JPH1110147A - Distilling apparatus - Google Patents

Distilling apparatus

Info

Publication number
JPH1110147A
JPH1110147A JP18300497A JP18300497A JPH1110147A JP H1110147 A JPH1110147 A JP H1110147A JP 18300497 A JP18300497 A JP 18300497A JP 18300497 A JP18300497 A JP 18300497A JP H1110147 A JPH1110147 A JP H1110147A
Authority
JP
Japan
Prior art keywords
raw water
seawater
membrane module
water flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18300497A
Other languages
Japanese (ja)
Inventor
Yoichi Sugiyama
洋一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP18300497A priority Critical patent/JPH1110147A/en
Publication of JPH1110147A publication Critical patent/JPH1110147A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a distilling apparatus whose distilling productivity is heightened. SOLUTION: Membrane modules 11 constituted of evaporating parts 12 and condensing parts 15 are installed in three stages. A sea water sending-out pipe 26 is led out of a cooling pipe 24A and connected with a leading-in side of a warm sea water leading-in part 13B and the discharge side of the warm sea water leading-in part 13B is connected with leading in side of a cooling pipe 24C to compose a first raw water flow route. On the other hand, a warm sea water leading-in part 13A, a cooling pipe 24B, and a warm sea water leading-in part 13C are connected in series in the same manner as the first raw water flow route to compose a second raw water flow route. The tip end of the second raw water flow route and the terminal end of the first raw water flow route are connected with each other through a heating means 28 to compose a distilling apparatus 10. In such a distilling apparatus 10, the sum of the values produced by subtraction of the inlet temperature of the condensing parts 15 from the inlet temperature of the evaporating parts 12 becomes the maximum and the energy efficiency can be made the maximum and at the same time by installing a plurality of the membrane modules 11, water production efficiency can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は海水、河川水等から
淡水を得る造水装置に係り、特に液体や懸濁物質の透過
を防止し水蒸気を透過させ疎水性多孔質膜(PV膜)を
用いて淡水を取り出す造水装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desalination apparatus for obtaining fresh water from seawater, river water, etc., and more particularly to a hydrophobic porous membrane (PV membrane) which prevents permeation of liquids and suspended substances and allows water vapor to permeate. The present invention relates to a desalination apparatus for extracting fresh water using the apparatus.

【0002】[0002]

【従来の技術】従来、海水や河川水等から淡水を得る造
水方法の中には透過気化法といった方法が知られてい
る。図6は透過気化方法の造水原理を示した概念図であ
る。同図に示すように透過気化膜モジュール1では、温
海水室2と冷海水室3とが加熱装置4を介して連結され
ており、温海水室2と冷海水室3との間には生産水室5
が両室に挟まれるように設けられている。そして温海水
室2と生産水室5との間は、水蒸気を透過させつつ液体
や懸濁物質の透過を防止する疎水性多孔質膜(PV膜)
6にて仕切られており、また冷海水室3と生産水室5と
の間は、冷却板7にて仕切られている。このように構成
された透過気化膜モジュール1を稼働させると、温海水
室2に導入された海水から疎水性多孔質膜6前後の蒸気
圧差によって水蒸気が疎水性多孔質膜6の微細孔を透過
して生産水室5側へと移動する。そして生産水室5側に
移動した水蒸気は、冷海水と接している冷却板7からの
影響を受け凝縮され蒸留水(淡水)となり生産水室5か
ら外部へと送り出される。
2. Description of the Related Art Conventionally, as a method for obtaining fresh water from seawater or river water, a method such as a pervaporation method is known. FIG. 6 is a conceptual diagram showing the principle of fresh water generation in the pervaporation method. As shown in FIG. 1, in the pervaporation membrane module 1, the warm seawater chamber 2 and the cold seawater chamber 3 are connected via the heating device 4, and the production is performed between the warm seawater chamber 2 and the cold seawater chamber 3. Water room 5
Is provided so as to be sandwiched between both chambers. A hydrophobic porous membrane (PV membrane) is provided between the warm-sea water chamber 2 and the production water chamber 5 to prevent the permeation of liquids and suspended substances while allowing water vapor to permeate.
The cold seawater chamber 3 and the production water chamber 5 are partitioned by a cooling plate 7. When the pervaporation membrane module 1 configured as described above is operated, water vapor permeates through the micropores of the hydrophobic porous membrane 6 from the seawater introduced into the warm seawater chamber 2 due to the vapor pressure difference between the hydrophobic porous membrane 6 and the seawater. Then, it moves to the production water chamber 5 side. The water vapor that has moved to the production water chamber 5 is condensed under the influence of the cooling plate 7 that is in contact with the cold seawater, becomes distilled water (fresh water), and is sent out from the production water chamber 5 to the outside.

【0003】[0003]

【発明が解決しようとする課題】しかし上述した透過気
化方法では、疎水性多孔質膜6前後におけるわずかな蒸
気圧差を用いて蒸留水を取り出しているので、そのエネ
ルギ効率(性能比率、パフォーマンス比、造水比ともい
う)は決して高いものではなかった。このため生産水室
5側の圧力を負圧に設定し疎水性多孔質膜6前後の圧力
差を大きくすることで蒸留水の生産効率を高めようとの
検討もなされたが、透過気化膜モジュール1では温海水
室2と冷海水室3との間の熱通過率を向上させる目的か
ら疎水性多孔質膜6と冷却板7との距離を接近させてい
る。このため生産水室5の出口側から吸引を行っても疎
水性多孔質膜6が生産水室5の出口付近で冷却板7に密
着するだけで生産水室5の全体を負圧に設定することは
難しかった。
However, in the above-mentioned pervaporation method, distilled water is taken out using a slight vapor pressure difference before and after the hydrophobic porous membrane 6, so that its energy efficiency (performance ratio, performance ratio, Water production ratio) was never high. For this reason, it has been studied to increase the production efficiency of distilled water by setting the pressure on the production water chamber 5 side to a negative pressure and increasing the pressure difference before and after the hydrophobic porous membrane 6. In 1, the distance between the hydrophobic porous membrane 6 and the cooling plate 7 is reduced in order to improve the heat transfer rate between the warm seawater chamber 2 and the cold seawater chamber 3. Therefore, even if suction is performed from the outlet side of the production water chamber 5, the entirety of the production water chamber 5 is set to a negative pressure only by the hydrophobic porous membrane 6 being in close contact with the cooling plate 7 near the exit of the production water chamber 5. It was difficult.

【0004】また透過気化膜モジュール1では、前述の
通り疎水性多孔質膜6と冷却板7との距離が接近してい
ることから生産水室5から蒸留水を送り出す場合にはか
なりの流動抵抗が発生し、この流動抵抗によって生産水
室5の圧力が上昇していた。そして生産水室5におい
て、熱交換が十分になされた温度の低い箇所では蒸気圧
差はもともと小さい。このためこうした箇所では流動抵
抗によって生じる圧力上昇の方が大きくなっている場合
も考えられる。
Further, in the pervaporation membrane module 1, since the distance between the hydrophobic porous membrane 6 and the cooling plate 7 is short as described above, when the distilled water is sent out from the production water chamber 5, considerable flow resistance is generated. And the pressure in the production water chamber 5 increased due to the flow resistance. In the production water chamber 5, the steam pressure difference is originally small at a place where the heat exchange is sufficiently performed at a low temperature. For this reason, it is conceivable that the pressure increase caused by the flow resistance is larger in such a portion.

【0005】さらに生産水室5からの蒸留水の送り出し
には、疎水性多孔質膜6を介した温海水からの圧力が用
いられているので、この双方の圧力が生産水室5に加わ
り疎水性多孔質膜6前後におけるわずかな蒸気圧差を狭
め、エネルギ効率を一層悪いものにしていた。また蒸留
水の生産量を確保するため温海水の流量を増加し加熱前
の海水との温度差を大きくしていることもエネルギ効率
を悪くする要因になっていた。
Further, since the pressure from the warm seawater through the hydrophobic porous membrane 6 is used for sending distilled water from the production water chamber 5, both pressures are applied to the production water chamber 5 to make the hydrophobic water. A small difference in vapor pressure before and after the porous membrane 6 is narrowed, and the energy efficiency is further reduced. In addition, increasing the flow rate of warm seawater to increase the temperature difference from seawater before heating in order to secure the production of distilled water has also been a factor that deteriorates energy efficiency.

【0006】また透過気化膜モジュール1の構造では、
生産水量を得るためには温海水室2の温度と冷海水室3
の温度との差が大きいほどよい。しかし両者の温度差を
大きくすることはエネルギ効率を下げることを意味す
る。しかもそのためには透過気化膜モジュール1を通過
する海水の流量を増加させなければならず、この海水の
流量を増加させることは造水率、すなわち汲み上げた海
水の量とそれから取り出せる淡水の量との比率が低下す
るという問題も生じさせた。
In the structure of the pervaporation membrane module 1,
In order to obtain the production water volume, the temperature of the warm seawater chamber 2 and the temperature of the cold seawater chamber 3
The larger the difference from the temperature is, the better. However, increasing the temperature difference between the two means lowering the energy efficiency. Moreover, for that purpose, the flow rate of seawater passing through the pervaporation membrane module 1 must be increased, and increasing the flow rate of the seawater is dependent on the rate of fresh water, that is, the amount of seawater pumped and the amount of freshwater extracted therefrom. Another problem is that the ratio is reduced.

【0007】本発明は上記従来の問題点に着目し、エネ
ルギ効率と造水率とを向上させ淡水の生産性を高めるこ
とができる造水装置を提供することを目的とする。
An object of the present invention is to provide a fresh water generator capable of improving energy efficiency and fresh water production rate and increasing fresh water productivity by focusing on the above conventional problems.

【0008】[0008]

【課題を解決するための手段】発明者等はエネルギ効率
の向上を図るため種々検討し、実験を行った結果、蒸発
部と凝縮部とを交互に複数接続し、その途中に加熱また
は冷却手段を一箇所設けた場合、その組み合わせの仕方
でエネルギ効率に差が生じることを見出した。
Means for Solving the Problems The inventors of the present invention have made various studies to improve the energy efficiency and have conducted experiments. As a result, a plurality of evaporating sections and condensing sections are connected alternately, and heating or cooling means are provided in the middle thereof. It has been found that when one is provided, there is a difference in energy efficiency depending on the combination.

【0009】本発明は上記の知見に基づいてなされたも
ので本発明に係る造水装置は、疎水性多孔質膜を介して
原水から水蒸気を取り出す蒸発部と、前記水蒸気を取り
込むとともに凝縮をなす凝縮部とからなる膜モジュール
を複数設け、初段の膜モジュールにて前記蒸発部と前記
凝縮部とのいずれか一方を選択した後は次段の膜モジュ
ールでその反対側を選択しこれを最終段の膜モジュール
まで繰り返して直列に接続し第1原水流路を形成すると
ともに、前記膜モジュールの残部側を前記第1原水流路
と同順に直列接続し第2原水流路を形成し、加熱または
冷却手段を介して前記第1原水流路と前記第2原水流路
とを直列に接続するように構成した。
The present invention has been made based on the above findings, and a fresh water generator according to the present invention is provided with an evaporating section for taking out water vapor from raw water through a hydrophobic porous membrane, and for taking in and condensing the water vapor. A plurality of membrane modules including a condensing section are provided, and after selecting one of the evaporating section and the condensing section in the first-stage membrane module, the opposite side is selected in the next-stage membrane module, and this is selected in the final stage. The first raw water flow path is formed by repeatedly connecting the membrane modules in series to form a first raw water flow path, and the second raw water flow path is formed by connecting the remaining side of the membrane module in series in the same order as the first raw water flow path to form a second raw water flow path. The first raw water flow path and the second raw water flow path were connected in series via a cooling means.

【0010】そして前記膜モジュールは奇数段で構成す
るのが望ましく、また前記蒸発部を前記原水流路に沿っ
て複数段に仕切り、前記蒸発部と同数段だけ仕切られた
前記凝縮部に吸引手段を介して個々に連結するように前
記膜モジュールを構成した。
Preferably, the membrane module is composed of an odd number of stages, and the evaporating section is divided into a plurality of stages along the raw water flow path, and the condensing section divided by the same number of stages as the evaporating section is provided with suction means. The membrane modules were configured to be connected individually via

【0011】[0011]

【作用】発明者等の研究によると、膜モジュールの構造
を蒸発部と凝縮部とに分割したことから、疎水性多孔質
膜が凝縮部側に接触することがない。このため疎水性多
孔質膜の背面側の圧力を負圧に設定することが可能とな
り水蒸気の取り出しは疎水性多孔質膜前後の蒸気圧差以
上によって行われ、もって疎水性多孔質膜を通過する水
蒸気の量を増加させることができる。また蒸発部から凝
縮部へと移動するのは水蒸気(気体)であることから移
動時の流動抵抗を低減させることができ、さらに生産水
室からの蒸留水の送り出しには、疎水性多孔質膜を介し
た温海水からの圧力が用いられていないことから、疎水
性多孔質膜の前後の圧力差を狭める要因が無くなり、こ
のことからもエネルギ効率を高めることができる。
According to the study by the inventors, the structure of the membrane module is divided into the evaporating section and the condensing section, so that the hydrophobic porous membrane does not contact the condensing section side. For this reason, the pressure on the back side of the hydrophobic porous membrane can be set to a negative pressure, and the extraction of water vapor is performed based on the difference between the vapor pressures before and after the hydrophobic porous membrane. Can be increased. In addition, since water (gas) moves from the evaporating section to the condensing section, the flow resistance during the movement can be reduced, and the delivery of distilled water from the production water chamber requires a hydrophobic porous membrane. Since the pressure from the warm seawater through the membrane is not used, there is no factor for narrowing the pressure difference before and after the hydrophobic porous membrane, and thus the energy efficiency can be improved.

【0012】そして膜モジュールを複数設けたことで同
一原水から膜モジュールの設置数分だけ繰り返して淡水
の取り出しを行うことが可能となり、もって造水率の向
上を図ることができる。さらに第1原水流路の初段膜モ
ジュール側を第2原水流路の最終段膜モジュール側に、
もしくは第2原水流路の初段膜モジュール側を第1原水
流路の最終段膜モジュール側に接続されるよう設定すれ
ば、第1原水流路と第2原水流路との間で各膜モジュー
ルごとに交互に熱交換を行い蒸留作業を進めていくこと
から、各膜モジュールにおける蒸発部の入口温度から凝
縮部の入口温度を差し引いた値の和が、蒸発部と凝縮部
との接続の組み合わせの中で最大になり、最も高いエネ
ルギ効率を達成することができる。
The provision of a plurality of membrane modules makes it possible to repeatedly take out fresh water from the same raw water for the number of membrane modules installed, thereby improving the fresh water production rate. Furthermore, the first-stage membrane module side of the first raw water flow path is set to the last-stage membrane module side of the second raw water flow path,
Alternatively, if the first-stage membrane module side of the second raw water flow path is set to be connected to the last-stage membrane module side of the first raw water flow path, each membrane module can be connected between the first raw water flow path and the second raw water flow path. Since the distillation operation is performed by alternately exchanging heat every time, the sum of the values obtained by subtracting the inlet temperature of the condenser from the inlet temperature of the evaporator in each membrane module is the combination of the connection between the evaporator and the condenser. And the highest energy efficiency can be achieved.

【0013】そして膜モジュールの設置する数を奇数と
すれば、本装置における蒸発部と凝縮部との接続順序が
全て交互となるので加熱または冷却手段が原水に与える
作用が小さくて済む。このため加熱または冷却手段の負
担が軽減され、もってエネルギ効率を高めることができ
る。
If the number of installed membrane modules is an odd number, the order of connection of the evaporating section and the condensing section in the present apparatus is all alternated, so that the effect of the heating or cooling means on the raw water can be small. Therefore, the load on the heating or cooling means is reduced, and the energy efficiency can be increased.

【0014】また蒸発部を前記原水流路に沿って複数段
に仕切り、蒸発部と同数段だけ仕切られた凝縮部に吸引
手段を介して個々に連結するように膜モジュールを構成
すれば、吸引手段によって仕切られた個々の蒸発部の負
圧度合いを設定することができる。
If the membrane module is configured such that the evaporating section is divided into a plurality of stages along the raw water flow path and the condensing sections divided by the same number of stages as the evaporating section are individually connected via suction means, It is possible to set the degree of negative pressure of each evaporating section partitioned by the means.

【0015】[0015]

【発明の実施の形態】以下に、本発明に係る造水装置の
具体的実施の形態を図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of a fresh water generator according to the present invention will be described in detail with reference to the drawings.

【0016】図2は膜モジュールの構造説明図である。
同図に示すように膜モジュール11(破線範囲内)は、
原水となる海水から水蒸気を取り出す蒸発部12と、前
記水蒸気を取り込み凝縮を行う凝縮部15とで構成され
ている。
FIG. 2 is an explanatory view of the structure of the membrane module.
As shown in the figure, the membrane module 11 (within the range of the broken line)
It comprises an evaporator 12 for extracting water vapor from seawater as raw water, and a condenser 15 for taking in and condensing the water vapor.

【0017】蒸発部12では、水蒸気を透過させつつ液
体や懸濁物質の透過を防止する疎水性多孔質膜18(以
下PV膜と称す)によって2つの空間が形成されており
片側の空間となる温海水導入部13には入排水口が設け
られ加熱された海水(温海水)の導入および排出が可能
となっている。そして他方側となる水蒸気取出部14
は、温海水導入部13に沿って複数段に仕切られ(図中
では7段)、隣合う水蒸気取出部14との間で通流が発
生しないようになっている。こうして複数段に仕切られ
た水蒸気取出部14からは蒸気送出管20が個々に引き
出され、後述する水蒸気凝縮部へと接続可能になってい
る。
In the evaporating section 12, two spaces are formed by a hydrophobic porous film 18 (hereinafter referred to as a PV film) for preventing the permeation of a liquid or a suspended substance while allowing the water vapor to permeate, and the space is formed on one side. The hot seawater introduction section 13 is provided with an inlet / outlet port so that heated seawater (hot seawater) can be introduced and discharged. And the steam extraction part 14 on the other side
Is divided into a plurality of stages (seven stages in the figure) along the warm seawater introduction unit 13 so that no flow is generated between adjacent steam extraction units 14. In this way, the steam delivery pipes 20 are individually drawn out from the steam extraction sections 14 divided into a plurality of stages, and can be connected to a steam condensation section described later.

【0018】一方凝縮部15には水蒸気取出部14と同
段数だけ仕切られた水蒸気凝縮部17が設けられている
とともに、これら多段に設定された水蒸気凝縮部17を
貫くように冷却管24が設けられている。当該冷却管2
4の内部には加熱前の海水(冷海水)の導入が可能とな
っておりその導入方向は、蒸発部12における温海水の
導入方向と逆方向になっている。なお冷却管24の外側
には冷却用フィンが複数設けられ、水蒸気取出部14か
ら蒸気送出管20を介して送り込まれた水蒸気の凝縮効
率を高められるようになっている。また水蒸気凝縮部1
7には吸引手段となる吸引ポンプ22が接続されてお
り、当該吸引ポンプ22を稼働させることで水蒸気取出
部14側の負圧を個々に設定できるようにしている。な
お本実施の形態ではエネルギ効率向上の目的から吸引ポ
ンプ22を用いたが、造水効率向上の目的から吸引ポン
プ22の代わりにブロアを用い、当該ブロアの噴出口を
凝縮部15側に向け、もって水蒸気取出部14側を負圧
に設定してもよい。さらに水蒸気凝縮部17の底部から
は淡水取出パイプ11Aが引き出され、凝縮作用によっ
て得た蒸留水を膜モジュール11外部に取出可能として
いる。
On the other hand, the condensing section 15 is provided with a steam condensing section 17 partitioned by the same number of stages as the steam extracting section 14, and a cooling pipe 24 is provided so as to pass through the steam condensing sections 17 set in multiple stages. Have been. The cooling pipe 2
The introduction of seawater (cold seawater) before heating is possible inside 4, and the introduction direction is opposite to the introduction direction of warm seawater in the evaporating section 12. A plurality of cooling fins are provided outside the cooling pipe 24 so as to increase the condensation efficiency of the steam fed from the steam outlet 14 via the steam delivery pipe 20. The steam condensing section 1
A suction pump 22 serving as a suction means is connected to 7, and by operating the suction pump 22, the negative pressure on the steam extraction section 14 side can be individually set. In the present embodiment, the suction pump 22 is used for the purpose of improving energy efficiency. However, a blower is used instead of the suction pump 22 for the purpose of improving fresh water efficiency, and the ejection port of the blower is directed to the condensing section 15 side. Thus, the steam extraction section 14 may be set to a negative pressure. Further, a fresh water take-out pipe 11A is drawn out from the bottom of the steam condensing section 17, so that distilled water obtained by the condensing action can be taken out of the membrane module 11.

【0019】図1は実施の形態に係る造水装置の構成を
示す連結説明図である。同図に示すように実施の形態に
係る造水装置10は、上述した膜モジュール11(11
A、11B、11C)を奇数段(本実施の形態では3
段)設けた構成としている。
FIG. 1 is a connection explanatory view showing the configuration of a fresh water generator according to the embodiment. As shown in the drawing, the fresh water generator 10 according to the embodiment includes the above-described membrane module 11 (11
A, 11B, 11C) in odd stages (3 in this embodiment).
Stage).

【0020】初段の膜モジュール11Aにおける冷却管
24Aの導入側(図中上側)には導入管30が接続さ
れ、造水装置10の外部に設けられた図示しないタンク
から冷海水を凝縮部15Aに導入可能にしている。そし
て冷却管24Aの排出側(図中下側)からは海水送出管
26が引き出され2段目の膜モジュール11Bにおける
温海水導入部13Bの導入側に接続され、続いて温海水
導入部13Bの排出側は3段目の膜モジュール11Cに
おける冷却管24Cの導入側に接続され、第1原水流路
を形成している。そして膜モジュール11の残部側とな
る初段の膜モジュール11Aの温海水導入部13A、2
段目の膜モジュール11Bの冷却管24B、3段目の膜
モジュール11Cの温海水導入部13Cを前述の第1原
水流路と同順に直列接続し第2原水流路を形成する。そ
して第2原水流路の先端となる温海水導入部13Aの導
入口と、第1原水流路の終端となる冷却管24Cの排出
口とを接続し造水装置10を構成する。なお温海水導入
部13Aの導入口と冷却管24Cの排出口との間には、
加熱装置28が接続され通過する海水を加熱可能にして
いる。
An introduction pipe 30 is connected to the introduction side (upper side in the figure) of the cooling pipe 24A in the first stage membrane module 11A, and cool seawater is supplied from a tank (not shown) provided outside the fresh water generator 10 to the condensation section 15A. It is possible to introduce. Then, the seawater delivery pipe 26 is drawn out from the discharge side (lower side in the figure) of the cooling pipe 24A and connected to the introduction side of the warm seawater introduction section 13B in the second stage membrane module 11B. The discharge side is connected to the introduction side of the cooling pipe 24C in the third-stage membrane module 11C, and forms a first raw water flow path. Then, the warm seawater introduction sections 13A, 2A of the first stage membrane module 11A, which is the remaining side of the membrane module 11,
The cooling water pipe 24B of the membrane module 11B of the first stage and the hot seawater introduction portion 13C of the membrane module 11C of the third stage are connected in series in the same order as the above-mentioned first raw water channel to form a second raw water channel. Then, the inlet of the warm seawater introduction portion 13A, which is the tip of the second raw water flow path, and the discharge port of the cooling pipe 24C, which is the end of the first raw water flow path, are connected to configure the fresh water generator 10. In addition, between the inlet of the warm seawater inlet 13A and the outlet of the cooling pipe 24C,
A heating device 28 is connected to heat the passing seawater.

【0021】このように構成された造水装置10を用
い、海水から淡水を取り出す手順を説明する。まず導入
管30を用い海水を造水装置10に導入させると当該海
水は蒸発部12と凝縮部15とを交互に通過し、最終段
膜モジュール11Cにおける温海水導入部13Cの排出
側より吐出される。この状態において原水流路の途中に
設けられた加熱装置28を稼働させると、当該加熱装置
28を通過する海水の温度が上昇し蒸発部12と凝縮部
15との間に温度差が生じるようになる。図3は蒸発部
12および凝縮部15における入排水口位置での海水の
温度を示す温度状態図である。すなわち同図に示すよう
に造水装置10の内部に海水を導入させ加熱装置28を
稼働させると、初段の膜モジュール11Aでは当該膜モ
ジュール11Aを2回目に通過する海水が温海水導入部
13Aに導入され、新規の(冷却用の)海水が冷却管2
4Aへと導入される。ここで温海水導入部13Aに導入
される海水は前段に設けた加熱装置28によって加熱さ
れ、新規の海水との温度差が生じるようになっている。
A procedure for extracting fresh water from seawater using the fresh water producing apparatus 10 configured as described above will be described. First, when seawater is introduced into the desalination apparatus 10 using the introduction pipe 30, the seawater alternately passes through the evaporating unit 12 and the condensing unit 15 and is discharged from the discharge side of the warm seawater introducing unit 13C in the final stage membrane module 11C. You. In this state, when the heating device 28 provided in the middle of the raw water flow path is operated, the temperature of the seawater passing through the heating device 28 rises so that a temperature difference occurs between the evaporating unit 12 and the condensing unit 15. Become. FIG. 3 is a temperature diagram showing the temperature of seawater at the inlet / drain outlet positions in the evaporating section 12 and the condensing section 15. That is, as shown in the figure, when seawater is introduced into the fresh water generator 10 and the heating device 28 is operated, in the first stage membrane module 11A, seawater passing through the membrane module 11A for the second time is supplied to the warm seawater introduction unit 13A. Introduced new (cooling) seawater into cooling pipe 2
4A. Here, the seawater introduced into the warm seawater introduction unit 13A is heated by the heating device 28 provided at the preceding stage, and a temperature difference from fresh seawater is generated.

【0022】膜モジュール11Aにおいては、温海水導
入部13Aおよび冷却管24Aに接する水蒸気取出部1
4と水蒸気凝縮部17とが複数段に仕切られていること
から、PV膜18を介した水蒸気の取り出しは各段によ
って独立して行われる。このため仕切られた部位での温
度勾配を小さくすることができるので水蒸気の取出効率
を高めることができる。なお前述したように複数段に仕
切られた水蒸気凝縮部17にはそれぞれ吸引ポンプ22
が設けられており独立した負圧設定が可能となってい
る。このため低温側(温海水導入部13Aの排出側)に
向かうほど吸引ポンプ22の吸引力を高め、温海水導入
部13Aの排出側の水蒸気取出部14ほど負圧に設定し
ていけば、低温側での蒸気圧差の不足を吸引ポンプ22
による負圧が補うので、水蒸気の取出効率を高めること
ができる。
In the membrane module 11A, the steam extraction section 1A in contact with the warm seawater introduction section 13A and the cooling pipe 24A.
4 and the steam condensing section 17 are partitioned into a plurality of stages, so that the extraction of steam through the PV film 18 is performed independently by each stage. For this reason, the temperature gradient at the partitioned part can be reduced, so that the efficiency of extracting steam can be increased. In addition, as described above, the suction pump 22
Is provided, and independent negative pressure setting is possible. For this reason, if the suction force of the suction pump 22 is increased toward the lower temperature side (the discharge side of the hot seawater introduction unit 13A), and the steam extraction unit 14 on the discharge side of the hot seawater introduction unit 13A is set to a negative pressure, the lower the temperature, the lower the temperature. Insufficient pump pressure difference
, The efficiency of extracting water vapor can be increased.

【0023】ところでPV膜18を介した水蒸気の取り
出しは以下のようになる。温海水導入部13Aと冷却管
24Aとの間に温度差が生じると当該PV膜18の前後
に蒸気圧差が発生する(加えて吸引ポンプ22による負
圧も加わる)。このためPV膜18の微細孔を透過して
水蒸気が水蒸気取出部14Aへと移動する。水蒸気取出
部14A側に移動した水蒸気は蒸気接続管20を経由し
て水蒸気凝縮部17A側へと送り込まれる。そして当該
水蒸気凝縮部17Aに水蒸気が達すると当該水蒸気は、
冷却作用をなす冷却管24Aによって冷却され、凝縮作
用によって水蒸気凝縮部17から蒸留水として取り出さ
れる。なお水蒸気の凝縮により温海水導入部13と冷却
管24との間で熱交換がなされていくことから両者の相
対温度差は変わらないものの、温海水導入部13側では
導入口から排出口に進むにつれ海水の温度が低下し、冷
却管24側では導入口から排出口に進むにつれ海水の温
度が上昇する。
The extraction of water vapor through the PV film 18 is as follows. When a temperature difference occurs between the warm seawater introduction unit 13A and the cooling pipe 24A, a vapor pressure difference occurs before and after the PV film 18 (in addition, a negative pressure by the suction pump 22 is also applied). For this reason, the water vapor permeates through the fine holes of the PV film 18 and moves to the water vapor take-out part 14A. The steam that has moved to the steam extracting section 14A is sent into the steam condensing section 17A via the steam connecting pipe 20. When the steam reaches the steam condensing section 17A, the steam becomes
It is cooled by the cooling pipe 24A that performs a cooling function, and is taken out as distilled water from the steam condensing section 17 by the condensing function. Since the heat exchange is performed between the hot seawater introduction unit 13 and the cooling pipe 24 due to the condensation of the steam, the relative temperature difference between the two does not change, but the hot seawater introduction unit 13 proceeds from the inlet to the discharge outlet. As the temperature of the seawater decreases, the temperature of the seawater on the cooling pipe 24 side increases as the water advances from the inlet to the outlet.

【0024】初段の膜モジュール11Aに導入された温
海水導入部13A側の海水および冷却管24B側の海水
は、初段の膜モジュール11Aを通過した後、2段目の
膜モジュール11Bへと導入される。ここで2段目の膜
モジュール11Bでは、温海水導入部13A側の海水が
冷却管24B側へと導入され、冷却管24A側の海水が
温海水導入部13B側へと導入され、両者の間の熱交換
によって初段の膜モジュール11Aと同様、蒸留水を取
り出すことができる。そして以降の膜モジュール11に
おいても温海水導入部13側と冷却管24側との間で交
互に熱交換を行っていけば、蒸留水を取り出すことが可
能となる。
The seawater on the side of the warm seawater introducing section 13A and the seawater on the side of the cooling pipe 24B introduced into the first-stage membrane module 11A pass through the first-stage membrane module 11A, and then are introduced into the second-stage membrane module 11B. You. Here, in the second-stage membrane module 11B, the seawater on the hot seawater introduction portion 13A side is introduced into the cooling pipe 24B side, and the seawater on the cooling pipe 24A side is introduced into the hot seawater introduction portion 13B side. As in the first-stage membrane module 11A, distilled water can be taken out by the heat exchange. In the subsequent membrane module 11 as well, if heat exchange is performed alternately between the hot seawater introduction section 13 side and the cooling pipe 24 side, distilled water can be taken out.

【0025】このように構成された造水装置10では、
同一膜モジュール11における蒸発部12と凝縮部15
との温度差にて水蒸気が発生し蒸留水が取り出されるた
め、三段に設けた膜モジュール11全てから蒸留水を取
り出すことができる。そして造水装置10に導入された
海水はPV膜18によって膜モジュール11増設分だけ
水蒸気の取り出しが行われるので造水率を向上させるこ
とができる。なお造水率の上限はPV膜18の耐久性お
よび造水装置10の耐腐食性も考慮して50%程度に設
定するのが望ましく、造水装置10の構成時は、この数
値に見合うだけの膜モジュール11の数を設定すればよ
い。
In the fresh water generator 10 configured as described above,
Evaporation unit 12 and condensation unit 15 in the same membrane module 11
Since water vapor is generated due to the temperature difference from the above and distilled water is taken out, distilled water can be taken out from all the membrane modules 11 provided in three stages. Then, the seawater introduced into the fresh water generator 10 is extracted by the PV membrane 18 by the amount of the additional membrane module 11, so that the fresh water rate can be improved. The upper limit of the fresh water generation rate is desirably set to about 50% in consideration of the durability of the PV membrane 18 and the corrosion resistance of the fresh water generator 10. The number of the membrane modules 11 may be set.

【0026】ところで図1においては3段に設けられた
膜モジュール11の蒸発部12と凝縮部15との組み合
わせを示したが、この組み合わせ接続例以外にも他の組
み合わせが存在する。図4は膜モジュール11を3段設
けた際の蒸発部と凝縮部との組み合わせを示した接続例
の説明図である(図1の組み合わせを除く)。なお同図
に示すように膜モジュール11を3段設け、蒸発部を上
段側から順番に1、2、3とするとそれぞれの連結され
る凝縮部の組み合わせ数は、以下の計算式で表される。
Although FIG. 1 shows a combination of the evaporating section 12 and the condensing section 15 of the membrane module 11 provided in three stages, other combinations exist other than the connection example. FIG. 4 is an explanatory diagram of a connection example showing a combination of an evaporator and a condenser when three stages of membrane modules 11 are provided (excluding the combination of FIG. 1). As shown in the figure, when three stages of the membrane modules 11 are provided, and the evaporating units are 1, 2, and 3 in order from the upper stage, the number of combinations of the condensing units to be connected is represented by the following formula. .

【数1】3!/1!=3*2*1/1=6(通り)[Equation 1] 3! / 1! = 3 * 2 * 1/1 = 6 (way)

【0027】そして発明者は、このように組み合わされ
た蒸発部12と凝縮部15との間に加熱装置28を一箇
所だけ設け(初段の蒸発部の直前)、造水装置10全体
の簡略化を図るとともに最もエネルギ効率の高い組み合
わせを実験によって確認した。その結果、各膜モジュー
ル11における蒸発部12導入側の海水温度から凝縮部
15導入側の海水温度を減じた値を各膜モジュール11
毎に加算していくと図1に示した組み合わせの例が、6
通りの組み合わせの中で最も数値が大きくなりエネルギ
効率が最大であることが判明した。なお図1に示した組
み合わせの効果は、3段をこえても変わらないことが確
認されている。
The inventor provided only one heating device 28 between the evaporating unit 12 and the condensing unit 15 thus combined (immediately before the first-stage evaporating unit), and simplified the entire fresh water generator 10. And the combination with the highest energy efficiency was confirmed by experiments. As a result, the value obtained by subtracting the seawater temperature on the condensing section 15 introduction side from the seawater temperature on the evaporating section 12 introduction side in each membrane module 11 is obtained.
By adding each time, the example of the combination shown in FIG.
It was found that the numerical value was the largest among the combinations and the energy efficiency was the largest. It has been confirmed that the effect of the combination shown in FIG. 1 does not change even when the number of stages exceeds three.

【0028】図5は膜モジュール11を偶数段(4段)
設けた造水装置の構成を示す説明図である。同図に示す
ように膜モジュール11を偶数段に設定した場合では、
第1原水流路と第2原水流路とを接続させようとすると
凝縮部15Aと凝縮部15Dとが連続する。このように
膜モジュール11が偶数段のときは凝縮部15Aと凝縮
部15Dとの間に冷却装置32を設け、蒸発部12Dに
より加熱された凝縮部15Dの海水を冷却させ凝縮部1
5Aに導入させればよい。なお導入管30が凝縮部15
A側に接続されている構成においては、冷却装置32の
代わりに加熱装置28が適用されることはいうまでもな
い。
FIG. 5 shows a case where the membrane module 11 has an even number (four stages).
It is explanatory drawing which shows the structure of the provided fresh water generator. In the case where the membrane module 11 is set to an even-numbered stage as shown in FIG.
When trying to connect the first raw water flow path and the second raw water flow path, the condensing section 15A and the condensing section 15D are continuous. As described above, when the membrane module 11 has an even number of stages, the cooling device 32 is provided between the condenser 15A and the condenser 15D to cool the seawater of the condenser 15D heated by the evaporator 12D and to cool the condenser 1
What is necessary is just to introduce into 5A. The introduction pipe 30 is connected to the condenser 15
In the configuration connected to the A side, it goes without saying that the heating device 28 is used instead of the cooling device 32.

【0029】なお本実施の形態では、造水装置10の構
成を蒸発部12と凝縮部15との分割したことから、蒸
発部12におけるPV膜18の構成を問わない。このた
めPV膜18の構成をスパイラル方式や積層型等形式と
いうように用途によって方式を自在に設定することがで
きる。一方凝縮部でも冷却管24の形状を設定するのに
PV膜18の影響を考慮しなくてもよいことから、例え
ば冷却管24のフィン形状を自由に設定することができ
る。
In the present embodiment, since the configuration of the fresh water generator 10 is divided into the evaporating section 12 and the condensing section 15, the configuration of the PV film 18 in the evaporating section 12 does not matter. Therefore, the configuration of the PV film 18 can be freely set depending on the application, such as a spiral type or a laminated type. On the other hand, since the influence of the PV film 18 does not need to be taken into consideration in setting the shape of the cooling pipe 24 even in the condensing section, for example, the fin shape of the cooling pipe 24 can be set freely.

【0030】また本実施の形態では、導入管30を凝縮
部15Aに接続し冷海水を送り込むこととしたが、導入
管30を蒸発部12Aへと接続し、当該蒸発部へ加熱さ
れた海水を送り込んでもよい。このように造水装置10
を構成しても本実施の形態と同様の効果を得ることがで
きる。なおこうした造水装置を構成する際には加熱装置
28の代わりに冷却装置32を同位置に設ければよい。
In this embodiment, the inlet pipe 30 is connected to the condenser 15A to feed the cold seawater. However, the inlet pipe 30 is connected to the evaporator 12A, and the heated seawater is supplied to the evaporator. You may send in. Thus, the fresh water generator 10
Can achieve the same effect as the present embodiment. When configuring such a fresh water generator, the cooling device 32 may be provided at the same position instead of the heating device 28.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、疎
水性多孔質膜を介して原水から水蒸気を取り出す蒸発部
と、前記水蒸気を取り込むとともに凝縮をなす凝縮部と
からなる膜モジュールを複数設け、初段の膜モジュール
にて前記蒸発部と前記凝縮部とのいずれか一方を選択し
た後は次段の膜モジュールでその反対側を選択しこれを
最終段の膜モジュールまで繰り返して直列に接続し第1
原水流路を形成するとともに、前記膜モジュールの残部
側を前記第1原水流路と同順に直列接続し第2原水流路
を形成し、加熱または冷却手段を介して前記第1原水流
路と前記第2原水流路とを直列に接続したことから、エ
ネルギ効率と造水率とを向上させ淡水の生産性を高める
ことが可能になる。
As described above, according to the present invention, there are provided a plurality of membrane modules each comprising an evaporating section for extracting water vapor from raw water via a hydrophobic porous membrane, and a condensing section for capturing and condensing the water vapor. After selecting one of the evaporating section and the condensing section in the first-stage membrane module, selecting the opposite side in the next-stage membrane module and repeating this up to the last-stage membrane module to connect in series First
While forming the raw water flow path, the remaining side of the membrane module is connected in series in the same order as the first raw water flow path to form a second raw water flow path, and the first raw water flow path is connected to the first raw water flow path via heating or cooling means. Since the second raw water flow path is connected in series, it is possible to improve energy efficiency and fresh water production rate and increase fresh water productivity.

【0032】そして前記蒸発部を前記原水流路に沿って
複数段に仕切り、前記蒸発部と同数段だけ仕切られた前
記凝縮部に吸引手段を介して個々に連結するように前記
膜モジュールを構成したことから、仕切られた個々の蒸
発部の負圧度合いを設定することが可能になり、蒸気圧
差の小さい低温側で負圧度合いを大きくすれば淡水の生
産性を一層高めることができる。
The membrane module is configured such that the evaporating section is partitioned into a plurality of stages along the raw water flow path, and the condensing sections partitioned by the same number of stages as the evaporating section are individually connected via suction means. Accordingly, it is possible to set the degree of negative pressure of each of the partitioned evaporating sections, and if the degree of negative pressure is increased on the low temperature side where the vapor pressure difference is small, the productivity of fresh water can be further increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態に係る造水装置の構成を示す連結説
明図である。
FIG. 1 is a connection explanatory diagram showing a configuration of a fresh water generator according to an embodiment.

【図2】膜モジュールの構造説明図である。FIG. 2 is a diagram illustrating the structure of a membrane module.

【図3】蒸発部12および凝縮部15における入排水口
位置での海水の温度を示す温度状態図である。
FIG. 3 is a temperature diagram showing the temperature of seawater at the inlet / drain outlet position in the evaporating section 12 and the condensing section 15.

【図4】膜モジュール11を3段設けた際の蒸発部と凝
縮部との組み合わせを示した接続例の説明図である(図
1の組み合わせを除く)。
FIG. 4 is an explanatory diagram of a connection example showing a combination of an evaporator and a condenser when three stages of membrane modules 11 are provided (excluding the combination of FIG. 1).

【図5】膜モジュール11を偶数段(4段)設けた造水
装置の構成を示す説明図である。
FIG. 5 is an explanatory diagram showing a configuration of a fresh water generator provided with an even number (four stages) of membrane modules 11;

【図6】透過気化方法の造水原理を示した概念図であ
る。
FIG. 6 is a conceptual diagram showing the principle of fresh water generation in the pervaporation method.

【符号の説明】[Explanation of symbols]

1 透過気化膜モジュール 2 温海水室 3 冷海水室 4 加熱装置 5 生産水室 6 疎水性多孔質膜(PV膜) 7 冷却板 10 造水装置 11 膜モジュール 12 蒸発部 13 温海水導入部 14 水蒸気取出部 15 凝縮部 16 冷海水導入部 17 水蒸気凝縮部 18 疎水性多孔質膜(PV膜) 20 蒸気送出管 22 吸引ポンプ 24 冷却管 26 海水送出管 28 加熱装置 30 導入管 32 冷却装置 DESCRIPTION OF SYMBOLS 1 Pervaporation membrane module 2 Hot sea water chamber 3 Cold sea water chamber 4 Heating device 5 Production water chamber 6 Hydrophobic porous membrane (PV membrane) 7 Cooling plate 10 Fresh water generator 11 Membrane module 12 Evaporator 13 Hot seawater introduction part 14 Take-out part 15 Condensing part 16 Cold seawater introducing part 17 Steam condensing part 18 Hydrophobic porous membrane (PV membrane) 20 Steam delivery pipe 22 Suction pump 24 Cooling pipe 26 Seawater delivery pipe 28 Heating device 30 Introductory tube 32 Cooling device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 疎水性多孔質膜を介して原水から水蒸気
を取り出す蒸発部と、前記水蒸気を取り込むとともに凝
縮をなす凝縮部とからなる膜モジュールを複数設け、初
段の膜モジュールにて前記蒸発部と前記凝縮部とのいず
れか一方を選択した後は次段の膜モジュールでその反対
側を選択しこれを最終段の膜モジュールまで繰り返して
直列に接続し第1原水流路を形成するとともに、前記膜
モジュールの残部側を前記第1原水流路と同順に直列接
続し第2原水流路を形成し、加熱または冷却手段を介し
て前記第1原水流路と前記第2原水流路とを直列に接続
したことを特徴とする造水装置。
1. A plurality of membrane modules each comprising an evaporator for extracting water vapor from raw water via a hydrophobic porous membrane, and a condenser for taking in the water vapor and condensing the vapor, are provided. After selecting one of the condensing section and the other, the opposite side is selected in the next-stage membrane module, and this is repeated until the final-stage membrane module is connected in series to form the first raw water flow path, The remaining side of the membrane module is connected in series in the same order as the first raw water flow path to form a second raw water flow path, and the first raw water flow path and the second raw water flow path are connected via heating or cooling means. A fresh water generator characterized by being connected in series.
【請求項2】 前記膜モジュールは奇数段だけ設けられ
ていることを特徴とする請求項1に記載の造水装置。
2. The fresh water generator according to claim 1, wherein the membrane module is provided in an odd number of stages.
【請求項3】 前記蒸発部を前記原水流路に沿って複数
段に仕切り、前記蒸発部と同数段だけ仕切られた前記凝
縮部に吸引手段を介して個々に連結するように前記膜モ
ジュールを構成したことを特徴とする請求項1または請
求項2に記載の造水装置。
3. The membrane module is partitioned into a plurality of stages along the raw water flow path, and the membrane modules are individually connected to the condensing units partitioned by the same number of stages as the evaporating units via suction means. The fresh water generator according to claim 1 or 2, wherein the fresh water generator is configured.
JP18300497A 1997-06-24 1997-06-24 Distilling apparatus Withdrawn JPH1110147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18300497A JPH1110147A (en) 1997-06-24 1997-06-24 Distilling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18300497A JPH1110147A (en) 1997-06-24 1997-06-24 Distilling apparatus

Publications (1)

Publication Number Publication Date
JPH1110147A true JPH1110147A (en) 1999-01-19

Family

ID=16128071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18300497A Withdrawn JPH1110147A (en) 1997-06-24 1997-06-24 Distilling apparatus

Country Status (1)

Country Link
JP (1) JPH1110147A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072947A1 (en) * 1999-05-27 2000-12-07 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
WO2007122785A1 (en) * 2006-04-18 2007-11-01 Ngk Insulators, Ltd. Reaction apparatus, reaction module therefor and liquid feeder for the reaction apparatus
JPWO2007122785A1 (en) * 2006-04-18 2009-08-27 日本碍子株式会社 Reaction apparatus, reaction module for reaction apparatus, and liquid feeding apparatus for reaction apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072947A1 (en) * 1999-05-27 2000-12-07 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
JP2003519001A (en) * 1999-05-27 2003-06-17 ネーデルランドセ・オルガニザテイエ・フール・テゲパスト−ナトウールベテンシヤツペリーク・オンデルツエク・テイエヌオー In particular, a method for purifying a liquid which is intended to generate demineralized water from seawater or dark water or process water by membrane distillation.
AU768969B2 (en) * 1999-05-27 2004-01-15 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
WO2007122785A1 (en) * 2006-04-18 2007-11-01 Ngk Insulators, Ltd. Reaction apparatus, reaction module therefor and liquid feeder for the reaction apparatus
JPWO2007122785A1 (en) * 2006-04-18 2009-08-27 日本碍子株式会社 Reaction apparatus, reaction module for reaction apparatus, and liquid feeding apparatus for reaction apparatus

Similar Documents

Publication Publication Date Title
JP6524298B2 (en) Vacuum evaporation type fresh water generator
US20110132826A1 (en) Block Configuration for Large Scale Membrane Distillation
JP2008000636A (en) Plate type apparatus for producing fresh water
JP2003519001A (en) In particular, a method for purifying a liquid which is intended to generate demineralized water from seawater or dark water or process water by membrane distillation.
WO2022037001A1 (en) Wastewater treatment system
JP5672450B2 (en) Fresh water generator and fresh water generation method
JP5150785B2 (en) Pure liquid production equipment
AU2009234819A1 (en) Heat exchanger and hot water supply system using the same
JPH1110147A (en) Distilling apparatus
KR20130084264A (en) Vacuum evaporation desalination system
JPH09108653A (en) Seawater desalination device
KR100749223B1 (en) Multi-stage flash evaporator
US10702830B2 (en) Thermal water purification system and method for operating said system
JP5105796B2 (en) Multi-stage flash water generator
CN104399372A (en) Multistage membrane distillation device
KR100937447B1 (en) An long tube evaporator for a multiple stage flashing facility
KR102619254B1 (en) Fresh water generation device
JP2002219452A (en) Distilling device
WO2018232709A1 (en) Multistage flash evaporation device
CN201249104Y (en) Energy-saving type vacuum membrane distillation component device
EP3881917A1 (en) Distillation module and multi-stage distillation apparatus
RU2241512C1 (en) Multi-stage evaporator of instant ebullition
JPS5934956B2 (en) Evaporators used in hot water heat recovery systems, etc.
RU2259514C1 (en) Instant-boiling evaporator
JPS618188A (en) Multistage flash evaporator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907