は、図
示しない型締め装置によって固定側型枠11との対向方
向に移動可能な可動側型枠16に対して一体的に取り付
けられている。コア13および成形駒15には、図示し
ない冷却水の供給源に接続して冷却水を通水するための
冷却水通路17, 18がそれぞれ形成されており、射出
装置によってキャビティ14内に射出される溶融樹脂
は、これら冷却水通路17, 18を流れる冷却水によっ
て、迅速に冷却・固化されるようになっている。
FIG. 1 shows a schematic structure of this embodiment. That is, a core 13 on which a runner 12 of molten resin is formed is integrally attached to a stationary mold 11 to which a nozzle at the tip of an injection device (not shown) is connected. A molding piece 15 which forms a cavity 14 of a molded article with the core 13 is integrally attached to a movable mold 16 movable in a direction facing the fixed mold 11 by a mold clamping device (not shown). ing. Cooling water passages 17 and 18 are formed in the core 13 and the molding piece 15 to connect to a cooling water supply source (not shown) and allow the cooling water to flow therethrough. The cooling water passages 17 and 18 are injected into the cavity 14 by an injection device. The molten resin is rapidly cooled and solidified by the cooling water flowing through the cooling water passages 17 and 18.

【0025】本実施例におけるコア13および成形駒1
5は、熱伝導率が比較的高く、適当な剛性を持ったベリ
リウム銅やリン青銅などの銅合金で基材全体が構成され
ており、その主要部の抽出拡大断面構造を図2に示す。
すなわち、基材19の表面は無電解ニッケルメッキ層2
0で覆われており、さらにこの無電解ニッケルメッキ層
20は、本発明の表面層としての窒化クロム層21にて
被覆され、この窒化クロム層21の表面がキャビティ1
4となる成形面22を形成している。
The core 13 and the molding piece 1 in this embodiment
Numeral 5 is composed of a copper alloy such as beryllium copper or phosphor bronze having relatively high thermal conductivity and appropriate rigidity, and the entire base material is shown. FIG.
That is, the surface of the base material 19 is
The electroless nickel plating layer 20 is further covered with a chromium nitride layer 21 as a surface layer of the present invention, and the surface of the chromium nitride layer 21 is
4 is formed.

【0026】本実施例における無電解ニッケルメッキ層
20は、次亜リン酸ナトリウムを主成分するPH5. 6
の水溶液中で基材19の表面に7μm の厚さに析出さ
せ、その後、これを270℃で70分間加熱処理するこ
とにより、硬度をHv800に上昇させたものである。
また、窒化クロム層21は、PVD( physical vapor d
eposition ) 法によって窒化クロム層21の表面に3μ
m の厚さで形成した。
The electroless nickel plating layer 20 in this embodiment has a pH of 5.6 containing sodium hypophosphite as a main component.
Is deposited on the surface of the substrate 19 to a thickness of 7 .mu.m in the aqueous solution of the above, and then heated at 270.degree. C. for 70 minutes to increase the hardness to Hv800.
The chromium nitride layer 21 is made of PVD (physical vapor d).
3μ on the surface of the chromium nitride layer 21 by the eposition method.
m.

【0027】このようにして得られたコア13および成
形駒15を用い、難燃グレードのABS樹脂を射出成形
した結果、図6に示す従来の金型よりも摩耗性および耐
食性に関して3倍以上の耐久性を示すことが判明した。
Injection molding of the flame-retardant grade ABS resin using the core 13 and the molding piece 15 obtained as described above resulted in more than three times the abrasion and corrosion resistance of the conventional mold shown in FIG. It was found to be durable.

【0028】上述したコア13や成形駒15を電鋳法に
よって製造することも可能であり、このような本発明の
他の実施例における基材の外観を図3に示す。すなわ
ち、本実施例における基材23には、これを型板11,
16(図1参照)に取り付けるための複数の雌ねじ穴2
4などが二次加工として形成されている。この基材23
は硫酸銅浴で電鋳した銅にて構成され、5mm以上の厚み
を有する。また、基材23の表面はスルファミン酸ニッ
ケル浴で電鋳したニッケル層25で覆われ、このニッケ
ル層25の表面が樹脂の成形面となる。このニッケル層
25の厚みは、0. 5〜2mmの範囲に収めることが有効
である。
The core 13 and the molding piece 15 described above can be manufactured by an electroforming method. FIG. 3 shows the appearance of a base material according to another embodiment of the present invention. That is, the base material 23 in this embodiment is
16 (see FIG. 1) for mounting a plurality of female screw holes 2
4 and the like are formed as secondary processing. This base material 23
Is made of copper electroformed in a copper sulfate bath and has a thickness of 5 mm or more. The surface of the base material 23 is covered with a nickel layer 25 electroformed in a nickel sulfamate bath, and the surface of the nickel layer 25 becomes a resin molding surface. It is effective that the thickness of the nickel layer 25 be within the range of 0.5 to 2 mm.

【0029】ここで、硫酸銅浴による銅電鋳およびスル
ファミン酸ニッケル浴によるニッケル電鋳の物理特性を
表1に記す。
Here, the physical properties of copper electroforming with a copper sulfate bath and nickel electroforming with a nickel sulfamate bath are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】この表1から明らかなように、基材23を
内部応力が小さくしかも加工性の良好な銅電鋳で形成す
ることにより、コア13や成形駒15自体の温度調節の
容易性を確保することができる。また、高い硬度が必要
な成形面を電鋳したニッケル層25で形成しているた
め、内部応力を低減することができる。
As is apparent from Table 1, by forming the base material 23 by copper electroforming with small internal stress and good workability, the temperature control of the core 13 and the forming piece 15 itself can be easily controlled. can do. Further, since the molding surface requiring high hardness is formed by the electroformed nickel layer 25, the internal stress can be reduced.

【0032】上述のニッケル電鋳は、スルファミン酸ニ
ッケル浴としたが、ワット浴やホウフッカ塩浴などによ
っても可能である。また、銅電鋳もホウフッカ銅浴やシ
アン化銅浴などで行うことができる。何れの場合におい
ても、浴液中に添加する添加剤についての制限は特にな
い。
In the above-described nickel electroforming, a nickel sulfamate bath is used. However, a nickel bath can be used with a Watt bath or a Hoofka salt bath. Copper electroforming can also be performed in a Hoofka copper bath or a copper cyanide bath. In any case, there is no particular limitation on the additives added to the bath.

【0033】電鋳法による上述したコア13や成形駒1
5は、以下のようにして製造される。すなわち、図4に
示す如き成形品と同一形状のガラスや銅合金で形成した
母型26を用意し、金型の成形面と対応した形状の母型
26の表面に真空蒸着法によってアルミニウムや金など
の導電膜27を形成する。
The core 13 and the molding piece 1 described above by electroforming.
5 is manufactured as follows. That is, a mother die 26 made of glass or copper alloy having the same shape as the molded product as shown in FIG. 4 is prepared, and aluminum or gold is formed on the surface of the mother die 26 having a shape corresponding to the molding surface of the metal mold by vacuum evaporation. A conductive film 27 such as is formed.

【0034】次に、この母型26の表面、つまり導電膜
27を覆うようにニッケル層25をスルファミン酸ニッ
ケル浴中で0. 5〜2mm程度の厚さに電鋳し、さらに基
材23となる銅を硫酸銅浴中で5mm程度の厚さに電鋳す
る。
Next, the nickel layer 25 is electroformed to a thickness of about 0.5 to 2 mm in a nickel sulfamate bath so as to cover the surface of the matrix 26, that is, the conductive film 27. The resulting copper is electroformed in a copper sulfate bath to a thickness of about 5 mm.

【0035】このようにして得られた電鋳塊28を所定
形状に二次加工し、この電鋳塊28から母型26を剥離
して図1に示す如きコア13や成形駒15として使用す
る。この母型26の剥離の際、母型26と導電膜27と
が真空蒸着法によって接合されているため、その接合力
は弱く、電鋳による導電膜27とニッケル層25との接
合力の方が強いため、コア13や成形駒15の表面、つ
まり成形面は導電膜27によって形成された状態とな
る。
The electroformed ingot 28 thus obtained is subjected to secondary processing into a predetermined shape, and the mother die 26 is peeled from the electroformed ingot 28 and used as the core 13 and the forming piece 15 as shown in FIG. . Since the matrix 26 and the conductive film 27 are joined by the vacuum evaporation method at the time of the separation of the matrix 26, the joining force is weak, and the joining force between the conductive film 27 and the nickel layer 25 by electroforming is smaller. Therefore, the surface of the core 13 and the molding piece 15, that is, the molding surface is in a state formed by the conductive film 27.

【0036】[0036]

【発明の効果】本発明によると、少なくとも銅を主体と
する金型基材の表面をニッケル層で覆い、このニッケル
層を成形面を形成するチタンあるいはクロムの窒化物か
らなる表面層でさらに覆うようにしたので、金型基材が
銅を主体とする従来のものと比較すると、より優れた耐
食性および耐摩耗性を持たせることができ、腐食性のガ
スを発生する樹脂の成形であっても、金型基材の腐食を
確実に防止することができる。
According to the present invention, at least the surface of a mold base mainly composed of copper is covered with a nickel layer, and this nickel layer is further covered with a surface layer made of titanium or chromium nitride forming a molding surface. As a result, compared to the conventional mold base material mainly composed of copper, it is possible to provide better corrosion resistance and wear resistance, and it is a molding of a resin that generates corrosive gas. In addition, the corrosion of the mold base can be reliably prevented.

【0037】また、金型基材を銅を電鋳することによっ
て形成し、この金型基材の表面を覆って成形面を形成す
るニッケル層を電鋳によって形成するようにしたので、
金型全体をニッケル電鋳で形成した場合と比較して電鋳
塊に発生する内部応力をより小さくすることができ、母
型の形状をより忠実に転写することが可能である。ま
た、金型基材の主体である銅の析出速度はニッケルより
も早いので、短時間で電鋳作業を終了することができ
る。しかも、金型基材のほとんどが銅であるため、二次
加工の際の加工効率を高めることができる上、成形品に
対する冷却効果も大幅に改善することができる。
Further, since the mold base is formed by electroforming copper, and a nickel layer covering the surface of the mold base and forming a molding surface is formed by electroforming.
The internal stress generated in the electroformed ingot can be reduced as compared with the case where the entire mold is formed by nickel electroforming, and the shape of the master mold can be transferred more faithfully. In addition, since the deposition rate of copper, which is the main component of the mold base material, is faster than that of nickel, the electroforming operation can be completed in a short time. In addition, since most of the mold base is made of copper, the working efficiency in the secondary working can be improved, and the cooling effect on the molded product can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の対象となった射出成形用金型の一例を
表す断面図である。
FIG. 1 is a cross-sectional view illustrating an example of an injection mold used as an object of the present invention.

【図2】本発明による射出成形用金型の一実施例の主要
部を抽出拡大した断面図である。
FIG. 2 is an enlarged sectional view of a main part of one embodiment of an injection mold according to the present invention.

【図3】本発明による射出成形用金型の他の実施例の外
観を表す斜視図である。
FIG. 3 is a perspective view showing the appearance of another embodiment of the injection mold according to the present invention.

【図4】図5と共に図3に示した実施例の製造手順を表
す作業概念図である。
FIG. 4 is a conceptual working diagram showing a manufacturing procedure of the embodiment shown in FIG. 3 together with FIG.

【図5】図4と共に図3に示した実施例の製造手順を表
す作業概念図である。
FIG. 5 is a conceptual working diagram showing a manufacturing procedure of the embodiment shown in FIG. 3 together with FIG. 4;

【図6】従来の射出成形用金型の一例の主要部を抽出拡
大した断面図である。
FIG. 6 is a cross-sectional view in which main parts of an example of a conventional injection mold are extracted and enlarged.

【符号の説明】[Explanation of symbols]

11 固定側型枠 12 ランナ 13 コア 14 キャビティ 15 成形駒 16 可動側型枠 17, 18 冷却水通路 19 基材 20 無電解ニッケルメッキ層 21 窒化クロム層 22 成形面 23 基材 24 雌ねじ穴 25 ニッケル層 26 母型 27 導電膜 28 電鋳塊 REFERENCE SIGNS LIST 11 Fixed side mold 12 Runner 13 Core 14 Cavity 15 Molding piece 16 Movable mold 17, 18 Cooling water passage 19 Base material 20 Electroless nickel plating layer 21 Chromium nitride layer 22 Molding surface 23 Base material 24 Female screw hole 25 Nickel layer 26 matrix 27 conductive film 28 electroformed ingot

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも銅を主体とする金型基材と、
この金型基材の表面を覆うニッケル層とを具えた射出成
形用金型であって、 前記ニッケル層を覆って成形面を形成するチタンあるい
はクロムの窒化物からなる表面層をさらに具えたことを
特徴とする射出成形用金型。
1. A mold base mainly composed of at least copper,
An injection mold having a nickel layer covering the surface of the mold substrate, further comprising a surface layer made of a nitride of titanium or chromium that forms a molding surface by covering the nickel layer. A mold for injection molding.
【請求項2】 前記金型基材がベリリウム銅またはリン
青銅であることを特徴とする請求項1に記載の射出成形
用金型。
2. The injection mold according to claim 1, wherein the mold base is beryllium copper or phosphor bronze.
【請求項3】 前記ニッケル層が無電解メッキによって
形成されていることを特徴とする請求項1または請求項
2に記載の射出成形用金型。
3. The injection mold according to claim 1, wherein the nickel layer is formed by electroless plating.
【請求項4】 無電解ニッケル層の硬度を熱処理によっ
てHv750〜Hv850の範囲に収めたことを特徴と
する請求項3に記載の射出成形用金型。
4. The injection mold according to claim 3, wherein the hardness of the electroless nickel layer is kept in a range of Hv750 to Hv850 by heat treatment.
【請求項5】 前記表面層がPVD法によって形成され
ていることを特徴とする請求項1から請求項3の何れか
に記載の射出成形用金型。
5. The injection molding die according to claim 1, wherein the surface layer is formed by a PVD method.
【請求項6】 少なくとも銅を主体とする金型基材の表
面に無電解メッキ層を形成するステップと、 この無電解メッキ層の表面に成形面を構成するチタンあ
るいはクロムの窒化物からなる表面層をPVD法によっ
て形成するステップとを具えたことを特徴とする射出成
形用金型の製造方法。
6. A step of forming an electroless plating layer on at least a surface of a mold base mainly composed of copper, and a surface made of titanium or chromium nitride constituting a molding surface on the surface of the electroless plating layer. Forming the layer by a PVD method.
【請求項7】 前記金型基材がベリリウム銅あるいはリ
ン青銅であることを特徴とする請求項6に記載の射出成
形用金型の製造方法。
7. The method according to claim 6, wherein the mold base is beryllium copper or phosphor bronze.
【請求項8】 前記無電解ニッケル層を熱処理によって
Hv750〜Hv850の硬度に収めるステップをさら
に具えたことを特徴とする請求項6または請求項7に記
載の射出成形用金型の製造方法。
8. The method according to claim 6, further comprising the step of heat-treating the electroless nickel layer to a hardness of Hv750 to Hv850 by heat treatment.
【請求項9】 少なくとも銅を主体とする金型基材と、
この金型基材の表面を覆うニッケル層とを具えた射出成
形用金型であって、 前記金型基材は、銅を電鋳することによって形成され、
成形面を形成する前記ニッケル層は、電鋳によって形成
されていることを特徴とする射出成形用金型。
9. A mold base mainly composed of at least copper,
An injection mold comprising a nickel layer covering the surface of the mold substrate, wherein the mold substrate is formed by electroforming copper,
The injection molding die, wherein the nickel layer forming the molding surface is formed by electroforming.
【請求項10】 前記金型基材の厚みが5mm以上であ
り、前記ニッケル層の厚みが0. 5〜2mmの範囲にある
ことを特徴とする請求項9に記載の射出成形用金型。
10. The injection mold according to claim 9, wherein said mold base material has a thickness of 5 mm or more, and said nickel layer has a thickness of 0.5 to 2 mm.
【請求項11】 成形面と対応した表面形状を有する母
型の表面にニッケル層を電鋳するステップと、 このニッケル層の表面に銅を電鋳して金型基材を形成す
るステップと、 前記ニッケル層から前記母型を剥離するステップとを具
えたことを特徴とする射出成形用金型の製造方法。
11. A step of electroforming a nickel layer on a surface of a matrix having a surface shape corresponding to a molding surface; a step of electroforming copper on a surface of the nickel layer to form a mold base; Peeling the master from the nickel layer.
【請求項12】 前記金型基材の厚みが5mm以上であ
り、前記ニッケル層の厚みが0. 5〜2mmの範囲にある
ことを特徴とする請求項11に記載の射出成形用金型の
製造方法。
12. The injection molding die according to claim 11, wherein the thickness of the mold base is 5 mm or more, and the thickness of the nickel layer is in the range of 0.5 to 2 mm. Production method.
JP26852997A 1997-10-01 1997-10-01 Mold for injection molding and its manufacture Pending JPH11105039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26852997A JPH11105039A (en) 1997-10-01 1997-10-01 Mold for injection molding and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26852997A JPH11105039A (en) 1997-10-01 1997-10-01 Mold for injection molding and its manufacture

Publications (1)

Publication Number Publication Date
JPH11105039A true JPH11105039A (en) 1999-04-20

Family

ID=17459791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26852997A Pending JPH11105039A (en) 1997-10-01 1997-10-01 Mold for injection molding and its manufacture

Country Status (1)

Country Link
JP (1) JPH11105039A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110697A1 (en) * 2004-05-14 2005-11-24 Cfs Kempten Gmbh Tool, especially for the extrusion of plastics, utilization of the tool and method for recycling the tool
WO2005110698A3 (en) * 2004-05-14 2006-03-02 Teer Coatings Ltd Coating with hard wear and non-stick characteristics
US7178780B2 (en) * 2001-02-28 2007-02-20 Xerox Corporation Composite coating for mold insert and method for making a coated mold insert
JP2007262548A (en) * 2006-03-30 2007-10-11 Yamagata Prefecture Method of forming functional metal coated film onto metal product provided with temperature control function
JP2009097683A (en) * 2007-10-19 2009-05-07 Newton Co Ltd Worm and worm manufacturing die
JP2015520050A (en) * 2011-05-20 2015-07-16 ザ プロクター アンド ギャンブルカンパニー How to operate a high productivity injection molding machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178780B2 (en) * 2001-02-28 2007-02-20 Xerox Corporation Composite coating for mold insert and method for making a coated mold insert
WO2005110697A1 (en) * 2004-05-14 2005-11-24 Cfs Kempten Gmbh Tool, especially for the extrusion of plastics, utilization of the tool and method for recycling the tool
WO2005110698A3 (en) * 2004-05-14 2006-03-02 Teer Coatings Ltd Coating with hard wear and non-stick characteristics
JP2007262548A (en) * 2006-03-30 2007-10-11 Yamagata Prefecture Method of forming functional metal coated film onto metal product provided with temperature control function
JP2009097683A (en) * 2007-10-19 2009-05-07 Newton Co Ltd Worm and worm manufacturing die
JP2015520050A (en) * 2011-05-20 2015-07-16 ザ プロクター アンド ギャンブルカンパニー How to operate a high productivity injection molding machine

Similar Documents

Publication Publication Date Title
KR20080056095A (en) Injection mold assembly
TWI628314B (en) Mold, forming roll and peeled electroformed product
CN101092720A (en) An electroform method
JPH11105039A (en) Mold for injection molding and its manufacture
US20050247426A1 (en) Method for manufacturing a mold core coating
JPH0484978A (en) Manufacture of golf ball
TWI278538B (en) Method for producing plated molded products
JPS5847258B2 (en) Renzokuchi Yuzo Youchi Yugatanoseizou Hohou
KR100465531B1 (en) Micro mold and manufacturing method for micro part replication
JPH10202698A (en) Injection molding die
KR100769931B1 (en) Gate bush producing method by electroforming
JP3408975B2 (en) Mold for resin molding and method of manufacturing the same
JP6475446B2 (en) Mold manufacturing method
JPH02279311A (en) Mold and its manufacture
JP2783987B2 (en) Mold and its manufacturing method
US3562163A (en) Composition for conditioning plastic parts for adhesion
JPH0417974A (en) Chip for solder and its manufacture
JPH0336011A (en) Die for high frequency heating
JP2008238725A (en) Electroforming mold and its manufacturing method
Malone et al. Electroforming
JP2004300566A (en) Method for improving appearance of resin plated part, and product thereby
JPS5847259B2 (en) Rhizokuchiyuzoyoukanagatanoseizouhohou
CN113799328A (en) Injection mold and method for manufacturing same
JPH0780876A (en) Foaming resin mold and manufacture thereof
KR20100138625A (en) A method for forming plating using cold spray