JPH11101909A - Color filter - Google Patents

Color filter

Info

Publication number
JPH11101909A
JPH11101909A JP1898298A JP1898298A JPH11101909A JP H11101909 A JPH11101909 A JP H11101909A JP 1898298 A JP1898298 A JP 1898298A JP 1898298 A JP1898298 A JP 1898298A JP H11101909 A JPH11101909 A JP H11101909A
Authority
JP
Japan
Prior art keywords
liquid crystal
color filter
film
protective film
rubbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1898298A
Other languages
Japanese (ja)
Inventor
Yuki Terasawa
由希 寺澤
Nobuo Miyadera
信生 宮寺
Yutaka Honda
裕 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1898298A priority Critical patent/JPH11101909A/en
Publication of JPH11101909A publication Critical patent/JPH11101909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a color filter having an overcoat layer (OC) which can orient a liquid crystal by rubbing, by adding a liquid crystal orienting ability to a protective film. SOLUTION: The liquid crystal orienting ability is imparted by rubbing an OC of a color filter for a color liquid crystal display device. Namely, this color filter consists of a transparent substrate 2, specified pixel groups 3 formed on the transparent substrate 2, and a protective film 4 formed on the specified pixel groups 3. The protective film 4 has liquid crystal orienting ability. In this case, a three-dimensionally crosslinked resin is preferably used for the protective film 4. In the production of the color filter above described, after the OC is formed, the surface of the OC is subjected to rubbing to give liquid crystal orienting ability. The rubbing treatment is carried out, for example, by using a velvet rubbing cloth such as nylon and rayon wound on a roller and bringing the rotating roller surface into contact with the OC surface to rub. Thus, the liquid crystal molecules are oriented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カラー液晶表示装
置に使用されるカラーフィルタに関する。
The present invention relates to a color filter used in a color liquid crystal display device.

【0002】[0002]

【従来の技術】液晶ディスプレイ(以下LCDと略す)
は、薄型、小型、低消費電力などの特徴を生かし、現
在、時計、電卓、TV、パソコン等の表示部に用いられ
ている。更に近年、カラーLCDが開発されOA・AV
機器を中心にナビゲーションシステム、ビュウファイン
ダーなど数多くの用途に使われ始めており、その市場は
今後、急激に拡大するものと予想されている。
2. Description of the Related Art Liquid crystal displays (hereinafter abbreviated as LCDs)
Utilizing features such as thinness, small size, and low power consumption, is currently used for display units such as watches, calculators, TVs, and personal computers. In recent years, color LCDs have been developed and OA / AV
It has begun to be used in many applications such as navigation systems and viewfinders, mainly in equipment, and the market is expected to expand rapidly in the future.

【0003】LCDをカラー表示させるためのカラーフ
ィルタは、図1に示すように格子状パターンのBM(ブ
ラックマトリックス)1が形成されたガラス板等の基板
2上に、R(赤)G(緑)B(青)からなるカラー画素
3(約100×100×2μm)を順次形成し、その上
に透明な保護膜(オーバーコート層、OC)4を形成し
たものである。5は偏光板、6はITO電極である。
As shown in FIG. 1, a color filter for displaying a color image on an LCD is formed on a substrate 2 such as a glass plate on which a BM (black matrix) 1 having a lattice pattern is formed. 3) Color pixels 3 (about 100 × 100 × 2 μm) composed of B (blue) are sequentially formed, and a transparent protective film (overcoat layer, OC) 4 is formed thereon. 5 is a polarizing plate and 6 is an ITO electrode.

【0004】カラーLCDは、カラーフィルタ7をLC
D内部に設置し、バックライト光をカラーフィルタに透
過することによって表示画面をカラー化できる。8は配
向膜、9は液晶、10はシール材、11はトップコート
層、12はITO電極、13はガラス板等の基板、14
は偏光板である。
[0004] In the color LCD, the color filter 7 has an LC
D, the display screen can be colored by transmitting backlight light through a color filter. 8 is an alignment film, 9 is a liquid crystal, 10 is a sealing material, 11 is a top coat layer, 12 is an ITO electrode, 13 is a substrate such as a glass plate, 14
Is a polarizing plate.

【0005】現在、カラーフィルタは主に染色法を用い
て製造されている。しかし、この方法はガラス基板上に
透明な感光性樹脂を塗布、乾燥、露光、現像によって画
素を形成後、染料を用いて染色しその後、混色防止層を
形成するといった工程を3回繰り返し行う必要があるた
め、工程数が多くコスト高となる。また、着色剤として
染料を用いているため、カラーフィルタの重要課題であ
る信頼性(耐候性・耐熱性)が劣るという欠点がある。
そこで、着色剤として顔料を用いたカラーフィルタがい
くつか提案されており、その中に電着法、印刷法、フォ
トリソ法(フォトリソグラフィー法)がある。
At present, color filters are mainly manufactured using a dyeing method. However, in this method, a step of forming a pixel by applying a transparent photosensitive resin on a glass substrate, drying, exposing, and developing, dyeing with a dye, and then forming a color mixing prevention layer is required to be repeated three times. Therefore, the number of steps is large and the cost is high. Further, since a dye is used as a coloring agent, there is a disadvantage that reliability (weather resistance and heat resistance), which is an important issue of a color filter, is inferior.
Therefore, some color filters using a pigment as a coloring agent have been proposed, among which are an electrodeposition method, a printing method, and a photolithography method (photolithography method).

【0006】しかし、電着法は電極パターンを形成する
必要があるため(1)パターンの自由度が少ない、
(2)コストが高い、また印刷法は(1)大型基板の位
置合わせが難しく解像度が低いため微細化の対応が困
難、(2)パターンの平坦性が劣る、などの問題があ
り、現状ではフォトリソ法が主流と考えられている。フ
ォトリソ法には、液状レジストとフィルムが考えられ
る。液状レジストは、感光性樹脂中に顔料を分散させた
ワニスをスピナーでガラス基板上に塗布、乾燥後、露
光、現像、熱硬化によってカラー画素が形成される。一
方、フィルムは、プリント板用感光性フィルムと同様に
ワニスをフィルム化したものであり、基板にラミネート
後、露光、現像、熱硬化によってカラー画素が形成され
る。また、OCは主にスピンコート法を用いて塗布さ
れ、ホットプレートを用いて乾燥後、オーブンで加熱硬
化され、製造される。OCをスピンコート法で形成する
場合、溶液状の保護膜材料を基板中央部にたらす。基板
上にたらされた保護膜材料は基板中央部で円形にたま
る。そのまま放置すれば、徐々に円形にぬれた面は広が
るが、通常は基板の回転によって基板に均一な厚みに塗
布される。溶液状の保護膜材料の塗布された基板を、オ
ーブンなどで乾燥と熱硬化をして保護膜とする。しか
し、溶液状の保護膜材料を基板にたらし円形にぬれた状
態で回転運動を与えた場合、円形のぬれた形が、硬化後
の光学的観察でムラとなってあらわれる。ムラはナトリ
ウムランプ等の単色光源下で容易に観察できる。光学部
品であるカラーフィルタに光学的なムラはない方が好ま
しい。
However, the electrodeposition method requires the formation of an electrode pattern. (1) The degree of freedom of the pattern is small.
(2) The cost is high, and the printing method has problems such as (1) it is difficult to align a large substrate and the resolution is low, so it is difficult to cope with miniaturization, and (2) the flatness of the pattern is poor. The photolithography method is considered to be the mainstream. For photolithography, liquid resists and films are contemplated. The liquid resist is formed by applying a varnish obtained by dispersing a pigment in a photosensitive resin onto a glass substrate using a spinner, drying, exposing, developing, and thermosetting to form color pixels. On the other hand, the film is a film in which a varnish is formed into a film in the same manner as the photosensitive film for a printed board. After lamination on a substrate, color pixels are formed by exposure, development, and thermosetting. In addition, OC is mainly applied using a spin coating method, dried using a hot plate, and then heat-cured in an oven to manufacture. When OC is formed by a spin coating method, a solution-like protective film material is applied to the center of the substrate. The protective film material deposited on the substrate accumulates in a circle at the center of the substrate. If left as it is, the wet surface gradually expands in a circular shape, but is usually applied to the substrate with a uniform thickness by rotation of the substrate. The substrate coated with the solution protective film material is dried and thermally cured in an oven or the like to form a protective film. However, when the solution-like protective film material is applied to the substrate and rotated in a state of being wet in a circular shape, the wet shape of the circular shape becomes uneven in optical observation after curing. Unevenness can be easily observed under a monochromatic light source such as a sodium lamp. It is preferable that the color filter, which is an optical component, has no optical unevenness.

【0007】[0007]

【発明が解決しようとする課題】従来OCは液晶を配向
させる機能を有していないためカラーフィルタを用いて
液晶表示装置を製造する際には、液晶と隣接する部分に
OCとは別に配向膜8を配置していた。配向膜には、通
常ポリイミド樹脂が用いられるが、多くのポリイミド樹
脂は可視光領域に吸収を有するため着色しあるいは透過
率が不足し、液晶表示装置の品質の低下をまねく。着色
あるいは透過率の不足は配向膜が厚膜である場合に顕著
となるので通常配向膜は0.1μm以下の薄膜としてい
る。このようにOCと配向膜とは別の工程で製造されて
いた。本発明は、OCと配向膜とを兼用することを念頭
に3次元架橋した樹脂がOCとして好適に用いられるば
かりでなく、配向膜としても好適に用いられるようにす
るために鋭意検討した結果なされたものである。すなわ
ちラビングによって液晶を配向させることができるOC
を有するカラーフィルタを提供するものである。
Conventionally, OC has no function of aligning the liquid crystal. Therefore, when a liquid crystal display device is manufactured using a color filter, an alignment film is formed separately from the OC on a portion adjacent to the liquid crystal. 8 was arranged. Usually, a polyimide resin is used for the alignment film. However, many polyimide resins have an absorption in a visible light region and thus are colored or have insufficient transmittance, leading to a deterioration in quality of a liquid crystal display device. Insufficiency of coloring or transmittance becomes remarkable when the alignment film is thick, so that the alignment film is usually a thin film of 0.1 μm or less. As described above, the OC and the alignment film are manufactured in different processes. The present invention has been made as a result of intensive studies in order to use not only a three-dimensionally cross-linked resin as an OC but also an alignment film in consideration of using both an OC and an alignment film. It is a thing. That is, OC which can align liquid crystal by rubbing
Is provided.

【0008】[0008]

【課題を解決するための手段】本発明は、カラー液晶表
示装置用カラーフィルタのOCをラビングすることによ
って液晶配向能が付与されていることを特徴とするカラ
ーフィルタである。すなわち本発明は、透明基板、前記
透明基板上に形成された所定の画素群及び前記所定の画
素群上に形成された保護膜を備えたカラ−フィルタであ
って、前記保護膜は液晶配向能が付与されていることを
特徴とするカラ−フィルタである。保護膜として三次元
架橋(橋かけ)した樹脂が好ましく使用できる。
According to the present invention, there is provided a color filter characterized in that a liquid crystal alignment capability is imparted by rubbing OC of a color filter for a color liquid crystal display device. That is, the present invention is a color filter including a transparent substrate, a predetermined pixel group formed on the transparent substrate, and a protective film formed on the predetermined pixel group, wherein the protective film has a liquid crystal alignment ability. Is a color filter characterized by the following. A three-dimensionally crosslinked (bridged) resin can be preferably used as the protective film.

【0009】[0009]

【発明の実施の形態】本発明に用いられるOCの膜厚は
0.5〜5μmが望ましい。本発明に用いられるOCの
膜厚は1〜3μmがさらに望ましい。スピンコータの回
転数は、500〜5000rpmが望ましい。スピンコ
ータの回転数は、500〜2000rpmがさらに望ま
しい。スピンコート後の乾燥は、一般に広く使われるホ
ットプレートにより行うことができる。また、レベリン
グに使用されるホットプレート温度は、30℃〜130
℃が望ましい。レベリングに使用されるホットプレート
温度は、30℃〜80℃がさらに望ましい。本発明のカ
ラーフィルタを製造するにあったって、OC形成後、O
C表面に液晶配向能を付与するためにラビング処理を行
う。ラビング処理は、例えばナイロン、レ−ヨン等のベ
ルベット状のラビング布をロ−ラに巻き付け、回転する
ロ−ラ表面とOC表面とが接するようにしてこする処理
であり、これにより液晶分子の配向が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The thickness of the OC used in the present invention is preferably 0.5 to 5 .mu.m. The thickness of the OC used in the present invention is more preferably 1 to 3 μm. The rotation speed of the spin coater is desirably 500 to 5000 rpm. The rotation speed of the spin coater is more desirably 500 to 2000 rpm. Drying after spin coating can be performed using a hot plate that is generally widely used. The hot plate temperature used for leveling is 30 ° C. to 130 ° C.
C is desirable. The temperature of the hot plate used for leveling is more preferably from 30C to 80C. In manufacturing the color filter of the present invention, after forming OC, O
A rubbing treatment is performed to impart liquid crystal alignment ability to the C surface. The rubbing treatment is a treatment in which a velvet-like rubbing cloth such as nylon or rayon is wound around a roller and rubbed so that the rotating roller surface and the OC surface are in contact with each other. Is obtained.

【0010】[0010]

【実施例】以下本発明を実施例に基づいて説明する。2
−2’−ビス[4−メタクリロキシ、ポリエトキシフェ
ニル]プロパン35重量部、γ−クロロ−β−ヒドロキ
シプロピル−β’−メタクリロイルオキシエチル−o−
フタレート15重量部、メタクリル酸/エチルアクリレ
ート/エチルアクリレート(18/30/53重量比)
共重合樹脂50重量部、1,7ビス(9−アクリジニ
ル)ヘプタン2重量部、ヘキサメトキシメチルメラミ
ン、メチルエチルケトンと、アンスラキノン(赤)、ハ
ロゲン化銅フタロシアニン(緑)、銅フタロシアニン
(青)の各成分を均一にして感光性樹脂層塗工溶液を得
た。該溶液を厚さ50μmのポリエチレンテレフタレー
トフィルム上にグラビア塗工機(平野精機社製)で塗工
し、保護フィルムとして30μmのポリエチレンフィル
ムを貼り合わせて感光性フィルムを得る。着色感光性樹
脂層の厚さは1.5μmであった。次にクロム膜(膜厚
0.1μm)付きガラス基板(0.7mm×370mm
×470mm)に、ロールラミネータ(ソマール社製)
を用いて、基板温度80℃、ロール温度80℃、ロール
圧力6kg/cm2、速度0.5m/分で、感光性フィ
ルムを着色感光性樹脂が前記基板に面するようにラミネ
ートし、ポリエチレンテレフタレートフィルムを除去し
た後、ネガマスクを通して、露光機(日立電子エンジニ
アリング社製)を用いて200mJ/cm2露光、次い
で、現像機(メックエンジニアリング社製)を用いて、
25℃で0.3重量%KOH水溶液で20秒間スプレー
現像して未露光部を除去する。現像工程での水切り乾燥
後、クリーンオーブン(タバイ社製)で200℃に加
熱、硬化を行い、1色の着色パターンを形成する。この
着色形成工程をG、B、Rの順に各色のフィルムを用い
て繰り返し行い、RGB画素パターンを形成する。RG
B画素パターンを形成後、さらにクリーンオーブン(タ
バイ社製)で230℃に加熱、硬化を行を行う。次に、
表面にRGB画素パターンの形成された基板に、日立化
成テクノプラント社製スピン方式レジスト塗布硬化装置
を用いて、熱硬化性樹脂(三次元架橋樹脂)である日立
化成工業(株)製OC材料HP−1009(商品名)液
をディスペンス後、スピン立ち上がり速度200rpm
/秒、回転数800rpmで20sec、立ち下がり速
度400rpm/秒で塗布し、さらに多段式ホットプレ
ート上へ自動搬送させた。ホットプレートは、7段で各
温度を35℃、80℃、100℃、150℃、200
℃、140℃、70℃とし90秒づつ各プレートへ順次
基板を移動させ加熱した。最後にクリーンオーブン(タ
バイ社製)で200℃、1時間の加熱、硬化を行う。本
方法で作成したカラーフィルターは、光学的なムラがな
いことが確認できた。次に、OC膜に液晶配向能を付与
できることを確認するために、上記のOC材料液を2枚
のITO透明電極付きガラス基板上にスピンナー塗布
し、70℃で1分間加熱して溶剤を蒸散させ基板上にO
C樹脂被膜を形成した後、オーブン中200℃で1時間
加熱して硬化させた。次に押し込み量0.4mm、ロー
ラ回転数400rpm、テーブル移動速度600mm/
minの条件で10回、OC樹脂被膜面をラビングし
た。この基板を60℃の純水中で超音波洗浄し、オーブ
ン中170℃で10分間乾燥させた。次にこの基板2枚
をラビング方向が反平行になるようにOC樹脂被膜層を
対向させて組み合わせ、周りを熱硬化型のシール剤で封
止し、ギャップが約5μmとなるように試験用空セルを
組み立て、オーブン中150℃で1時間加熱してシール
剤を硬化させた。この試験用空セルにメルク社製液晶Z
LI−4792(商品名)を室温で封入し液晶セルを形
成した。この液晶セルを偏光板を通して観察して液晶の
配向性を評価したところ、均一に一方向に良好な液晶配
向を示した。さらに、この液晶セルをオーブン中130
℃で1時間加熱した後徐冷することでエージング処理
し、再度液晶配向性を評価したところ、エージング処理
後にも均一に一方向に良好な液晶配向が得られた。配向
膜となるOC材の透過率を測定する目的で,三次元架橋
樹脂前駆体液を石英ガラス基板上に3000rpm,3
0秒の条件でスピンコート法によって塗布し,ホットプ
レートを用いて70℃,1分間乾燥した後,230℃,
5分間硬化して,透明な樹脂被膜を得た。この基板の吸
収スペクトルを可視・紫外分光光度計(日立製作所製U
−3410)を用いて測定したところ,可視光領域には
ほとんど吸収がみられなかった。波長400nmにおけ
る透過率は,以下のようにして求めた。上記樹脂被膜付
き石英ガラス基板の吸光度から別途測定した石英ガラス
基板のみの吸光度を差し引くことで樹脂被膜部分の吸光
度を計算したところ0.0078であった。次に,この
樹脂被膜の一部を削り,接触式膜厚計(Dektak3
030)を用いて膜厚を測定したところ828nmであ
った。これらの結果から計算で求めた膜厚0.5μmで
の透過率は99%であった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. 2
35 parts by weight of 2′-bis [4-methacryloxy, polyethoxyphenyl] propane, γ-chloro-β-hydroxypropyl-β′-methacryloyloxyethyl-o-
15 parts by weight of phthalate, methacrylic acid / ethyl acrylate / ethyl acrylate (18/30/53 weight ratio)
50 parts by weight of copolymer resin, 2 parts by weight of 1,7 bis (9-acridinyl) heptane, hexamethoxymethyl melamine, methyl ethyl ketone, and anthraquinone (red), copper halide phthalocyanine (green), copper phthalocyanine (blue) The components were made uniform to obtain a photosensitive resin layer coating solution. The solution is coated on a 50 μm-thick polyethylene terephthalate film with a gravure coater (manufactured by Hirano Seiki Co., Ltd.), and a 30 μm-thick polyethylene film is laminated as a protective film to obtain a photosensitive film. The thickness of the colored photosensitive resin layer was 1.5 μm. Next, a glass substrate (0.7 mm × 370 mm) with a chromium film (0.1 μm thick)
X 470 mm) and a roll laminator (manufactured by Somar)
A photosensitive film is laminated at a substrate temperature of 80 ° C., a roll temperature of 80 ° C., a roll pressure of 6 kg / cm 2 , and a speed of 0.5 m / min so that the colored photosensitive resin faces the substrate by using polyethylene terephthalate. After removing the film, the film was exposed through a negative mask using an exposure machine (manufactured by Hitachi Electronics Engineering Co., Ltd.) at 200 mJ / cm 2 , and then a developing machine (manufactured by Mec Engineering Co., Ltd.)
Spray development is performed at 25 ° C. with a 0.3% by weight aqueous KOH solution for 20 seconds to remove unexposed portions. After draining and drying in the developing step, the film is heated and cured in a clean oven (manufactured by Tabai) at 200 ° C. to form a colored pattern of one color. This color forming process is repeated by using films of each color in the order of G, B, and R to form an RGB pixel pattern. RG
After the formation of the B pixel pattern, heating and curing are performed at 230 ° C. in a clean oven (manufactured by Tabai). next,
Using a spin-type resist coating and curing apparatus manufactured by Hitachi Chemical Techno-Plant Co., Ltd., an OC material HP manufactured by Hitachi Chemical Co., Ltd., which is a thermosetting resin (three-dimensionally crosslinked resin), is applied to a substrate having an RGB pixel pattern formed on its surface. After dispensing the -1009 (trade name) solution, the spin rise speed is 200 rpm.
/ Sec at a rotation speed of 800 rpm for 20 sec and a falling speed of 400 rpm / sec, and then automatically conveyed onto a multi-stage hot plate. The hot plate was set at 35 ° C, 80 ° C, 100 ° C, 150 ° C, 200 ° C in seven steps.
The substrate was sequentially moved to each plate at 90 ° C., 140 ° C., and 70 ° C. for 90 seconds and heated. Finally, heating and curing are performed in a clean oven (manufactured by Tabai) at 200 ° C. for 1 hour. It was confirmed that the color filter produced by this method had no optical unevenness. Next, in order to confirm that the liquid crystal aligning ability can be imparted to the OC film, the above-mentioned OC material liquid is spin-coated on two glass substrates with ITO transparent electrodes, and heated at 70 ° C. for 1 minute to evaporate the solvent. O on the substrate
After forming the C resin film, the film was cured by heating at 200 ° C. for 1 hour in an oven. Next, the pushing amount is 0.4 mm, the roller rotation speed is 400 rpm, and the table moving speed is 600 mm /
The OC resin coated surface was rubbed 10 times under the condition of min. The substrate was ultrasonically cleaned in pure water at 60 ° C. and dried in an oven at 170 ° C. for 10 minutes. Next, the two substrates are combined with the OC resin coating layers facing each other so that the rubbing directions are antiparallel, and the periphery is sealed with a thermosetting sealant, and the test space is set so that the gap is about 5 μm. The cell was assembled and heated in an oven at 150 ° C. for 1 hour to cure the sealant. A liquid crystal Z made by Merck was added to this test empty cell.
LI-4792 (trade name) was sealed at room temperature to form a liquid crystal cell. The liquid crystal cell was observed through a polarizing plate to evaluate the orientation of the liquid crystal. As a result, a favorable liquid crystal orientation was uniformly exhibited in one direction. Further, the liquid crystal cell was placed in an oven for 130 minutes.
Aging treatment was performed by heating at 1 ° C. for 1 hour and then gradually cooling, and the liquid crystal alignment was evaluated again. As a result, even after the aging, good liquid crystal alignment was uniformly obtained in one direction. For the purpose of measuring the transmittance of the OC material serving as an alignment film, a three-dimensional crosslinked resin precursor solution is applied onto a quartz glass substrate at 3000 rpm, 3 rpm.
Coated by spin coating under the condition of 0 second, dried at 70 ° C. for 1 minute using a hot plate,
After curing for 5 minutes, a transparent resin film was obtained. The absorption spectrum of this substrate was measured using a visible / ultraviolet spectrophotometer (U
As a result, almost no absorption was observed in the visible light region. The transmittance at a wavelength of 400 nm was determined as follows. The absorbance of the resin coating portion was calculated by subtracting the absorbance of the quartz glass substrate alone, which was separately measured from the absorbance of the quartz glass substrate provided with the resin coating, to be 0.0078. Next, a part of this resin film was cut off, and a contact-type film thickness meter (Dektak3) was removed.
030), the film thickness was 828 nm. The transmittance at a film thickness of 0.5 μm calculated from these results was 99%.

【0011】[0011]

【発明の効果】本発明により、液晶配向能を有するカラ
ーフィルタを製造できる。また、本発明の液晶配向膜は
3次元架橋物であり、従来配向膜に用いられているポリ
イミド系の樹脂ではないので、透明性が高く容易に厚膜
の成膜が可能である。
According to the present invention, a color filter having liquid crystal alignment ability can be manufactured. Further, since the liquid crystal alignment film of the present invention is a three-dimensional crosslinked product and is not a polyimide resin conventionally used for an alignment film, it has high transparency and can easily form a thick film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 液晶ディスプレイの断面図。FIG. 1 is a cross-sectional view of a liquid crystal display.

【符号の説明】 1 BM(ブラックマトリックス) 2 ガラス基板 3 カラー画素 4 保護膜(オーバーコート層、OC) 5 偏光板 6 ITO電極 7 カラーフィルタ 8 配向膜 9 液晶 10 シール材 11 トップコート層 12 ITO電極 13 ガラス基板 14 偏光板 15 G画素 16 クロム膜 17 B画素[Description of Signs] 1 BM (black matrix) 2 glass substrate 3 color pixel 4 protective film (overcoat layer, OC) 5 polarizing plate 6 ITO electrode 7 color filter 8 alignment film 9 liquid crystal 10 sealing material 11 top coat layer 12 ITO Electrode 13 Glass substrate 14 Polarizer 15 G pixel 16 Chromium film 17 B pixel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明基板、前記透明基板上に形成された
所定の画素群及び前記所定の画素群上に形成された保護
膜を備えたカラ−フィルタであって、前記保護膜は液晶
配向能が付与されていることを特徴とするカラ−フィル
タ。
1. A color filter comprising a transparent substrate, a predetermined pixel group formed on the transparent substrate, and a protective film formed on the predetermined pixel group, wherein the protective film has a liquid crystal alignment ability. A color filter characterized by the following.
【請求項2】 保護膜が三次元架橋した樹脂である請求
項1記載のカラ−フィルタ。
2. The color filter according to claim 1, wherein the protective film is a three-dimensionally crosslinked resin.
【請求項3】 配向膜がラビングによって液晶配向能が
付与された膜である請求項1又は2記載のカラ−フィル
タ。
3. The color filter according to claim 1, wherein the alignment film is a film provided with a liquid crystal alignment ability by rubbing.
【請求項4】 配向膜が、膜厚0.5μmに換算した透
過率が波長400nm以上800nm以下の範囲で90
%以上である膜である請求項1から3各項記載のカラ−
フィルタ。
4. An alignment film having a transmittance in the range of a wavelength of 400 nm or more and 800 nm or less when converted to a film thickness of 0.5 μm.
The color according to any one of claims 1 to 3, which is a film having a percentage of
filter.
JP1898298A 1997-07-31 1998-01-30 Color filter Pending JPH11101909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1898298A JPH11101909A (en) 1997-07-31 1998-01-30 Color filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-205941 1997-07-31
JP20594197 1997-07-31
JP1898298A JPH11101909A (en) 1997-07-31 1998-01-30 Color filter

Publications (1)

Publication Number Publication Date
JPH11101909A true JPH11101909A (en) 1999-04-13

Family

ID=26355759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1898298A Pending JPH11101909A (en) 1997-07-31 1998-01-30 Color filter

Country Status (1)

Country Link
JP (1) JPH11101909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117504A (en) * 2008-11-12 2010-05-27 Dainippon Printing Co Ltd Substrate for electronic device, surface inspection method of substrate for electronic device and method of inspecting electrode pattern on substrate for electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117504A (en) * 2008-11-12 2010-05-27 Dainippon Printing Co Ltd Substrate for electronic device, surface inspection method of substrate for electronic device and method of inspecting electrode pattern on substrate for electronic device

Similar Documents

Publication Publication Date Title
JPS63182627A (en) Color liquid crystal element
JPH11101909A (en) Color filter
JPH11101982A (en) Liquid crystal display device
JP2002309103A (en) Liquid crystalline composition, color filter, and liquid crystal display device
JPH01257823A (en) Color filter substrate for liquid crystal display device
JPH1123828A (en) Production of color filter
JPH08136718A (en) Production of color filter
JPS6360422A (en) Ferroelectric liquid crystal element
JPH11338134A (en) Production of transfer film and color filter
JPH1123829A (en) Manufacture of color filter
JPH0943422A (en) Production of color filter
JPS60244932A (en) Color liquid crystal display device
JPH09197391A (en) Color liquid crystal display device
JPH08136712A (en) Production of color filter
JPH11311795A (en) Substrate for liquid crystal display device and liquid crystal display device
JPH0943418A (en) Production of color filter
JPH11338160A (en) Production of transfer film and color filter
JPH08136716A (en) Production of color filter
JP2757942B2 (en) Manufacturing method of color filter substrate for liquid crystal display
RU2030775C1 (en) Process of manufacture of multicolored optical filter for liquid-crystal device
JPH1123827A (en) Production of color filter
JPH0943420A (en) Production of color filter
JPS63129322A (en) Production of ferroelectric liquid crystal element
JPH0943419A (en) Production of color filter
JPH1123826A (en) Production of filter