JPH11104952A - Formed body for polishing, manufacture thereof, ruler table for polishing, and polishing method - Google Patents

Formed body for polishing, manufacture thereof, ruler table for polishing, and polishing method

Info

Publication number
JPH11104952A
JPH11104952A JP9272472A JP27247297A JPH11104952A JP H11104952 A JPH11104952 A JP H11104952A JP 9272472 A JP9272472 A JP 9272472A JP 27247297 A JP27247297 A JP 27247297A JP H11104952 A JPH11104952 A JP H11104952A
Authority
JP
Japan
Prior art keywords
polishing
pore
molded article
powder
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9272472A
Other languages
Japanese (ja)
Inventor
Toshihito Kuramochi
豪人 倉持
Yoshitaka Kubota
吉孝 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9272472A priority Critical patent/JPH11104952A/en
Publication of JPH11104952A publication Critical patent/JPH11104952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a formed body for polishing and manufacture thereof and a ruler table for polishing and polishing method which can reduce a waste fluid problem by the use of a polishing liquid excluding such separated grains and carry out the finish polishing with the same extent as usual method and polish effectively by improving the durability of a polishing process and polishing speed much more, in a process for polishing substrate materials such as a silicon wafer, oxide substrate and compound semi-conductor substrate. SOLUTION: This formed body is composed of mainly silica (silicon dioxide), a bulk density is 0.2-1.5 g/cm<3> , BET ratio surface area is 10-400 m<2> /g, average grain diameter is 0.001-0.5 μm, fine hole mode diameter is 0.01-0.3 μm, fine hole median diameter is 0.01-0.3 μm, integrated whole fine hole volume is 0.3-4 cm<3> /g and the integrated fine hole volume of the fine hole, whose fine hole diameter is 1 μm or more, is 20-70% of the integrated whole fine hole volume of the formed body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術利用分野】本発明は、シリコンウエ
ハーやニオブ酸リチウム、タンタル酸リチウムなどの酸
化物基板、化合物半導体基板などの基板材料等の研磨に
好適な研磨用成形体、その製造法、研磨用定盤及び研磨
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded body for polishing suitable for polishing substrate materials such as silicon wafers, oxide substrates such as lithium niobate and lithium tantalate, and compound semiconductor substrates, and a method for producing the same. The present invention relates to a polishing table and a polishing method.

【0002】[0002]

【従来の技術】従来、シリコンウエハーや酸化物基板、
化合物半導体基板などの基板材料等の研磨加工プロセス
では、基板材料等の表面にコロイダルシリカ等の遊離砥
粒を水酸化カリウム等の化学薬品に調合した研磨液を連
続的に流しながら不織布タイプやスウエードタイプ等の
ポリッシングパッドで磨くことによって仕上げており、
例えば特開平5−154760、特開平7−32659
7には種々の研磨剤と研磨布を用いてシリコンウエハー
の研磨を実施することが開示されている。しかし、この
ような方法による場合、遊離砥粒を大量に使用するた
め、遊離砥粒を大量に含有する研磨廃液が生じ、その処
理等については研磨処理の効率、廃液処理の設備面、環
境への影響を考慮すると改善されるべきものであった。
また、研磨処理において、研磨布は目詰まり等の性能劣
化が短時間で生じるために新たなものへと取り替える必
要が生じ、さらにその研磨速度についても速いとはいえ
ず、研磨処理作業の効率化の面での課題もあった。
2. Description of the Related Art Conventionally, silicon wafers, oxide substrates,
In the polishing process of a substrate material such as a compound semiconductor substrate, a non-woven fabric type or a swab is prepared by continuously flowing a polishing liquid prepared by mixing free abrasive grains such as colloidal silica with a chemical such as potassium hydroxide on the surface of the substrate material or the like. Finished by polishing with a polishing pad such as Ade type,
For example, JP-A-5-154760, JP-A-7-32659
No. 7 discloses that a silicon wafer is polished using various polishing agents and polishing cloths. However, in the case of using such a method, a large amount of free abrasive grains is used, so that a polishing waste liquid containing a large amount of free abrasive grains is generated. Should be improved considering the impact of
In addition, in the polishing process, the performance of the polishing cloth such as clogging is deteriorated in a short time, so that it is necessary to replace the polishing cloth with a new one. Further, the polishing speed is not high, and the polishing process is performed more efficiently. There was also a problem in terms of.

【0003】[0003]

【発明が解決しようとする課題】このように従来の方法
により研磨加工を行った場合、コロイダルシリカ等の遊
離砥粒を大量に含有する研磨液を廃棄することになると
いう問題点が生じており、さらに、研磨処理作業を効率
化させることが望まれており、本発明はこのような問題
点に鑑みてなされたものである。その目的は、シリコン
ウエハーや酸化物基板、化合物半導体基板などの基板材
料等を研磨加工するプロセスにおいて、このような遊離
砥粒を含まない研磨液を使用することで廃液の問題を軽
減し、従来の方法と同程度の研磨仕上げとなり、かつ研
磨処理における耐久性があると共に研磨速度がいっそう
向上できることで研磨作業を効率化できる研磨用成形
体、その製造法、研磨用定盤及び研磨方法を提供するこ
とにある。
As described above, when the polishing is performed by the conventional method, there is a problem that a polishing liquid containing a large amount of free abrasive grains such as colloidal silica is discarded. Further, it has been desired to improve the efficiency of the polishing process, and the present invention has been made in view of such problems. The aim is to reduce the problem of waste liquid by using a polishing liquid that does not contain such free abrasive grains in the process of polishing substrate materials such as silicon wafers, oxide substrates, and compound semiconductor substrates. The present invention provides a molded article for polishing, which has the same level of polishing finish as the method described above, has durability in the polishing process, and can further improve the polishing rate, so that the polishing operation can be made more efficient, a manufacturing method thereof, a polishing platen and a polishing method. Is to do.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を重ねた結果、シリカ超微粉末
を用いて成形するにあたって原料粉末の造粒体と造孔剤
を混合したシリカ粉末を成形、加工して一定範囲内の特
性を有する研磨用成形体を得、これを研磨用定盤に組み
込んで基板材料等を研磨することで以下の知見を優れた
点を見出だした。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, when forming the powder using the ultrafine silica powder, the granulated raw material powder and the pore-forming agent were mixed. The obtained silica powder was molded and processed to obtain a molded body for polishing having characteristics within a certain range, and the following findings were found to be excellent by incorporating this into a polishing platen and polishing the substrate material and the like. Was.

【0005】1)研磨の際に、研磨用成形体の表面が、
その原料であるシリカ超微粉末により粗面となってお
り、これと被研磨材料とが直接接触するために、コロイ
ダルシリカ等の遊離砥粒を含まない研磨液を使用して基
板材料等の研磨加工プロセスへの適用が可能となり、し
かもその際に成形体の粒子の脱落が非常に少なくなり、
廃液の問題が軽減される。
1) During polishing, the surface of the molded article for polishing is
Since the surface is roughened by the ultrafine powder of silica, which is the raw material, and the material to be polished comes into direct contact, polishing of the substrate material and the like is performed using a polishing liquid that does not contain free abrasive grains such as colloidal silica. It can be applied to the processing process, and at that time, the particles of the molded body are very little dropped,
The problem of waste liquid is reduced.

【0006】2)研磨用成形体の強度が高いために研磨
加工プロセスにおいても耐久性があり、そのため長期に
渡って取換えなしで研磨作業を実施できる。
2) Since the strength of the molded body for polishing is high, it is durable even in the polishing process, so that the polishing operation can be performed without replacement for a long period of time.

【0007】3)研磨された被研磨材料の仕上がりが従
来の研磨布を用いた方法と同程度以上であり、しかも研
磨速度の面でも同等以上であって、研磨性能の経時的な
劣化が少ない。
[0007] 3) The finish of the polished material is equal to or more than that of the conventional method using a polishing cloth, and the polishing rate is equal to or more than that of the conventional method. .

【0008】4)たとえ遊離砥粒を含有する研磨剤を用
いた場合でも、従来の方法よりも希薄な遊離砥粒濃度で
研磨速度が向上する。
4) Even when an abrasive containing free abrasive grains is used, the polishing rate is improved at a concentration of free abrasive grains which is lower than that of the conventional method.

【0009】特に、研磨用成形体の細孔構造を一定範囲
内の特性とすることで、主としてシリカからなる研磨用
成形体の性能がよりいっそう向上し、すなわち研磨加工
の速度が向上して研磨作業の効率化が図れるという点を
見出だし、本発明を完成するに至った。
In particular, by setting the pore structure of the molded article for polishing to a characteristic within a certain range, the performance of the molded article for polishing mainly composed of silica is further improved, that is, the polishing speed is improved and the polishing is performed. They have found that work efficiency can be improved, and have completed the present invention.

【0010】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0011】まず、本発明の研磨用成形体について説明
する。
First, the molded article for polishing according to the present invention will be described.

【0012】本発明において用いられる研磨用成形体
は、主としてシリカ(二酸化珪素)からなり、かさ密度
が0.2〜1.5g/cm3、BET比表面積が10〜
400m2/g、平均粒子径が0.001〜0.5μ
m、積算総細孔容積が0.3〜4cm3/g、細孔径1
μmより大きい細孔の積算細孔容積が研磨用成形体の積
算総細孔容積の20〜70%である。
The abrasive compact used in the present invention is mainly composed of silica (silicon dioxide), has a bulk density of 0.2 to 1.5 g / cm 3 and a BET specific surface area of 10 to 10.
400 m 2 / g, average particle size 0.001 to 0.5 μ
m, cumulative total pore volume is 0.3 to 4 cm 3 / g, pore diameter 1
The cumulative pore volume of the pores larger than μm is 20 to 70% of the cumulative total pore volume of the molded article for polishing.

【0013】ここで、主としてシリカとは、本発明の研
磨用成形体の原料として用いられるシリカ粉末中のシリ
カ成分のことを実質的に意味しており、シリカ粉末を用
いて成形体を製造する際に用いられたバインダー等の添
加剤は最終的には焼成、焼結等の処理により消失してし
まう。従って、研磨用成形体中のシリカ成分とは、その
原料であるシリカ粉末の成分にもとづいた組成となる。
また、成形体を製造する際に用いられたバインダー等の
添加剤については、例えば、示唆熱重量分析等の分析方
法によりその存在の有無を確認することができ、通常、
500〜600℃程度まで加熱するとバインダー等の添
加剤はほとんど消失してしまう。
Here, mainly silica substantially means a silica component in a silica powder used as a raw material of the molded article for polishing of the present invention, and a molded article is produced using the silica powder. Additives such as binders used at that time are eventually lost by a process such as firing or sintering. Therefore, the silica component in the abrasive compact has a composition based on the component of the silica powder that is the raw material.
In addition, for additives such as a binder used when manufacturing a molded body, for example, the presence or absence thereof can be confirmed by an analytical method such as suggestive thermogravimetric analysis, and usually,
When heated to about 500 to 600 ° C., additives such as a binder almost disappear.

【0014】さらに、原料となるシリカ粉末の組成とし
ては、主としてシリカ、すなわちシリカ成分が全量の9
0重量%以上有するものが好ましく用いられ、例えば、
その種類として、乾式法シリカ、湿式法シリカなどが例
示できる。ここでいうシリカ成分とはシリカ含量を意味
しており、シリカ粉末を105℃で2時間加熱処理した
後のシリカ成分、不純物、灼熱減量(Loss of
Ignition、以下「Igロス」という)の総量を
全量としたときのシリカ成分の重量%である。従って、
灼熱減量を除けば、原料のシリカ粉末はシリカ成分とし
て、実質的に全量の97重量%以上となる。シリカ成分
が上記範囲を逸脱して低くなると、最終的に得られた研
磨用成形体を用いて研磨加工する際に、研磨される材料
(以下、「被研磨材料」という)が研磨用成形体中の不
純物により汚染を受けることがあったり、研磨加工時に
被研磨材料に欠陥が生じることがある。
Further, the composition of the silica powder as a raw material mainly includes silica, that is, a silica component having a total amount of 9%.
Those having 0% by weight or more are preferably used.
Examples of the type include dry silica and wet silica. The silica component as used herein means a silica content, and the silica component, impurities, and loss on ignition (Loss of loss) after heating the silica powder at 105 ° C. for 2 hours.
(Ig loss, hereinafter referred to as "Ig loss"). Therefore,
Excluding the loss on ignition, the silica powder as the raw material is 97% by weight or more of the total amount as the silica component. If the silica component falls below the above range, the material to be polished (hereinafter, referred to as “material to be polished”) is polished when the polishing is performed using the finally obtained molded body for polishing. In some cases, contamination may occur due to impurities therein, or a defect may occur in the material to be polished during polishing.

【0015】研磨用成形体のかさ密度範囲としては、研
磨中における研磨用成形体の形状を保持し、被研磨材料
の平滑な面を得るために0.2〜1.5g/cm3の範
囲が好ましく、さらに研磨用成形体を用いての研磨加工
時の耐久性や研磨速度を低下しにくくするために0.4
〜0.9g/cm3の範囲が好ましい。かさ密度が0.
2g/cm3を下回ると、耐久性が低下するとともにそ
の形状を保てないほど形状保持性が悪くなり、1.5g
/cm3を上回ると被研磨材料の表面の欠陥が無視でき
なくなるため平滑な面を得ることができず好ましくな
い。
The bulk density of the molded article for polishing is in the range of 0.2 to 1.5 g / cm 3 in order to maintain the shape of the molded article for polishing and obtain a smooth surface of the material to be polished. Is preferable, and furthermore, in order to make it difficult to lower the durability and the polishing rate at the time of polishing using the molded article for polishing, 0.4
The range is preferably from 0.9 g / cm 3 to 0.9 g / cm 3 . The bulk density is 0.
If it is less than 2 g / cm 3 , the durability is reduced and the shape retention is so poor that the shape cannot be maintained.
If it exceeds / cm 3 , defects on the surface of the material to be polished cannot be ignored, and a smooth surface cannot be obtained, which is not preferable.

【0016】研磨用成形体のBET比表面積範囲として
は10〜400m2/gの範囲が好ましく、さらに、研
磨加工時において研磨用成形体の研磨面のドレッシング
等の処理の頻度を減らすために10〜150m2/gの
範囲が好ましい。BET比表面積が400m2/gを超
えると成形体の形状を保てないほど形状保持性が悪くな
り、10m2/gを下回ると被研磨材料の表面の欠陥が
無視できなくなるため平滑な面を得ることができず好ま
しくない。
The BET specific surface area of the molded article for polishing is preferably in the range of 10 to 400 m 2 / g. Further, in order to reduce the frequency of processing such as dressing of the polished surface of the molded article for polishing during polishing. The range of -150 m < 2 > / g is preferable. When the BET specific surface area exceeds 400 m 2 / g, the shape retention of the molded article is deteriorated so that the shape of the molded body cannot be maintained. When the BET specific surface area is less than 10 m 2 / g, defects on the surface of the material to be polished cannot be ignored, so It is not preferable because it cannot be obtained.

【0017】研磨用成形体の平均粒子径の範囲として
は、多孔体への成形を容易にし、被研磨材料の平滑な面
を得るために0.001〜0.5μmの範囲が好まし
く、さらに、研磨加工時において研磨用成形体の研磨面
のドレッシング等の処理の頻度を減らすために0.01
〜0.5μmの範囲が好ましい。平均粒子径が0.00
1μmよりも小さくなると原料粉末の1次粒子径が0.
001μmよりも小さくなり、多孔体に成形することが
非常に難しくなるために実用に供し得なくなることがあ
り好ましくない。
The average particle size of the abrasive compact is preferably in the range of 0.001 to 0.5 μm in order to facilitate molding into a porous body and obtain a smooth surface of the material to be polished. In order to reduce the frequency of processing such as dressing of the polished surface of the molded article for polishing during polishing, 0.01
The range of about 0.5 μm is preferable. Average particle size 0.00
When the diameter is smaller than 1 μm, the primary particle diameter of the raw material powder becomes 0.1.
It becomes smaller than 001 μm, and it becomes extremely difficult to mold into a porous body.

【0018】さらに上記特徴を有する研磨用成形体の積
算総細孔容積が0.3〜4cm3/gの範囲であること
が好ましい。また、その細孔径分布としては、細孔径1
μmより大きい細孔の積算細孔容積が成形体の積算総細
孔容積の20〜70%の範囲が好ましく、さらに20〜
50%の範囲が好ましく、特に20〜30%の範囲が好
ましい。細孔モード径としては、0.01〜0.3μ
m、細孔メジアン径としては、0.01μm〜0.3μ
mであることが好ましい。この理由としては、a)研磨
中における研磨用成形体の形状を保持するため、b)被
研磨材料の平滑な面を得るため、c)研磨液等の吸水に
対して生じる研磨用成形体の割れ等を防止する効果を向
上させるため、d)研磨加工中の目詰まりを少なくする
ためなどである。
Further, it is preferable that the cumulative total pore volume of the molded article for polishing having the above characteristics is in the range of 0.3 to 4 cm 3 / g. The pore size distribution is as follows.
The cumulative pore volume of pores larger than μm is preferably in the range of 20 to 70% of the total pore volume of the molded body, and more preferably 20 to 70%.
A range of 50% is preferred, and a range of 20 to 30% is particularly preferred. The pore mode diameter is 0.01-0.3μ
m, the pore median diameter is 0.01 μm to 0.3 μm
m is preferable. The reasons are as follows: a) in order to maintain the shape of the polishing body during polishing; b) to obtain a smooth surface of the material to be polished; This is to improve the effect of preventing cracks and the like, d) to reduce clogging during polishing, and the like.

【0019】なお、本明細書において細孔モード径と
は、微分細孔径分布における微分値が最大となるところ
の細孔径を意味し、細孔メジアン径は積分細孔径分布に
おける積算細孔容積の最大値と最小値の範囲の中央値に
対する細孔径を意味する。また、細孔モード径、細孔メ
ジアン径は体積基準である。
In this specification, the pore mode diameter means the pore diameter at which the differential value in the differential pore diameter distribution is maximum, and the median pore diameter is the integrated pore volume in the integrated pore diameter distribution. It means the pore diameter with respect to the median of the range between the maximum value and the minimum value. The pore mode diameter and the pore median diameter are based on volume.

【0020】次に本発明において用いられる研磨用成形
体の製造法について説明する。
Next, a method for producing a molded article for polishing used in the present invention will be described.

【0021】以下に製造工程に従って本発明を詳細に説
明する。
Hereinafter, the present invention will be described in detail according to manufacturing steps.

【0022】原料粉末として用いられる主としてシリカ
からなる粉末の特性としては、形状保持性がよく、研磨
加工プロセスへの適用が可能な成形体が得られれば特に
限定されるものではないが、通常以下に述べる特性の原
料粉末が用いられる。
The characteristics of the powder mainly composed of silica used as a raw material powder are not particularly limited as long as a molded body having good shape retention and being applicable to the polishing process can be obtained. The raw material powder having the characteristics described in (1) is used.

【0023】すなわち、原料となるシリカ粉末は、主と
してシリカからなり、BET比表面積が25〜400m
2/g、平均粒子径が0.5〜50μm、かつBET比
表面積から算出される1次粒子径をDb(μm)、平均
粒子径をDs(μm)としたときにこれらの関係が1≦
Ds/Db≦4000の範囲にあり、粉末かさ密度が2
0〜140g/Lであることが好ましい。
That is, the silica powder as a raw material is mainly composed of silica and has a BET specific surface area of 25 to 400 m.
2 / g, the average particle diameter is 0.5 to 50 μm, and when the primary particle diameter calculated from the BET specific surface area is Db (μm) and the average particle diameter is Ds (μm), these relationships are 1 ≦
Ds / Db ≦ 4000, powder bulk density is 2
It is preferably from 0 to 140 g / L.

【0024】ここで、原料となるシリカ粉末の組成とし
ては、前記したようにシリカ成分が全量の90重量%以
上有するものが好ましく用いられる。
Here, as the composition of the silica powder as a raw material, the one having a silica component of 90% by weight or more of the total amount as described above is preferably used.

【0025】シリカ粉末のBET比表面積としては、2
5〜400m2/gの範囲が好ましく、さらに得られた
研磨用成形体の研磨加工時の研磨速度を容易に維持する
ために25〜200m2/gの範囲が好ましい。400
2/gを上回ると成形性が悪くなって研磨用成形体を
得にくくなることがあり、25m2/gを下回ると研磨
加工時に被研磨材料に欠陥を生じさせることがある。
The silica powder has a BET specific surface area of 2
The range is preferably from 5 to 400 m 2 / g, and more preferably from 25 to 200 m 2 / g in order to easily maintain the polishing rate at the time of polishing the obtained molded article for polishing. 400
If it is more than m 2 / g, the formability may be deteriorated and it may be difficult to obtain a molded body for polishing, and if it is less than 25 m 2 / g, a defect may occur in the material to be polished during polishing.

【0026】シリカ粉末の平均粒子径としては、0.5
〜50μmの範囲にあることが好ましく、0.5μmを
下回ると成形性が悪くなって研磨用成形体を得ることが
難しくなることがあり、50μmを上回ると研磨加工時
に被研磨材料に欠陥を生じさせることがある。
The average particle size of the silica powder is 0.5
When the thickness is less than 0.5 μm, the moldability is deteriorated, and it may be difficult to obtain a molded body for polishing. May be caused.

【0027】また、BET比表面積から算出される1次
粒子径をDb(μm)、平均粒子径をDs(μm)とし
たときに、これらの関係は1≦Ds/Db≦4000で
あることが好ましい。Ds/Dbが1を下回るというこ
とは平均粒子径よりも1次粒子径が小さいということを
意味しており、このようなことはあり得ない。Ds/D
bの値が4000を上回ると1次粒子径が凝集しやすく
なり成形が難しくなることがある。
When the primary particle diameter calculated from the BET specific surface area is Db (μm) and the average particle diameter is Ds (μm), these relations may be 1 ≦ Ds / Db ≦ 4000. preferable. When Ds / Db is less than 1, it means that the primary particle size is smaller than the average particle size, and this is not possible. Ds / D
If the value of b exceeds 4,000, the primary particle diameter tends to aggregate, and molding may be difficult.

【0028】ここで、BET比表面積から1次粒子径を
算出する方法としては、1次粒子を球形と仮定し、下記
(1)式により求めることができる。
Here, as a method for calculating the primary particle diameter from the BET specific surface area, the primary particles can be obtained by the following equation (1), assuming that the primary particles are spherical.

【0029】Db=6/(S×2.2) (1) 式中、SはBET比表面積(単位はm2/g)、Dbは
1次粒子径(単位はμm)を示し、シリカの理論密度を
2.2g/cm3として計算される。
Db = 6 / (S × 2.2) (1) In the formula, S represents a BET specific surface area (unit: m 2 / g), Db represents a primary particle diameter (unit: μm), and Calculated with a theoretical density of 2.2 g / cm 3 .

【0030】粉末かさ密度は20〜140g/Lである
ことが好ましく、20g/Lを下回ると成形が難しくな
ることがあり、140g/Lを上回ると研磨加工時に被
研磨材料に欠陥を生じさせることがある。
The bulk density of the powder is preferably 20 to 140 g / L, and if it is less than 20 g / L, molding may be difficult. If it is more than 140 g / L, defects may occur in the material to be polished during polishing. There is.

【0031】この時、研磨用成形体の圧縮強度は自ずと
1kg/cm2以上となる。
At this time, the compressive strength of the abrasive compact naturally becomes 1 kg / cm 2 or more.

【0032】次に、このような粉末特性を有する原料の
シリカ粉末とバインダーを混合し、さらに造粒した後に
この造粒粉末を崩さないように造孔剤と混合した後に成
形するが、バインダーをシリカ粉末と混合して造粒する
ことにより成形性が向上し、さらに、得られる造粒粉末
を造孔剤と混合して造孔剤の粒径が反映したシリカ成形
体を得ることで研磨用成形体中の細孔構造を制御し易く
なるため、研磨加工時において研磨速度を向上しうる研
磨用成形体が得られる。尚、上記の工程において、造粒
粉末を造孔剤と混合する前に一時的に別に移すなどして
保存しておいても良い。
Next, the raw material silica powder having such powder characteristics is mixed with a binder, and the mixture is further granulated. After that, the granulated powder is mixed with a pore-forming agent so as not to be broken, and then molded. The formability is improved by mixing with the silica powder and granulating, and further, the obtained granulated powder is mixed with the pore forming agent to obtain a silica molded body reflecting the particle size of the pore forming agent, and is used for polishing. Since it becomes easy to control the pore structure in the compact, a compact for polishing that can improve the polishing rate during polishing is obtained. In the above process, the granulated powder may be temporarily transferred and stored before mixing with the pore-forming agent.

【0033】上記の製造工程において、シリカ粉末とバ
インダーの混合方法としては特に限定されるものではな
いが、シリカ原料粉末の表面を十分に覆うために、通
常、水などを溶媒として水溶性のバインダーとシリカ粉
末が混合される。このときボールを用いたボールミル等
により混合することもできる。
In the above-mentioned production process, the method of mixing the silica powder and the binder is not particularly limited. However, in order to sufficiently cover the surface of the silica raw material powder, a water-soluble binder is usually used with water or the like as a solvent. And silica powder are mixed. At this time, they can be mixed by a ball mill or the like using balls.

【0034】このようにしてバインダーと混合された混
合粉末は、成形性を向上させるために造粒操作を行う。
造粒方法は特に限定されるものではないが、混合粉末を
スラリー状態のまま直接スプレードライヤーなどにより
噴霧乾燥を行ったり、また粉末を公知の方法により乾燥
後、転動法等により造粒することができる。
The mixed powder thus mixed with the binder is subjected to a granulating operation in order to improve the moldability.
The granulation method is not particularly limited. However, the mixed powder is spray-dried directly in a slurry state by a spray dryer or the like, or the powder is dried by a known method and then granulated by a rolling method or the like. Can be.

【0035】この時、造粒粉末の粒径は重量基準で全体
の50%以上が5〜300μmであることが好ましい。
このように造粒粉末の粒径を分布させることにより、成
形性が向上するとともに、粒径が揃っていることで後の
造孔剤との混合において、均一に混合され易くなる。こ
の範囲を逸脱した場合、粉末の粒径が細かすぎると粉末
の流動性が低下し、例えばプレス成形の時に金型内への
粉末の充填が悪くなったり、成形終了後に圧力を解放し
たときに成形体内にエアが流動性の低下とともに残りや
すく、ラミネーション等の欠陥を生じやすくなることが
あり、また、粉末の粒径が粗すぎると例えばプレス成形
の時に金型内への粉末の充填が悪くなり、成形性が悪く
なったりすることがある。なお、この粒径は通常光学顕
微鏡により観察したり、粒度分布測定器により測定する
ことで知ることができる。
At this time, it is preferable that 50% or more of the granulated powder has a particle size of 5 to 300 μm on a weight basis.
By distributing the particle size of the granulated powder in this way, the moldability is improved, and the uniform particle size facilitates uniform mixing in the subsequent mixing with the pore-forming agent. If it is out of this range, if the particle size of the powder is too fine, the fluidity of the powder is reduced, for example, the filling of the powder in the mold becomes worse during press molding, or when the pressure is released after the completion of molding. Air tends to remain in the molded body with a decrease in fluidity, and defects such as lamination may easily occur.If the particle size of the powder is too coarse, for example, the filling of the powder into the mold during press molding is poor. And the moldability may be deteriorated. In addition, this particle size can be usually known by observing with an optical microscope or measuring with a particle size distribution measuring device.

【0036】バインダーの混合量としては、特に限定さ
れるものではないが、成形操作等に支障がない量であれ
ばよく、シリカ粉末のBET比表面積が大きいため、体
積基準で、(シリカ粉末の体積):(バインダーの体
積)=90:10〜30:70程度となるようにバイン
ダーを添加することが好ましい。こうすることで1次粒
子の粒の周りをバインダーでぬらすことができ成形性を
良くすることができる。
The mixing amount of the binder is not particularly limited, but may be any amount which does not hinder the molding operation and the like. Since the BET specific surface area of the silica powder is large, (the volume of the silica powder) It is preferable to add the binder so that (volume) :( volume of binder) = about 90:10 to 30:70. By doing so, the periphery of the primary particles can be wetted with the binder, and the moldability can be improved.

【0037】バインダーの種類としては、造粒操作に支
障がないものであれば特に制限なく用いることができる
が、通常、結合剤、可塑剤、潤滑剤などを用いることが
でき、例えばアクリル樹脂、ポリオレフィン樹脂、ワッ
クス類、ステアリン酸などの低級脂肪酸、ステアリルア
ルコールなどの高級アルコール類を挙げることができ、
これらは単独あるいは2種以上用いることができる。
The kind of the binder can be used without any particular limitation as long as it does not hinder the granulation operation. In general, a binder, a plasticizer, a lubricant and the like can be used. Polyolefin resins, waxes, lower fatty acids such as stearic acid, higher alcohols such as stearyl alcohol, and the like,
These can be used alone or in combination of two or more.

【0038】次いでこの造粒粉末と造孔剤を混合する。
混合方法としては、造粒粉末を崩さずに造孔剤と混合で
きる方法であれば特に限定されるものではない。例えば
V型混合機による乾式混合などが例示できる。ここで、
造粒粉末を崩さないとは、造孔剤との混合前後で造粒粉
末の粒径分布が大きく変化しないことを意味しており、
造孔剤を混合する前の造粒粉末の粒径が重量基準で全体
の50%以上が5〜300μmである場合、造孔剤を混
合した後の造粒粉末の粒径が基準で全体の40%以上が
5〜300μmになることを示している。この粒径は通
常光学顕微鏡による観察したり粒度分布測定器により測
定することで知ることができる。
Next, the granulated powder and the pore-forming agent are mixed.
The mixing method is not particularly limited as long as it can be mixed with the pore-forming agent without breaking the granulated powder. For example, dry mixing using a V-type mixer can be exemplified. here,
Not breaking the granulated powder means that the particle size distribution of the granulated powder does not change significantly before and after mixing with the pore forming agent,
When the particle size of the granulated powder before mixing the pore-forming agent is 5 to 300 μm in 50% or more of the whole by weight, the particle size of the granulated powder after mixing the pore-forming agent is the whole 40% or more indicates that the thickness is 5 to 300 μm. This particle size can be known usually by observing with an optical microscope or measuring with a particle size distribution measuring device.

【0039】このように造孔剤との混合前後で造粒粉末
の粒径分布の変化を小さくすることにより、混合前の造
孔剤の粒径を研磨用成形体の細孔径分布へ反映させるこ
とができるために細孔径分布を容易に制御できるように
なり、研磨用成形体として好適な細孔構造とすることが
できる。このようにして混合した結果、最終的に得られ
る研磨用成形体の細孔構造は、細孔径が1μm以上の細
孔が占める細孔容積の和が全細孔容積の20〜70%の
割合とすることができ、実際の研磨加工プロセスにおい
て研磨速度を向上させることができる。この割合は、次
に述べる造孔の添加量により制御できる。
Thus, by reducing the change in the particle size distribution of the granulated powder before and after mixing with the pore-forming agent, the particle size of the pore-forming agent before mixing is reflected in the pore size distribution of the molded article for polishing. Because of this, the pore size distribution can be easily controlled, and a pore structure suitable for a molded article for polishing can be obtained. As a result of mixing in this manner, the pore structure of the polishing compact finally obtained is such that the sum of the pore volumes occupied by pores having a pore diameter of 1 μm or more is 20 to 70% of the total pore volume. And the polishing rate can be improved in the actual polishing process. This ratio can be controlled by the amount of the pore-forming agent described below.

【0040】造孔剤の量としては、前記細孔構造を有す
る研磨用成形体が得られれば特に限定されるものではな
いが、通常、(造孔剤の重量)/(造粒粉末の重量)=
2/1〜1/10の範囲の比率とすることが好ましい。
この比率が1/10より小さくなると造孔剤を混合した
効果が小さくなることがあり、2/1を上回ると研磨用
成形体が脆くなって実用に供することが困難となること
がある。
The amount of the pore-forming agent is not particularly limited as long as the molded article for polishing having the above-mentioned pore structure can be obtained, but is usually (weight of the pore-forming agent) / (weight of the granulated powder). ) =
The ratio is preferably in the range of 2/1 to 1/10.
If the ratio is less than 1/10, the effect of mixing the pore-forming agent may be reduced. If the ratio is more than 2/1, the molded article for polishing may become brittle and may be difficult to be put to practical use.

【0041】造孔剤の平均粒子径としては、0.1〜2
00μmの範囲が好ましい。平均粒子径が0.1μmよ
りも小さくなると、造孔剤を用いないで成形した場合の
細孔径分布と大差がなくなり、造孔剤を混合して大きい
細孔を導入する効果がなくなってしまうことがあり、2
00μmよりも大きいと成形が難しくなることがある。
The average particle size of the pore-forming agent is 0.1 to 2
A range of 00 μm is preferred. When the average particle size is smaller than 0.1 μm, there is no large difference from the pore size distribution when molded without using a pore-forming agent, and the effect of introducing a large pore by mixing the pore-forming agent is lost. There is 2
If it is larger than 00 μm, molding may be difficult.

【0042】また、加熱により造孔剤が燃焼、熱分解し
て気化し消失させ、研磨用成形体に孔をあけるが、その
際の温度としては、900℃以下が好ましく、さらに1
00〜900℃が好ましい。この温度が100℃を下回
ると取り扱いが困難となることがあるが、室温で固体状
であればよい。また、900℃を上回るとシリカ成形体
の収縮が起こることがあり、特に約950℃を上回ると
急激に収縮が生じるので、その収縮と造孔剤の消失が同
時に生じて研磨用成形体に欠陥を生じることがあるので
好ましくない。
Further, the pore-forming agent is burnt, thermally decomposed and vaporized by heating to evaporate and disappear, and a hole is formed in the molded article for polishing.
00-900 degreeC is preferable. If the temperature is lower than 100 ° C., it may be difficult to handle the material, but it may be solid at room temperature. If the temperature exceeds 900 ° C., shrinkage of the silica molded article may occur. In particular, if the temperature exceeds about 950 ° C., rapid shrinkage occurs. Is not preferred because it may cause

【0043】造孔剤の種類としては、パラフィンワック
ス、マイクロクリスタリンワックス等のワックス類、ポ
リメチルメタクリレート、ポリブチルメタクリレート等
のアクリル系樹脂の粉末、ポリエチレン、ポリプロピレ
ン、エチレン・酢酸ビニル共重合体、エチレン・エチル
アクリレート共重合体等のオレフィン系樹脂の粉末、ポ
リスチレン粉末、ステアリン酸等の低級脂肪酸の粉末、
馬鈴薯でんぷん、とうもろこしでんぷん、エチルセルロ
ース、カーボン粉末等が例示できる。
Examples of the pore-forming agent include waxes such as paraffin wax and microcrystalline wax, powders of acrylic resins such as polymethyl methacrylate and polybutyl methacrylate, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene Powder of olefin resin such as ethyl acrylate copolymer, polystyrene powder, powder of lower fatty acid such as stearic acid,
Potato starch, corn starch, ethyl cellulose, carbon powder and the like can be exemplified.

【0044】この造孔剤の粉末比重としては、シリカ粉
末に近い方がシリカ粉末と均一に混合され易いため好ま
しいが、密度の範囲は特に限定されない。
The powder specific gravity of the pore-forming agent is preferably closer to silica powder because it is easily mixed with silica powder, but the range of density is not particularly limited.

【0045】造粒粉末と造孔剤を混合した混合粉末の成
形方法は特に限定されるものではないが、圧力をかけて
成形する方法、スラリーとして鋳込むいわゆるスリップ
キャスティング法などが例示できる。例えば圧力をかけ
て成形する場合、プレス成形等の成形法が例示でき、そ
の圧力条件としては、得られるシリカ成形体の形状を保
持するため通常5kg/cm2以上の圧力が用いられ、
10kg/cm2以上の圧力がより効果的である。
The method of molding the mixed powder obtained by mixing the granulated powder and the pore-forming agent is not particularly limited, and examples thereof include a method of molding by applying pressure and a so-called slip casting method of casting as a slurry. For example, when molding under pressure, a molding method such as press molding can be exemplified, and the pressure condition is usually a pressure of 5 kg / cm 2 or more in order to maintain the shape of the obtained silica molded body,
Pressures of 10 kg / cm 2 or more are more effective.

【0046】シリカ成形体の研磨用成形体への加工方法
としては、加熱脱脂、加熱焼成、機械加工等による方法
が例示できるが、研磨用成形体として研磨作業に使用で
きる強度を付与できる加工方法であれば特に限定される
ものではないが、成形性を向上させるためには、成形前
にバインダーなどの有機物の結合剤を添加し、さらに造
孔剤も添加しているので、一般的には焼成前に脱脂する
ことが好ましい。
Examples of a method for processing the silica molded body into a molded body for polishing include a method using heat degreasing, heating and baking, machining, and the like, and a processing method capable of imparting a strength that can be used in a polishing operation as a molded body for polishing. If it is not particularly limited, in order to improve moldability, an organic binder such as a binder is added before molding, and a pore-forming agent is also added. It is preferable to degrease before firing.

【0047】脱脂の方法としては特に限定されるもので
はないが、例えば大気雰囲気下での加熱による脱脂、又
は窒素、アルゴン、ヘリウムなどの不活性雰囲気中での
加熱脱脂などが挙げられる。このときの雰囲気ガスの圧
力は減圧下、常圧下、場合によっては加圧下で行うこと
ができる。また、同様に成形性を向上させるために、水
分を添加し、その後焼成操作の前に乾燥させることもで
きる。
The method of degreasing is not particularly limited, and examples thereof include degreasing by heating in an air atmosphere, and degreasing by heating in an inert atmosphere such as nitrogen, argon or helium. At this time, the pressure of the atmosphere gas can be reduced, reduced pressure, or reduced pressure. Similarly, in order to improve the moldability, moisture may be added and then dried before the firing operation.

【0048】次に、バインダーや造孔剤を取り除いた成
形体は、一般的には強度的に脆くなっているため、その
強度を上げ、研磨加工の際の耐久性を向上させるため
に、例えば加熱による焼成を行うことが好ましく、これ
以外の公知の方法も用いることができる。
Next, since the molded body from which the binder and the pore-forming agent have been removed is generally brittle in terms of strength, in order to increase the strength and improve the durability during polishing, for example, It is preferable to perform baking by heating, and other known methods can also be used.

【0049】このようにして、本発明において用いられ
る研磨用成形体を製造するわけであるが、次に、この研
磨用成形体を研磨用の定盤として組み込み、さらにこれ
を用いて研磨する方法について説明する。
Thus, the molded article for polishing used in the present invention is manufactured. Next, the molded article for polishing is assembled as a polishing platen, and the polishing is performed using the same. Will be described.

【0050】まず、研磨用成形体と研磨用の付帯部品と
を用いて研磨用定盤が形成される。ここで、付帯部品と
は研磨用定盤を構成する種々の形状の構造体であり、こ
の付帯部品に対して研磨用成形体を種々の手法により配
置し、固定することで研磨用定盤が形成される。両者の
固定方法としては、接着剤を用いて接着し固定する方
法、付帯部品に凹凸を形成させ、その固定場所へ埋め込
む方法など本発明の目的を達成できる方法であれば制限
なく用いることができる。
First, a polishing platen is formed by using a polishing compact and a polishing accessory part. Here, ancillary parts are structures of various shapes constituting a polishing platen, and a polishing platen is arranged and fixed to the auxiliary parts by various methods to form a polishing platen. It is formed. As a fixing method of both, any method can be used without limitation as long as the method can achieve the object of the present invention, such as a method of bonding and fixing using an adhesive, a method of forming irregularities on the accessory parts, and a method of embedding in the fixing place. .

【0051】研磨用成形体を研磨用の付帯部品へ固定す
る際の研磨用成形体の個数については、1個または2個
以上用いれば良く、さらに2個以上用いることが好まし
い。この理由としては、i)研磨加工プロセスにおいて
用いられる研磨液を研磨中に適切に排出することで研磨
速度を向上させるためである。このため、研磨用成形体
を2個以上用いて研磨用定盤を形成させた場合には、研
磨用成形体の間の隙間より研磨液が排出できる。また、
1個を用いた場合には、成形体の研磨面の側に研磨液を
排出できる適当な溝の構造を持たせることが好ましい。
ii)また、研磨用成形体を2個以上用いて研磨用定盤
を形成させた場合には、被研磨材料当たりが良くなり、
被研磨材料全面の研磨速度に偏りなく、効率よく研磨で
きるようになる。
The number of the molded bodies for polishing when fixing the molded bodies for polishing to the auxiliary parts for polishing may be one, two or more, and more preferably two or more. The reason is that i) the polishing rate is improved by appropriately discharging the polishing liquid used in the polishing process during polishing. Therefore, when the polishing platen is formed using two or more polishing compacts, the polishing liquid can be discharged from the gap between the polishing compacts. Also,
When one is used, it is preferable to provide an appropriate groove structure capable of discharging the polishing liquid on the polishing surface side of the molded body.
ii) Further, when a polishing platen is formed by using two or more polishing compacts, the contact with the material to be polished is improved,
Polishing can be performed efficiently without biasing the polishing rate over the entire surface of the material to be polished.

【0052】用いられる研磨用成形体の形状は特に限定
されるものではなく、例えば円柱状ペレットや四角柱状
ペレット、三角柱状ペレットなどの角柱状ペレット等を
例示できる。また、その大きさは通常用いられる範囲で
あれば特に限定されるものではなく、研磨用定盤中の研
磨用成形体を組み込むための付帯部品の大きさに応じて
決められる。
The shape of the abrasive compact to be used is not particularly limited, and examples thereof include columnar pellets such as columnar pellets, quadrangular columnar pellets, and triangular columnar pellets. The size is not particularly limited as long as it is within a range usually used, and is determined according to the size of an accessory part for incorporating a molded body for polishing in a polishing table.

【0053】その大きさは特に限定されるものではない
が、一辺が5mm角〜100mm角の範囲内に収まる大
きさである方が実用上好ましい。例えば円柱状ペレット
では直径5〜100mm、四角柱状ペレットでは5〜1
00mmの範囲内の一辺であることになる。一辺が5m
m角の範囲よりも小さい場合でも研磨用定盤としての機
能を十分に有するが配列個数が非常に多くなるために実
用的でない。一辺が100mm角の範囲よりも大きい場
合にも研磨用定盤としての機能を十分に有するが、前述
の研磨用成形体を複数個配列する効果が小さくなってく
る。
Although the size is not particularly limited, it is practically preferable that one side be within a range of 5 mm square to 100 mm square. For example, a cylindrical pellet has a diameter of 5 to 100 mm, and a square pillar pellet has a diameter of 5 to 1 mm.
This is one side within the range of 00 mm. 5m on each side
Even if it is smaller than the range of m-square, it has a sufficient function as a polishing surface plate, but is impractical because the number of arrangements becomes very large. Even if one side is larger than the range of 100 mm square, it has a sufficient function as a polishing platen, but the effect of arranging a plurality of the above-mentioned polishing compacts is reduced.

【0054】研磨用成形体の厚さは特に限定されるもの
ではないが、3〜10mmの範囲内であることが好まし
い。厚さが3mmより小さい場合でも研磨用定盤として
の機能を十分に有するが実用性を考慮すると前記範囲が
好ましい。厚さが10mmよりも大きい場合でも研磨用
定盤としての機能を十分に有するが、実用性を考慮する
と前記範囲が好ましい。
The thickness of the shaped body for polishing is not particularly limited, but is preferably in the range of 3 to 10 mm. Even when the thickness is smaller than 3 mm, it has a sufficient function as a polishing plate, but the above range is preferable in consideration of practicality. Even when the thickness is larger than 10 mm, the surface has a sufficient function as a polishing plate, but the above range is preferable in consideration of practicality.

【0055】配列の仕方は研磨用成形体を研磨加工プロ
セスで使用できるために当然配列しなければならない場
所(例えば研磨装置の回転定盤など)の全面にわたって
偏りなく配列されていれば特に限定されるものではな
く、ランダムであってもかまわないが、研磨効率が被研
磨材料の研磨位置に影響されないようにするためには研
磨用定盤の中心線に対して左右対称になるように配置す
る方が好ましい。
The manner of arrangement is not particularly limited as long as the molded bodies for polishing can be used in the polishing process and are naturally arranged over the entire surface of a place (for example, a rotating platen of a polishing apparatus) which must be arranged. It may be random, but it is arranged symmetrically with respect to the center line of the polishing platen so that the polishing efficiency is not affected by the polishing position of the material to be polished. Is more preferred.

【0056】前述の研磨用成形体の配列する個数は当該
研磨用成形体個々の大きさ、研磨用成形体を研磨加工プ
ロセスで使用できるために当然配列しなければならない
場所(例えば研磨装置の回転定盤など)の大きさ等によ
り一概に限定することはできないが、研磨用成形体を配
列すべき場所の総面積に対する研磨用成形体の研磨面
(研磨加工時に被研磨材料に接触する面、以下同じ)の
総面積の割合で表すと95%以下であることが好まし
い。この割合が95%を超えるということは大きな研磨
用成形体1枚を使用した場合とあまり異ならなくなり、
研磨用成形体を複数個配列して研磨用定盤とする効果が
小さくなってしまう。この割合の下限値は特に限定され
るものではないが、小さすぎると研磨用成形体の研磨面
の総面積が小さくなることを意味しており、30%程度
以上が実用的である。
The number of the above-mentioned abrasive compacts to be arranged depends on the size of each of the abrasive compacts and a place where the abrasive compacts must be arranged in order to be usable in the polishing process (for example, the rotation of the polishing apparatus). Although it cannot be unconditionally limited by the size of the platen or the like, the polishing surface of the polishing molded body with respect to the total area of the place where the molded bodies for polishing are to be arranged (the surface that comes into contact with the material to be polished during polishing, It is preferable that it is 95% or less in terms of the ratio of the total area (hereinafter the same). The fact that this ratio exceeds 95% is not so different from the case of using one large abrasive compact,
The effect of arranging a plurality of polishing compacts to form a polishing platen is reduced. The lower limit of this ratio is not particularly limited, but if it is too small, it means that the total area of the polished surface of the molded article for polishing is small, and about 30% or more is practical.

【0057】研磨用成形体を複数個配列する場合の研磨
用成形体を研磨加工プロセスで使用できるために当然配
列しなければならない場所(例えば研磨装置の回転定盤
など)への固定方法は、研磨用成形体を研磨加工プロセ
スで使用することが可能である固定方法であれば特に限
定されるものではないが、例えば接着剤などで個々に固
定する方法、固定場所へ埋め込む方法などが例示でき
る。
When a plurality of abrasive compacts are arranged, a method of fixing the abrasive compacts to a place where the abrasive compacts must be naturally arranged (for example, a rotating platen of a polishing apparatus) in order to be used in the polishing process is as follows. The fixing method is not particularly limited as long as the forming method for polishing can be used in the polishing process, but examples thereof include a method of individually fixing with an adhesive or the like, a method of embedding in a fixing place, and the like. .

【0058】さらに、本発明の方法により得られる研磨
用成形体を研磨用定盤として組み込んで研磨加工プロセ
スに使用することもできるが、実施に際しては、定盤と
して研磨加工プロセスにおいて使用できるものであれ
ば、その性状、研磨条件、研磨液等の使用等については
特に限定されるものではない。例えば、研磨液を使用す
る場合には、水酸化カリウム水溶液等のアルカリ溶液を
使用することができる。ここで定盤とは、被研磨材料に
対して直接接触して研磨するために用いられ、研磨加工
プロセスにおいて十分な強度を有し、かつ被研磨材料を
研磨できる性能を有しておれば良い。従って、その形状
としては、被研磨材料と同じ形状を有するだけでなく、
必要に応じて非平面の形状を有していても良い。例え
ば、その形状として、平板状、凸面や凹面等の非平面を
有した円盤状、リング状、円筒状等を挙げることができ
る。
Further, the molded article for polishing obtained by the method of the present invention can be incorporated in a polishing table and used in a polishing process. If so, its properties, polishing conditions, use of a polishing liquid, and the like are not particularly limited. For example, when a polishing liquid is used, an alkaline solution such as an aqueous solution of potassium hydroxide can be used. Here, the surface plate is used for directly contacting and polishing the material to be polished, has sufficient strength in a polishing process, and may have a performance capable of polishing the material to be polished. . Therefore, not only does it have the same shape as the material to be polished,
It may have a non-planar shape if necessary. For example, the shape may be a flat plate, a disk having a non-planar surface such as a convex surface or a concave surface, a ring shape, a cylindrical shape, or the like.

【0059】また、本発明の研磨方法においては研磨布
を用いず、さらに本発明の研磨用成形体を用いることで
耐久性が向上し、安定した研磨性能を維持でき、取り替
え頻度を減少できるため、研磨中に従来の方法において
みられた研磨布の性能劣化によるその取り替え等による
研磨作業の中断頻度を減少させることができ、研磨作業
の効率化が達成できる。さらに本発明の製造法によって
細孔構造を制御することにより、研磨用成形体を使い切
るまでに目詰まりを改善するためになされるドレッシン
グの必要のないもしくはドレッシングの頻度を非常に抑
制した研磨用成形体が得られる。また、従来の研磨剤に
よる方法において生じる遊離砥粒を含んだ研磨廃液につ
いては、本発明の製造法により製造した研磨用成形体を
用いることで遊離砥粒を用いなくても研磨することが可
能となり、そのために研磨廃液中の遊離砥粒がなくな
り、廃液処理の問題が軽減される。遊離砥粒を含有する
研磨液を用いた場合でも、従来の方法の場合よりも希薄
な遊離砥粒濃度で研磨することができるため廃液処理の
問題が軽減される。例えば、研磨廃液に対して光を照射
した場合の透過率が従来の方法におけるものよりも高く
なることで、研磨廃液中に不要となった遊離砥粒の混入
が認められなくなることが確認できる。このような研磨
廃液の問題を考慮すると、研磨廃液の600nmの波長
の光における透過率が水の10%以上にすることが好ま
しい。また、当然のことながら研磨布を用いた従来の研
磨方法の場合のように遊離砥粒を含む研磨液を用いての
研磨も可能である。
Also, in the polishing method of the present invention, the durability is improved, the stable polishing performance can be maintained, and the frequency of replacement can be reduced by using the polishing article of the present invention without using the polishing cloth. In addition, the frequency of interruption of the polishing work due to replacement of the polishing cloth due to performance deterioration of the polishing cloth, which is observed in the conventional method during polishing, can be reduced, and the efficiency of the polishing work can be improved. Further, by controlling the pore structure by the production method of the present invention, there is no need for dressing to improve clogging until the molded article for polishing is used up, or the molding for polishing is extremely suppressed in frequency of dressing. The body is obtained. In addition, the polishing waste liquid containing free abrasive grains generated by the conventional method using an abrasive can be polished without using free abrasive grains by using the molded article for polishing manufactured by the manufacturing method of the present invention. Therefore, free abrasive grains in the polishing waste liquid are eliminated, and the problem of waste liquid treatment is reduced. Even in the case of using a polishing liquid containing free abrasive grains, the problem of waste liquid treatment can be reduced because the polishing can be performed at a concentration of the free abrasive grains which is lower than that of the conventional method. For example, it can be confirmed that when the polishing waste liquid is irradiated with light, the transmittance becomes higher than that in the conventional method, so that unnecessary free abrasive grains are not mixed into the polishing waste liquid. In consideration of such a problem of the polishing waste liquid, it is preferable that the transmittance of the polishing waste liquid at a wavelength of 600 nm be 10% or more of water. In addition, as a matter of course, it is also possible to perform polishing using a polishing liquid containing free abrasive grains as in the case of the conventional polishing method using a polishing cloth.

【0060】このような特性を有する研磨用成形体及び
研磨用成形体を備える研磨用定盤の用途としては、シリ
コンウエハーやガリウムリン、ガリウム砒素等の化合物
半導体基板、ニオブ酸リチウム、タンタル酸リチウム、
ホウ酸リチウム等の酸化物基板、石英ガラス基板などの
基板材料、石英ガラス、金属材料、建築等の石材等の研
磨に使用することができる。
Examples of uses of the polishing molded body having such characteristics and the polishing platen provided with the polishing molded body include a silicon wafer, a compound semiconductor substrate such as gallium phosphide and gallium arsenide, lithium niobate and lithium tantalate. ,
It can be used for polishing an oxide substrate such as lithium borate, a substrate material such as a quartz glass substrate, quartz glass, a metal material, and a stone material such as a building.

【0061】[0061]

【実施例】以下、本発明を実施例を用いてさらに詳細に
説明するが、本発明はこれらに限定されるものではな
い。なお、各評価は以下に示した方法によって実施し
た。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In addition, each evaluation was implemented by the method shown below.

【0062】〜シリカ含量〜 シリカ粉末の水分量、灼熱減量(Loss of Ig
nition、以下、「Igロス」という)、Al
23、Fe23、TiO2、CaO、MgO、Na2Oを
以下に示す方法により測定した。シリカ粉末の全量より
水分量を除いた残り分の重量(不含水量)よりIgロ
ス、Al23、Fe23、TiO2、CaO、MgO、
Na2Oの合計重量を差し引いた重量をシリカ含量と
し、重量%にて求めた。
-Silica Content- The water content and the loss on ignition of the silica powder (Loss of Ig)
Nition, hereinafter referred to as “Ig loss”), Al
2 O 3 , Fe 2 O 3 , TiO 2 , CaO, MgO, and Na 2 O were measured by the following methods. Ig loss, Al 2 O 3 , Fe 2 O 3 , TiO 2 , CaO, MgO, from the weight (water-free content) of the remainder of the silica powder excluding the water content
The weight obtained by subtracting the total weight of Na 2 O was defined as the silica content, and the weight was calculated in weight%.

【0063】水分量は、シリカ粉末を105℃、2時間
の加熱処理による処理前後の重量変化より求めた。
The water content was determined from the weight change before and after the silica powder was heated at 105 ° C. for 2 hours.

【0064】Igロスは、シリカ粉末を105℃、2時
間加熱して水分を取り除いた試料を基にし、さらに10
00℃で加熱処理し、その処理前後の重量変化より求め
た。
The Ig loss was determined by heating the silica powder at 105 ° C. for 2 hours to remove water, and
Heat treatment was performed at 00 ° C., and the weight change before and after the treatment was determined.

【0065】Al23、Fe23、TiO2、CaO、
MgO、Na2Oの量は、シリカ粉末を105℃、2時
間加熱して水分を取り除いた試料を基にし、これを溶解
させた後、ICP法で測定して求めた。
Al 2 O 3 , Fe 2 O 3 , TiO 2 , CaO,
The amounts of MgO and Na 2 O were determined by heating a silica powder at 105 ° C. for 2 hours to remove water, dissolving the same, and measuring by ICP method.

【0066】なお、研磨用成形体のシリカ含量について
は、得られた成形体を示差熱重量分析計((株)リガ
ク、型式:TAS−100)を用い、昇温速度10℃/
分にて測定したところ、室温から1000℃の範囲にお
いて重量の減少は認められず、シリカ粉末を用いて成形
体を製造する際に用いられたバインダー等の添加剤は消
失してしまっていることが確認された。
The silica content of the molded article for polishing was measured using a differential thermogravimetric analyzer (Rigaku Corporation, model: TAS-100) at a heating rate of 10 ° C. /
When measured in minutes, no decrease in weight was observed in the range from room temperature to 1000 ° C., and additives such as binders used when manufacturing a molded body using silica powder had disappeared. Was confirmed.

【0067】〜かさ密度〜 100mm×100mm×15mm(厚さ)の平板状試
料を作製し、サンプルとした。このサンプルを電子天秤
で測定した重量と、マイクロメータで測定した形状寸法
とから算出した。
Bulk Density A flat sample having a size of 100 mm × 100 mm × 15 mm (thickness) was prepared and used as a sample. This sample was calculated from the weight measured with an electronic balance and the shape and dimensions measured with a micrometer.

【0068】〜粉末かさ密度〜 JIS−K−5101のみかけ密度試験方法の静置法に
準拠し、粉末を目開き0.50mmのふるいを通して分
散落下させ、30.0mLのステンレス製シリンダに受
け、山盛りになったところで直線状へらで擦り切り、シ
リンダ内の重量を測定し、次式(2)により求めた。
-Powder bulk density- According to the stationary method of the apparent density test method of JIS-K-5101, the powder is dispersed and dropped through a sieve having an opening of 0.50 mm, received in a 30.0 mL stainless steel cylinder, At the peak, it was rubbed off with a linear spatula, the weight in the cylinder was measured, and it was determined by the following equation (2).

【0069】E=W/30 (2) 式中、Eは粉末かさ密度(単位はg/mL)、Wはシリ
ンダ内粉末重量(単位はg)、30はシリンダ内容積
(単位はmL)であり、粉末かさ密度の単位は任意に換
算する。本明細書においては、測定したみかけ密度を粉
末かさ密度として表記した。
E = W / 30 (2) where E is powder bulk density (unit: g / mL), W is powder weight in cylinder (unit: g), and 30 is volume in cylinder (unit: mL). Yes, the unit of powder bulk density is arbitrarily converted. In this specification, the measured apparent density is described as powder bulk density.

【0070】〜平均粒子径〜 研磨用成形体の一部を、走査型電子顕微鏡ISI DS
−130(明石製作所製)で観察し、シリカ粒子部分の
みを考慮してインタセプト法により求めた。
[Average Particle Size] A part of the abrasive compact was subjected to scanning electron microscope ISI DS
Observed with -130 (manufactured by Akashi Seisakusho), and determined by the intercept method considering only the silica particle portion.

【0071】〜BET比表面積〜 研磨用成形体を砕いた後、MONOSORB(米国QU
ANTACHROME社製)を用い、BET式1点法に
より測定した。
BET Specific Surface Area After grinding the molded body for polishing, MONOSORB (QUA
(Antachrom Co., Ltd.) using the BET one-point method.

【0072】〜細孔構造〜 研磨用成形体を、水銀ポロシメーター(島津製作所製、
ポアサイザ9320)を用い、水銀圧入法により0〜2
70MPaの圧力範囲で測定した。水銀ポロシメーター
で得られる測定値は、水銀に圧力を掛けて気孔を有する
サンプル中に水銀を圧入し、圧力と浸入した水銀の積算
容積の関係から得られる。すなわち、ある直径を有する
気孔に水銀が入るための圧力は、Washburnの方
程式があり、この式を用いることにより、圧入圧力と浸
入した水銀との積算容積の関係が気孔の直径とその直径
よりも大きな直径を有する気孔に浸入した水銀の容積の
関係として求めることができる。そして、この浸入した
水銀の容積は水銀の密度で除することにより、その気孔
径よりも大きな気孔の容積を示す。この気孔径と気孔容
積の関係は通常、水銀の表面張力、接触角や測定装置の
構造からくる水銀頭などの必要な補正がなされる。水銀
ポロシメーターで得られた気孔径と気孔の積算容積の関
係から以下の値(体積基準)が求められる。なお、細孔
モード径は微分細孔分布における微分値が最大となると
ころの細孔径を、すなわち図1において示される微分細
孔径分布曲線のうち、微分細孔容積の最高値に対応する
細孔径(Aで示される)を意味する。また、細孔メジア
ン径は積分細孔径分布における積算総細孔容積の最小値
と最大値の中央値に対応する細孔径を、すなわち図2に
おいて示される積分細孔径分布曲線のうち、積分総細孔
容積の最大値(h)と最小値(図2においては0)の中
央値(1/hとなる)に対応する細孔径を意味する。
-Pore Structure- The abrasive compact was prepared by using a mercury porosimeter (manufactured by Shimadzu Corporation).
Using a pore sizer 9320) and a mercury intrusion method.
It was measured in a pressure range of 70 MPa. The measurement value obtained with a mercury porosimeter is obtained by applying pressure to mercury and injecting mercury into a sample having pores, and the relationship between the pressure and the cumulative volume of mercury that has entered. That is, the pressure for mercury to enter a pore having a certain diameter has a Washburn equation, and by using this equation, the relationship between the injection pressure and the integrated volume of mercury that has penetrated is larger than the diameter of the pore and its diameter. It can be determined as the relationship of the volume of mercury that has penetrated into pores having a large diameter. Then, the volume of the infiltrated mercury is divided by the density of the mercury to show the volume of pores larger than the pore diameter. The relationship between the pore diameter and the pore volume is usually corrected as necessary, such as the surface tension of mercury, the contact angle, and the mercury head coming from the structure of the measuring device. The following values (volume basis) are obtained from the relationship between the pore diameter obtained by the mercury porosimeter and the cumulative volume of the pores. The pore mode diameter is the pore diameter at which the differential value in the differential pore distribution is maximum, that is, the pore diameter corresponding to the highest value of the differential pore volume in the differential pore diameter distribution curve shown in FIG. (Denoted by A). The pore median diameter is the pore diameter corresponding to the median of the minimum and maximum values of the integrated total pore volume in the integrated pore diameter distribution, that is, the integral total fineness of the integrated pore diameter distribution curve shown in FIG. It means the pore diameter corresponding to the median value (1 / h) of the maximum value (h) and the minimum value (0 in FIG. 2) of the pore volume.

【0073】〜圧縮強度〜 JIS−R−1608に準拠し、研磨用成形体の試験片
(10mm×10mm×5mm(厚さ))を、島津オー
トグラフIS−10T(島津製作所製)を用い、クロス
ヘッド速度0.5mm/分で負荷を加えて測定した。
Compressive Strength In accordance with JIS-R-1608, a test piece (10 mm × 10 mm × 5 mm (thickness)) of a molded body for polishing was used by using a Shimadzu Autograph IS-10T (manufactured by Shimadzu Corporation). The measurement was performed with a load applied at a crosshead speed of 0.5 mm / min.

【0074】〜粉末の平均粒子径〜 シリカ超微粉末をサンプルとし、COULTER LS
130(COULTER ELECTRONICS社
製)を用いて液体モジュールで測定した。測定値は体積
基準である。
~ Average particle diameter of powder ~ Ultrafine silica powder was used as a sample, and COULTER LS
130 (manufactured by COULTER ELECTRONICS) using a liquid module. Measurements are on a volume basis.

【0075】〜研磨試験〜 直径25mm、厚さ5mmの研磨用成形体の円柱状試験
片を作製し、高速レンズ研磨装置の回転定盤(直径36
0mm)に装着し、成形体の表面を平坦に整えた。これ
を定盤回転数100rpm、定盤への被研磨材料の加工
圧力118g/cm2のもとで、被研磨材料として直径
3インチのタンタル酸リチウムを6枚用い、市販のコロ
イダルシリカ(フジミインコーポレーテッド製、COM
POL80)をシリカ(二酸化珪素)含有量8重量%と
なるように調製した研磨液(液温:25℃、pH=1
2)を用いて、、研磨液を100mL/分の速度で滴下
して循環使用しながら研磨した。研磨後、タンタル酸リ
チウム基板の表面を顕微鏡(OLYMPUS製、型式:
BH―2)で観察した。評価に際しては、極めて平滑で
スクラッチ等のない良好な面である場合を○、平滑にも
ならずに研磨加工できない場合を×とした。
Polishing Test A cylindrical test piece of a molded body for polishing having a diameter of 25 mm and a thickness of 5 mm was prepared, and was rotated on a rotating platen (diameter 36) of a high-speed lens polishing apparatus.
0 mm) to flatten the surface of the molded article. Under the conditions of a platen rotation speed of 100 rpm and a processing pressure of the material to be polished on the platen of 118 g / cm 2 , commercially available colloidal silica (Fujimi Incorporated) was used by using six pieces of lithium tantalate having a diameter of 3 inches as the material to be polished. DO, COM
POL80) was prepared to have a silica (silicon dioxide) content of 8% by weight (liquid temperature: 25 ° C., pH = 1).
Using 2), the polishing liquid was dropped at a rate of 100 mL / min and polished while being circulated. After polishing, the surface of the lithium tantalate substrate was examined with a microscope (manufactured by OLYMPUS, model:
BH-2). In the evaluation, ○ indicates that the surface was extremely smooth and had no scratches, etc., and X indicates that the surface could not be polished without being smooth.

【0076】また、研磨試験前後のタンタル酸リチウム
基板の厚さをダイアルゲージで測定することにより研磨
速度を算出した。すなわち、実施例1〜4及び比較例3
について、研磨試験1バッチ中に被研磨材料であるタン
タル酸リチウム基板の被研磨面の任意の10点の位置の
厚さを試験進行と共に断続的に測定して8時間あたりの
研磨速度を求め、これらの平均値を1バッチあたりの研
磨速度とし、各バッチ回数の研磨速度の平均値及び標準
偏差を求めた。尚、比較例2については5回の測定結果
の平均値をその研磨速度とした。
The polishing rate was calculated by measuring the thickness of the lithium tantalate substrate before and after the polishing test with a dial gauge. That is, Examples 1-4 and Comparative Example 3
For one polishing test, the thickness at any 10 points on the surface to be polished of the lithium tantalate substrate as the material to be polished is measured intermittently with the progress of the test during one batch of the polishing test, and the polishing rate per 8 hours is obtained. The average value was defined as the polishing rate per batch, and the average value and the standard deviation of the polishing rate for each batch were determined. In Comparative Example 2, the average value of the results of five measurements was used as the polishing rate.

【0077】〜表面精度〜 研磨処理後の被研磨材料の表面精度を万能表面形状測定
器SE−3C(小坂研究所製)を用いて評価した。評価
は中心線平均粗さ(Ra)及び最大高さ(Rmax)を
カットオフ値0.8mm以上、測定長さ2.5mmの条
件で実施した。ここで、Raとは、中心線平均粗さを意
味し、粗さ曲線からその中心線の方向に測定長さ(Lで
表す)の部分を抜き取り、この抜き取り部分の中心線を
X軸、縦倍率の方向をY軸とし、粗さ曲線をy=f
(x)で表したとき、次式(3)によって求められる値
をマイクロメーター(μm)単位で表したものである。
-Surface Accuracy- The surface accuracy of the material to be polished after the polishing treatment was evaluated using a universal surface shape measuring instrument SE-3C (manufactured by Kosaka Laboratories). The evaluation was performed under the conditions of a center line average roughness (Ra) and a maximum height (Rmax) of a cutoff value of 0.8 mm or more and a measurement length of 2.5 mm. Here, Ra means the center line average roughness, and a portion of the measured length (represented by L) is extracted from the roughness curve in the direction of the center line, and the center line of the extracted portion is defined by the X axis and the vertical axis. The direction of magnification is the Y axis, and the roughness curve is y = f
When expressed by (x), the value obtained by the following equation (3) is expressed in units of micrometers (μm).

【0078】[0078]

【数1】 (Equation 1)

【0079】又、Rmaxとは、最大高さを意味し、断
面曲線から基準長さだけ抜き取った部分の平行線に平行
な2直線で抜き取り部分を挟んだとき、この2直線の間
隔を断面曲線の縦倍率の方向に測定して、この値をマイ
クロメーター(μm)単位で表したものである。
Further, Rmax means the maximum height. When two straight lines parallel to a parallel line of a portion extracted by the reference length from the cross-sectional curve sandwich the extracted portion, the interval between the two straight lines is defined by the cross-sectional curve. Is measured in the direction of the vertical magnification, and this value is expressed in units of micrometers (μm).

【0080】〜成形体の耐久性〜 研磨試験を継続的に行い、1時間毎に成形体を取り出し
てその表面状態を目視にて観察し、ひび、割れ、欠け等
の破損の有無を観察した。評価に際しては成形体の破損
が生じるまでの時間を調べた。
-Durability of the molded body-The polishing test was continuously performed, the molded body was taken out every hour, the surface condition was visually observed, and the presence or absence of breakage such as cracks, cracks, and chips was observed. . At the time of evaluation, the time until the molded article was damaged was examined.

【0081】〈研磨用成形体の製造・評価〉 実施例1 表1に示す特性の、湿式法により得た沈降性シリカの原
料粉末を油圧プレス機を用いてプレス成形(圧力:10
kg/cm2)してシリカ成形体を得た。これを焼成炉
(光洋リンドバーグ社製、型式:51668)にて70
0℃で2時間焼成して研磨用成形体を得た。これを前記
記載の評価方法により評価した。表2、3には得られた
結果として、研磨用成形体のかさ密度、BET比表面
積、平均粒子径、圧縮強度、細孔容積の測定値、細孔径
分布、モード径、メジアン径、得られた研磨用定盤によ
る研磨試験結果、表面精度等の測定結果及び耐久性試験
結果を示す。
<Manufacture and Evaluation of Polished Molded Product> Example 1 A raw material powder of precipitated silica obtained by a wet method and having the characteristics shown in Table 1 was press-formed using a hydraulic press (pressure: 10).
kg / cm 2 ) to obtain a silica molded body. This was placed in a firing furnace (manufactured by Koyo Lindberg, model: 51668) for 70 minutes.
It was baked at 0 ° C. for 2 hours to obtain a molded body for polishing. This was evaluated by the evaluation method described above. Tables 2 and 3 show the obtained results as the bulk density, BET specific surface area, average particle diameter, compressive strength, measured value of pore volume, pore diameter distribution, mode diameter, and median diameter of the abrasive compact. The results of a polishing test, a measurement result of surface accuracy, etc., and a durability test result using a polishing platen are also shown.

【0082】[0082]

【表1】 [Table 1]

【0083】[0083]

【表2】 [Table 2]

【0084】[0084]

【表3】 [Table 3]

【0085】実施例2 表1に示す特性の、湿式法により得た沈降性シリカの原
料粉末に添加物としてワックス系エマルジョン(中京油
脂製、マクセロンM)及びステアリン酸エマルジョン
(中京油脂製、セロゾール920)を原料粉末:ワック
ス系エマルジョン(固形分換算):ステアリン酸エマル
ジョン(固形分換算):水分=100:17:0.2:
408の重量比で混合してスラリー化した。このスラリ
ーをスプレードライヤー(大川原化工機製、型式:LT
−8)を用いて造粒粉末を調整し、デシケータ中で十分
に水分を除去した。この乾燥造粒粉末に馬鈴薯でんぷん
(キシダ化学製)を乾燥造粒粉末:馬鈴薯でんぷん=
1.8:1の体積比になるように混合して成形用原料粉
末とした。この成形用原料粉末を油圧プレス機を用いて
プレス成形(圧力:100kg/cm2)してシリカ成
形体を得た。これを焼成炉(光洋リンドバーグ社製、型
式:51668)にて400℃で2時間保持し、そのま
ま950℃まで昇温して2時間保持して研磨用成形体を
得た。これを実施例1と同様の方法により評価し、表
2、3に示した。
Example 2 A wax-based emulsion (manufactured by Chukyo Yushi, Maxelon M) and a stearic acid emulsion (manufactured by Chukyo Yushi, Cellosol 920 having the properties shown in Table 1) were added to the raw material powder of precipitated silica obtained by a wet method. ) As the raw material powder: wax-based emulsion (in terms of solid content): stearic acid emulsion (in terms of solid content): moisture = 100: 17: 0.2:
The mixture was mixed at a weight ratio of 408 to form a slurry. This slurry is spray-dried (Okawara Kakoki, Model: LT
The granulated powder was adjusted using -8), and water was sufficiently removed in a desiccator. The dried granulated powder is mixed with potato starch (manufactured by Kishida Chemical) as a dried granulated powder: potato starch =
The mixture was mixed at a volume ratio of 1.8: 1 to obtain a raw material powder for molding. This raw material powder was press-molded (pressure: 100 kg / cm 2 ) using a hydraulic press to obtain a silica molded body. This was kept at 400 ° C. for 2 hours in a firing furnace (manufactured by Koyo Lindberg, model: 51668), and then heated to 950 ° C. for 2 hours to obtain a molded body for polishing. This was evaluated in the same manner as in Example 1 and shown in Tables 2 and 3.

【0086】実施例3 表1に示す特性の、湿式法により得た沈降性シリカ粉末
に添加物としてワックス系エマルジョン(中京油脂製、
マクセロンM)及びステアリン酸エマルジョン(中京油
脂製、セロゾール920)を原料粉末:ワックス系エマ
ルジョン(固形分換算):ステアリン酸エマルジョン
(固形分換算):(水分)=100:17:0.2:4
08の重量比で混合してスラリー化した。このスラリー
をスプレードライヤー(大川原化工機製、型式:LT−
8)を用い、大気中にて入口温度180℃、送液速度
1.2kg/時間、差圧80mmaqの条件にて造粒粉
末を調製し、デシケータ中で十分に水分を除去して乾燥
した。この乾燥造粒粉末に馬鈴薯でんぷん(キシダ化学
製、平均粒子径65μm)を(乾燥造粒粉末):(馬鈴
薯でんぷん)=1.8:1の体積比になるように大気
中、室温下、大気圧にて混合し、成形用原料粉末とし
た。この成形用原料粉末を油圧プレス機を用いてプレス
成形(圧力:100kg/cm2)してシリカ成形体を
得た。これを400℃、1.5kg/cm2、窒素中で
加圧脱脂炉(ネムス製)を用いて加圧脱脂した後、焼成
炉(光洋リンドバーグ社製、型式:51668)にて9
75℃で2時間焼成して研磨用成形体を得た。これを実
施例1と同様の方法により評価し、表2、3に示した。
Example 3 A wax-based emulsion (manufactured by Chukyo Yushi Co., Ltd., manufactured by
Maxellon M) and stearic acid emulsion (manufactured by Chukyo Yushi Co., Ltd., Cerozol 920) as raw material powder: wax emulsion (solid content conversion): stearic acid emulsion (solid content conversion): (water) = 100: 17: 0.2: 4
The mixture was mixed at a weight ratio of 08 to form a slurry. This slurry is spray-dried (Okawara Kakoki, Model: LT-
Using 8), a granulated powder was prepared in the atmosphere under the conditions of an inlet temperature of 180 ° C., a liquid sending rate of 1.2 kg / hour, and a differential pressure of 80 mmaq, and water was sufficiently removed in a desiccator and dried. Potato starch (manufactured by Kishida Chemical, average particle size 65 μm) was added to the dried granulated powder in the air at room temperature so that the volume ratio of (dried granulated powder) :( potato starch) = 1.8: 1. The mixture was mixed at atmospheric pressure to obtain a raw material powder for molding. This raw material powder was press-molded (pressure: 100 kg / cm 2 ) using a hydraulic press to obtain a silica molded body. This was pressurized and degreased using a pressurized degreasing furnace (manufactured by Nemus) in nitrogen at 400 ° C., 1.5 kg / cm 2 , and then fired in a firing furnace (manufactured by Koyo Lindberg, model: 51668).
The molded body for polishing was obtained by firing at 75 ° C. for 2 hours. This was evaluated in the same manner as in Example 1 and shown in Tables 2 and 3.

【0087】実施例4 表1に示す特性の、湿式法により得た沈降性シリカの原
料粉末に添加物としてアクリル系バインダー(中央理化
工業製、リカボンドSA−200)及びステアリン酸エ
マルジョン(中京油脂製、セロゾール920)を原料粉
末:アクリル系バインダー(固形分換算):ステアリン
酸エマルジョン(固形分換算):水分=100:17:
0.2:613の重量比で混合してスラリー化した。こ
のスラリーをスプレードライヤー(大川原化工機製、型
式:LT−8)を用いて造粒粉末を調整し、デシケータ
中で十分に水分を除去した。この乾燥造粒粉末に馬鈴薯
でんぷん(キシダ化学製)を乾燥造粒粉末:馬鈴薯でん
ぷん=1.8:1の体積比になるように混合して成形用
原料粉末とした。この成形用原料粉末を油圧プレス機を
用いてプレス成形(圧力:100kg/cm2)してシ
リカ成形体を得た。これを400℃、1.5kg/cm
2、窒素中で加圧脱脂炉(ネムス製)を用いて加圧脱脂
した後、焼成炉(光洋リンドバーグ社製、型式:516
68)にて1000℃で2時間焼成して研磨用成形体を
得た。これを実施例1と同様の方法により評価し、表
2、3に示した。
Example 4 An acrylic binder (manufactured by Chuo Rika Kogyo Co., Ltd., Ricabond SA-200) and a stearic acid emulsion (manufactured by Chukyo Yushi Co., Ltd.) were added to the raw material powder of the precipitated silica obtained by the wet method having the characteristics shown in Table 1. , Aerosol 920) as raw material powder: acrylic binder (in terms of solid content): stearic acid emulsion (in terms of solid content): moisture = 100: 17:
A slurry was prepared by mixing at a weight ratio of 0.2: 613. This slurry was used to prepare granulated powder using a spray dryer (manufactured by Okawara Kakoki Co., Ltd., model: LT-8), and water was sufficiently removed in a desiccator. Potato starch (manufactured by Kishida Chemical Co., Ltd.) was mixed with the dried granulated powder in a volume ratio of dried granulated powder: potato starch = 1.8: 1 to obtain a raw material powder for molding. This raw material powder was press-molded (pressure: 100 kg / cm 2 ) using a hydraulic press to obtain a silica molded body. 400 ° C, 1.5 kg / cm
2. After degreasing under pressure using a pressure degreasing furnace (manufactured by Nemus) in nitrogen, a firing furnace (manufactured by Koyo Lindberg Co., model: 516)
68), and baked at 1000 ° C. for 2 hours to obtain a molded body for polishing. This was evaluated in the same manner as in Example 1 and shown in Tables 2 and 3.

【0088】比較例1 表1に示す特性の、湿式法により得た沈降性シリカの原
料粉末を、圧力100kg/cm2にて油圧プレス機を
用いてプレス成形してシリカ成形体を得た。これを焼成
炉(モトヤマ製、型式:SUPER−C)にて1300
℃で2時間焼成して成形体を得た。これを実施例1と同
様の方法により評価した。表2、3には得られた結果と
して、シリカ成形体のかさ密度、BET比表面積、積算
総細孔容積の測定値と、得られた成形体による研磨試験
結果、耐久性試験結果を示す。
Comparative Example 1 Raw material powder of precipitated silica having the properties shown in Table 1 and obtained by a wet method was press-molded at a pressure of 100 kg / cm 2 using a hydraulic press to obtain a silica molded body. This was fired in a firing furnace (Motoyama, model: SUPER-C) for 1300
C. for 2 hours to obtain a molded body. This was evaluated in the same manner as in Example 1. Tables 2 and 3 show, as the obtained results, the measured values of the bulk density, the BET specific surface area, and the total integrated pore volume of the silica molded body, and the results of the polishing test and the durability test using the obtained molded body.

【0089】比較例2 スウエード系ポリッシングパッド(フジミインコーポレ
ーテッド製、SURFIN 018−3)を高速レンズ
研磨装置の回転定盤(直径360mm)に貼付し、定盤
回転数100rpm、定盤への被研磨材料の表2記載の
所定の加工圧力、砥粒濃度(20重量%)のもとで、被
研磨材料としてタンタル酸リチウムを用い、研磨液とし
て水酸化カリウム水溶液(pH=12)を用いて、研磨
液を100ml/分の速度で滴下して循環使用しながら
研磨した。表2、3には得られた結果として、表面精度
等の測定結果を示す。
Comparative Example 2 A suede-type polishing pad (SURFIN 018-3, manufactured by Fujimi Incorporated) was attached to a rotating platen (diameter 360 mm) of a high-speed lens polishing apparatus, and the platen was polished to a platen rotation speed of 100 rpm. Under the predetermined processing pressure and abrasive grain concentration (20% by weight) described in Table 2 of the materials, lithium tantalate was used as the material to be polished, and a potassium hydroxide aqueous solution (pH = 12) was used as the polishing liquid. The polishing liquid was dropped at a rate of 100 ml / min and polished while being circulated. Tables 2 and 3 show measurement results such as surface accuracy as the obtained results.

【0090】比較例3 実施例3と同様の原料を用い、実施例3と同様に造粒粉
末を調整し、デシケータ中で十分に水分を除去した。こ
の乾燥造粒粉末に実施例3とは異なり造孔剤を添加せず
にそのままの状態で油圧プレス機を用いてプレス成形
(圧力:100kg/cm2)してシリカ成形体を得
た。これを400℃、1.5kg/cm2、窒素中で加
圧脱脂炉(ネムス製)を用いて加圧脱脂した後、焼成炉
(光洋リンドバーグ社製、型式:51668)にて95
0℃で2時間焼成して研磨用成形体を得た。これを実施
例1と同様の方法により評価し、表2、3に示した。
Comparative Example 3 Using the same raw materials as in Example 3, a granulated powder was prepared in the same manner as in Example 3, and water was sufficiently removed in a desiccator. Unlike in Example 3, the dried granulated powder was press-formed (pressure: 100 kg / cm 2 ) using a hydraulic press without adding a pore-forming agent to obtain a silica molded body. This was pressurized and degreased using a pressurized degreasing furnace (manufactured by Nemus) in nitrogen at 400 ° C. and 1.5 kg / cm 2 , and then 95% in a firing furnace (manufactured by Koyo Lindberg, model: 51668).
It was baked at 0 ° C. for 2 hours to obtain a molded body for polishing. This was evaluated in the same manner as in Example 1 and shown in Tables 2 and 3.

【0091】以上の実施例1〜4と比較例1〜2の結果
を比較すると、表2にて明らかなように比較例1では研
磨試験結果が悪いことが分かった。また、表3にて明ら
かなように、実施例1〜4は比較例2、3のいずれより
も研磨速度が顕著に速くなり、特に比較例2で示される
研磨布を用いた方法では砥粒濃度を高くしても研磨速度
は実施例よりも遅いことが分かった。
When the results of Examples 1 to 4 and Comparative Examples 1 and 2 were compared, it was found that Comparative Example 1 had poor polishing test results, as is clear from Table 2. Further, as is apparent from Table 3, the polishing rates of Examples 1 to 4 were significantly higher than those of Comparative Examples 2 and 3. Particularly, in the method using the polishing cloth shown in Comparative Example 2, abrasive grains were used. It was found that the polishing rate was lower than in the example even when the concentration was increased.

【0092】さらに実施例3と比較例3の結果から、本
発明の製造法により製造された研磨用成形体は従来の製
造法で製造された研磨用成形体に比べて、図3〜6に示
したように、微分細孔径分布曲線及び積分細孔径分布曲
線において、細孔径1μm(図においては、10000
オングストローム)より大きいところに多量の細孔の存
在が明らかに認められる。このように本発明の製造法に
より得られたその細孔構造に特徴のある研磨用成形体を
研磨加工に使用することで、研磨性能、特に研磨速度が
著しく増大する効果が確認できた。
Further, from the results of Example 3 and Comparative Example 3, the abrasive compact manufactured by the manufacturing method of the present invention is shown in FIGS. 3 to 6 as compared with the abrasive compact manufactured by the conventional manufacturing method. As shown, in the differential pore diameter distribution curve and the integral pore diameter distribution curve, the pore diameter was 1 μm (in the figure, 10,000 pores).
Angstroms), the presence of a large amount of pores is clearly observed. As described above, it was confirmed that the polishing performance, particularly the polishing rate, was significantly increased by using the polishing molded body obtained by the production method of the present invention and having a characteristic pore structure for polishing.

【0093】〈研磨廃液の評価〉 実施例5 実施例1で得られた研磨用成形体を用い、研磨試験に記
載の方法により研磨を実施した。研磨廃液については、
生じた廃液の濁度を分光光度計(日本分光製、型式:U
best−55)を用い、精製水を基準として波長60
0nmにおける透過率により評価した。その結果を表4
に示した。透過率が高い場合には研磨廃液中の遊離砥粒
量が少ないことを示し、低い場合には逆に多いことを示
す。
<Evaluation of Polishing Waste Liquid> Example 5 The polishing compact obtained in Example 1 was polished by the method described in the polishing test. For polishing waste liquid,
The turbidity of the generated waste liquid is measured with a spectrophotometer (manufactured by JASCO, model: U
best-55) and a wavelength of 60 with respect to purified water.
It was evaluated by the transmittance at 0 nm. Table 4 shows the results.
It was shown to. When the transmittance is high, it indicates that the amount of free abrasive grains in the polishing waste liquid is small, and when it is low, it indicates that the amount is large.

【0094】[0094]

【表4】 [Table 4]

【0095】実施例6〜8 表4に示すように、各実施例で得た研磨用成形体を実施
例5と同じ方法により研磨を実施し、研磨廃液を評価
し、まとめて表4に示した。
Examples 6 to 8 As shown in Table 4, the molded bodies for polishing obtained in each example were polished by the same method as in Example 5, and the polishing waste liquid was evaluated. Was.

【0096】比較例4 表4に示すように、各比較例で得た研磨用成形体を実施
例5と同じ方法により研磨を実施し、研磨廃液を評価
し、まとめて表4に示した。
Comparative Example 4 As shown in Table 4, the polishing compact obtained in each Comparative Example was polished by the same method as in Example 5, and the polishing waste liquid was evaluated.

【0097】以上の実施例5〜8、比較例4の結果か
ら、実施例5〜8では研磨廃液の透過率は比較例4より
も高く、研磨廃液中の遊離砥粒量が極めて少ないことを
示しており、研磨加工プロセスにおいて廃液処理への負
担が極めて小さくなることが分かる。
From the results of Examples 5 to 8 and Comparative Example 4, it can be seen that in Examples 5 to 8, the transmittance of the polishing waste liquid is higher than that of Comparative Example 4, and the amount of free abrasive grains in the polishing waste liquid is extremely small. This shows that the burden on the waste liquid treatment in the polishing process is extremely small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微分細孔径分布曲線を示す図であり、縦軸は微
分細孔容積を、横軸は細孔径を表す。
FIG. 1 is a diagram showing a differential pore diameter distribution curve, in which the vertical axis represents differential pore volume and the horizontal axis represents pore diameter.

【図2】積分細孔径分布曲線を示す図であり、縦軸は積
分総細孔容積を、横軸は細孔径を表す。
FIG. 2 is a graph showing an integrated pore size distribution curve, in which the vertical axis represents the integrated total pore volume and the horizontal axis represents the pore size.

【図3】実施例3で得られた研磨用成形体の微分細孔径
分布曲線を示す図であり、縦軸は微分細孔容積(単位
は、cm3/g・(オングストローム))を、横軸は細
孔径(単位はオングストローム、対数表示)を表す。
FIG. 3 is a view showing a differential pore diameter distribution curve of the molded article for polishing obtained in Example 3, wherein the vertical axis represents the differential pore volume (unit: cm 3 / g · (angstrom)), and the horizontal axis represents the differential pore volume. The axis represents the pore diameter (in Angstroms, logarithmic notation).

【図4】比較例3で得られた研磨用成形体の微分細孔径
分布曲線を示す図であり、縦軸は微分細孔容積(単位
は、cm3/g・(オングストローム))を、横軸は細
孔径(単位はオングストローム、対数表示)を表す。
FIG. 4 is a diagram showing a differential pore diameter distribution curve of the molded article for polishing obtained in Comparative Example 3, where the vertical axis represents the differential pore volume (unit: cm 3 / g · (angstrom)) and the horizontal axis represents the differential pore volume. The axis represents the pore diameter (in Angstroms, logarithmic notation).

【図5】実施例3で得られた研磨用成形体の積分細孔径
分布曲線を示す図であり、縦軸は積分総細孔容積(単位
は、cm3/g・(オングストローム))を、横軸は細
孔径(単位はオングストローム、対数表示)を表す。
FIG. 5 is a graph showing an integrated pore size distribution curve of the molded article for polishing obtained in Example 3, wherein the vertical axis represents the integrated total pore volume (unit: cm 3 / g · (angstrom)); The horizontal axis represents the pore diameter (unit is Angstroms, logarithmic notation).

【図6】比較例3で得られた研磨用成形体の積分細孔径
分布曲線を示す図であり、縦軸は積分総細孔容積(単位
は、cm3/g・(オングストローム))を、横軸は細
孔径(単位はオングストローム、対数表示)を表す。
FIG. 6 is a graph showing an integrated pore size distribution curve of the molded article for polishing obtained in Comparative Example 3, wherein the vertical axis represents the integrated total pore volume (unit: cm 3 / g · (angstrom)); The horizontal axis represents the pore diameter (unit is Angstroms, logarithmic notation).

【符号の説明】[Explanation of symbols]

1:図1で示される微分細孔径分布曲線 2:図2で示される積分細孔径分布曲線 A:図1で示される細孔モード径を示す点 B:図2で示される細孔メジアン径を示す点 1: Differential pore size distribution curve shown in FIG. 1 2: Integrated pore size distribution curve shown in FIG. 2 A: Point showing pore mode size shown in FIG. 1 B: Pore median size shown in FIG. Point to show

【発明の効果】本発明によれば、研磨加工プロセス中に
従来法で見られた遊離砥粒を大量に含有する研磨廃液を
生じることがなく、従来法と同程度の仕上がりでシリコ
ンウエハー、酸化物基板などの基板材料等を研磨加工す
ることができ、さらに耐久性があり、研磨速度も速いこ
とから、効率的な研磨作業が可能となり、シリコンウエ
ハー、酸化物基板等の基板材料の研磨加工プロセスに有
用である。
According to the present invention, a polishing waste liquid containing a large amount of free abrasive grains, which is observed in the conventional method, is not generated during the polishing process, and the silicon wafer and the oxidizing agent can be oxidized with the same finish as the conventional method. Polishing of substrate materials such as object substrates, more durable, and faster polishing speed enables efficient polishing work, and polishing of substrate materials such as silicon wafers and oxide substrates Useful for the process.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】主としてシリカ(二酸化珪素)からなり、
かさ密度が0.2〜1.5g/cm3であり、BET比
表面積が10〜400m2/gであり、平均粒子径が
0.001〜0.5μmであり、細孔モード径が0.0
1〜0.3μmであり、細孔メジアン径が0.01μm
〜0.3μmであり、積算総細孔容積が0.3〜4cm
3/gであり、かつ細孔径が1μm以上の細孔の積算細
孔容積が成形体の積算総細孔容積の20〜70%である
ことを特徴とする研磨用成形体。
(1) It is mainly composed of silica (silicon dioxide),
The bulk density is 0.2 to 1.5 g / cm 3 , the BET specific surface area is 10 to 400 m 2 / g, the average particle size is 0.001 to 0.5 μm, and the pore mode size is 0. 0
1 to 0.3 μm, and the median pore diameter is 0.01 μm
0.30.3 μm and the integrated total pore volume is 0.3-4 cm
A molded article for polishing, characterized in that the accumulated pore volume of pores having a pore size of 3 / g and a pore diameter of 1 μm or more is 20 to 70% of the accumulated total pore volume of the molded article.
【請求項2】請求項1に記載の研磨用成形体と付帯部品
とを備えてなることを特徴とする研磨用定盤。
2. A polishing surface plate comprising the polishing molded body according to claim 1 and an accessory part.
【請求項3】主としてシリカ(二酸化珪素)からなるシ
リカ粉末にバインダー及び造孔剤を添加し成形した後加
工して研磨用成形体を製造する方法において、シリカ粉
末とバインダーとを混合し造粒して造粒粉末とした後、
該造粒粉末に造孔剤を添加混合して成形し、その後加工
することを特徴とする請求項1に記載の研磨用成形体の
製造法。
3. A method for producing a molded article for polishing by adding a binder and a pore-forming agent to silica powder mainly composed of silica (silicon dioxide), forming the mixture, and processing the mixture to form a granulated product by mixing the silica powder and the binder. To make a granulated powder,
The method for producing a molded article for polishing according to claim 1, wherein the granulated powder is added with a pore-forming agent, mixed and molded, and then processed.
【請求項4】請求項3に記載の研磨用成形体の製造法に
おいて、造孔剤を混合する前の造粒粉末の粒径が造粒粉
末全重量の50%以上が5〜300μmであり、造孔剤
を混合した後に造粒粉末全重量の40%以上が5〜30
0μmとなるように混合することを特徴とする研磨用成
形体の製造法。
4. The method for producing a molded article for polishing according to claim 3, wherein the particle size of the granulated powder before mixing with the pore-forming agent is 5 to 300 μm in a proportion of 50% or more of the total weight of the granulated powder. , After mixing the pore-forming agent, at least 40% of the total weight of the granulated powder is 5-30.
A method for producing a molded article for polishing, characterized in that mixing is performed so as to be 0 μm.
【請求項5】請求項3又は請求項4に記載の研磨用成形
体の製造法において、添加混合する造孔剤の平均粒子径
が0.1〜200μmであることを特徴とする研磨用成
形体の製造法。
5. The method for producing a molded article for polishing according to claim 3, wherein the pore-forming agent to be added and mixed has an average particle diameter of 0.1 to 200 μm. How to make the body.
【請求項6】請求項3〜5のいずれかに記載の研磨用成
形体の製造法において、添加混合する造孔剤の添加量
を、(造孔剤の重量)/(造粒粉末の重量)=2/1〜
1/10(重量比)とすることを特徴とする研磨用成形
体の製造法。
6. The method of manufacturing a molded article for polishing according to claim 3, wherein the amount of the pore-forming agent to be added and mixed is (weight of the pore-forming agent) / (weight of the granulated powder). ) = 2/1 ~
A method for producing a molded article for polishing, characterized by being 1/10 (weight ratio).
【請求項7】請求項3〜6のいずれかに記載の研磨用成
形体の製造法において、造孔剤を添加し成形した後に9
00℃以下にて加工することを特徴とする研磨用成形体
の製造法。
7. The method for producing a molded article for polishing according to claim 3, wherein a pore-forming agent is added and molded.
A method for producing a molded body for polishing, characterized by processing at a temperature of 00 ° C. or lower.
【請求項8】被研磨材料を請求項2に記載の研磨用定盤
を用いて研磨することを特徴とする研磨方法。
8. A polishing method comprising polishing a material to be polished using the polishing platen according to claim 2.
【請求項9】請求項8に記載の研磨方法において、被研
磨材料が基板材料であることを特徴とする研磨方法。
9. The polishing method according to claim 8, wherein the material to be polished is a substrate material.
【請求項10】請求項8又は請求項9に記載の研磨方法
において、遊離砥粒を用いずに研磨して研磨廃液の60
0nmにおける透過率が水の10%以上にすることを特
徴とする研磨方法。
10. The polishing method according to claim 8 or 9, wherein the polishing is performed without using free abrasive grains, and the polishing waste liquid is removed.
A polishing method, wherein the transmittance at 0 nm is 10% or more of water.
JP9272472A 1997-10-06 1997-10-06 Formed body for polishing, manufacture thereof, ruler table for polishing, and polishing method Pending JPH11104952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9272472A JPH11104952A (en) 1997-10-06 1997-10-06 Formed body for polishing, manufacture thereof, ruler table for polishing, and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9272472A JPH11104952A (en) 1997-10-06 1997-10-06 Formed body for polishing, manufacture thereof, ruler table for polishing, and polishing method

Publications (1)

Publication Number Publication Date
JPH11104952A true JPH11104952A (en) 1999-04-20

Family

ID=17514405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9272472A Pending JPH11104952A (en) 1997-10-06 1997-10-06 Formed body for polishing, manufacture thereof, ruler table for polishing, and polishing method

Country Status (1)

Country Link
JP (1) JPH11104952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348271A (en) * 2000-06-01 2001-12-18 Tosoh Corp Polishing compact and polishing surface plate using the same
JP2002018724A (en) * 2000-07-03 2002-01-22 Tosoh Corp Polishing molding and polishing surface plate using the same
KR101276026B1 (en) * 2005-12-16 2013-06-19 제이에스알 가부시끼가이샤 Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348271A (en) * 2000-06-01 2001-12-18 Tosoh Corp Polishing compact and polishing surface plate using the same
JP2002018724A (en) * 2000-07-03 2002-01-22 Tosoh Corp Polishing molding and polishing surface plate using the same
US6817934B2 (en) 2000-07-03 2004-11-16 Tosoh Corporation Abrasive molding and abrasive disc provided with same
KR101276026B1 (en) * 2005-12-16 2013-06-19 제이에스알 가부시끼가이샤 Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing

Similar Documents

Publication Publication Date Title
US6077581A (en) Abrasive shaped article, abrasive disc and polishing method
JP3080873B2 (en) Abrasion resistant alumina ceramics and method for producing the same
JP5539339B2 (en) High porosity vitrified superabrasive product and manufacturing method
EP1043378B1 (en) Molded abrasive product and polishing wheel using it
US6361403B1 (en) Abrasive member, abrasive disc provided with same, and polishing process
US6575824B2 (en) Abrasive molding and abrasive disc provided with same
JP3035582B2 (en) Alumina sintered body
JPH11104952A (en) Formed body for polishing, manufacture thereof, ruler table for polishing, and polishing method
JP3843545B2 (en) Polishing molded body, polishing surface plate and polishing method using the same
JP3987719B2 (en) Method for producing porous vitrified grinding wheel and pore forming agent
US6705935B2 (en) Abrasive molding and abrasive disc provided with same
JPH11198045A (en) Polishing molded body, polishing surface plate and polishing method using the same
US6817934B2 (en) Abrasive molding and abrasive disc provided with same
JPH11198030A (en) Molded body for polishing, surface plate for polishing using it and method of polishing
JP3203311B2 (en) Whetstone and its manufacturing method
JP2003321270A (en) Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding
JPH11216676A (en) Polishing molding, polishing level block and polishing method using this polishing molding
JP2000233377A (en) Member for polishing and surface plate for polishing and polishing method using the same
JPH11138447A (en) Polishing molding, polishing surface plate and polishing method using the same
JP2000354966A (en) Polishing compact and polishing surface plate using it
JP3365175B2 (en) Vitreous Coated Cubic Boron Nitride Abrasives and Method for Producing Vitrified Bond Grinding Stone Using the Same
JP2007176719A (en) Ceramic porous body
JP2000246624A (en) Polishing compact, and polishing surface plate and polishing method using the same
JP2002018702A (en) Polishing molding and polishing surface table using the same
CN115042101A (en) Grinding wheel agglomerate for inducing friction chemical reaction of workpiece and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205