WO2007122785A1 - Reaction apparatus, reaction module therefor and liquid feeder for the reaction apparatus - Google Patents

Reaction apparatus, reaction module therefor and liquid feeder for the reaction apparatus Download PDF

Info

Publication number
WO2007122785A1
WO2007122785A1 PCT/JP2007/000253 JP2007000253W WO2007122785A1 WO 2007122785 A1 WO2007122785 A1 WO 2007122785A1 JP 2007000253 W JP2007000253 W JP 2007000253W WO 2007122785 A1 WO2007122785 A1 WO 2007122785A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
flow path
path system
reaction
suction
Prior art date
Application number
PCT/JP2007/000253
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuko Yoshida
Masahiro Murasato
Kazunari Yamada
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2008511948A priority Critical patent/JPWO2007122785A1/en
Publication of WO2007122785A1 publication Critical patent/WO2007122785A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • B01L2400/049Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0694Valves, specific forms thereof vents used to stop and induce flow, backpressure valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Definitions

  • the present invention relates to a reaction device, a reaction module for the reaction device, and a liquid feeding device for the reaction device.
  • the present invention relates to a reaction apparatus for a reaction using a liquid as a medium, a reaction module for the reaction apparatus, a liquid feeding apparatus for the reaction apparatus, and the like. Specifically, a liquid of a microliter level on a flat plate is used as a medium.
  • the present invention relates to a reaction apparatus for performing the reaction, a reaction module for the reaction apparatus, a liquid feeding apparatus for the reaction apparatus, and the like.
  • liquid feeding and storage are controlled by controlling the pump via a coupler provided for each hydrophobic membrane of the reservoir and opening and closing the valve. For this reason, the mechanism for liquid delivery has been increased and complicated.
  • liquid is sent using air or the like as a medium, it is difficult to control the position where the liquid reaches, so it is necessary to detect the optical or electrical position of the liquid. It was necessary to provide a liquid position detection mechanism for each predetermined part of the liquid delivery path and the storage part.
  • the present invention provides a reaction apparatus provided with a simple liquid feeding system, the module for the reaction apparatus and a method for producing the same, a liquid feeding apparatus for the reaction apparatus, and an analysis method using the reaction apparatus.
  • the present invention provides a reaction apparatus including a liquid feeding system that can be easily automated, a module for the reaction apparatus and a method for producing the same, a liquid feeding apparatus for the reaction apparatus, and an analysis method using the reaction apparatus.
  • the present invention provides a module for a reaction apparatus including a liquid supply system that can be easily reduced in size, a method for manufacturing the same, a liquid supply apparatus for the reaction apparatus, and an analysis method using the reaction apparatus.
  • another object of the present invention is to provide a reaction apparatus including a liquid evaporation / concentration device, a liquid evaporation / concentration device, and a liquid evaporation / concentration method.
  • the present inventors use the liquid for feeding and controlling a liquid feeding position.
  • a liquid feeding position position where the liquid is to reach
  • liquid transfer position position where the liquid is to reach
  • liquid transfer, separation, mixing, storage, reaction and detection in the flow path system
  • this liquid feeding device can also be used for a liquid evaporation / concentration device, and completed the invention of the present invention. According to the present invention, the following means are provided.
  • a reaction apparatus for reaction using a liquid as a medium, A liquid flow path system, and one or more ventilation portions that are capable of flowing gas inside and outside the flow path system through a breathable material that is exposed in the liquid flow path system and has liquid repellency to the liquid.
  • Liquid feeding means for sucking at least a gas in the flow path system from a part of the one or more ventilation portions to form a differential pressure in the flow path system and feeding the liquid.
  • the liquid feeding means may include a suction part connected to a suction source so that gas can be selectively sucked from the flow path system in a part of one or more of the ventilation parts.
  • the suction portion may be movable relative to the flow path system.
  • the liquid feeding means may include a seal portion that selectively blocks gas flow in a part of one or more of the vent portions, and the seal portion is provided in the flow path system. It can also have relative movement.
  • the liquid feeding means is disposed on at least a part of the one or two or more ventilation portions, and a suction portion capable of selectively sucking gas from the flow path system, and a tube wall of the flow path system. It is also possible to have one or two or more liquid-feeding units provided with a seal portion that selectively blocks gas flow in at least a part of the one or more vent portions. And it can have the said liquid feeding unit so that relative movement is possible along the said flow-path system.
  • Liquid feeding control means for controlling the arrival position of the liquid can be provided.
  • the aeration part may be arranged so that when the liquid fed through the flow path system reaches the reaching part, the flow of gas is quickly blocked by the liquid.
  • the liquid feeding means may be configured such that a suction part connected to a suction source so that a gas can be selectively sucked from the flow path system in a part of the one or two or more of the ventilation parts is relative to the flow path system.
  • the liquid feeding control means may be means for controlling the position where the liquid reaches by controlling the position of the suction part.
  • the reaction apparatus further includes a suction pressure decrease detection unit capable of detecting a decrease in suction pressure in one or more of the ventilation portions from which the gas in the flow path has been sucked.
  • the suction pressure drop detecting means detects the blockage of the ventilation part
  • the liquid feeding means removes the ventilation part from the ventilation part.
  • a means for controlling the gas suction in the flow path system to stop may be provided.
  • the liquid feeding control means sucks the gas in the flow path system from the vent part on the next stage side of the reaction in the reaction apparatus when the blockage of the vent part is detected by the suction pressure drop detecting means. It can be a means to control to start.
  • the reaction apparatus of the present invention may be configured such that one or more of the vents or all of the vents are arranged on one side of the flow path system. Further, one or two or more of the ventilation portions may be independently provided along the liquid feeding direction of the liquid in the flow path system. Furthermore, one or more of the ventilation portions may be formed of a breathable material disposed in an opening portion that opens in a pipe wall of a pipe line constituting the flow path system. Furthermore, one or more of the vents may be formed of the breathable material disposed over a predetermined liquid feeding range of the flow path system.
  • the reaction apparatus of the present invention can include the flow path system on a flat plate.
  • the breathable material may be a hydrophobic material.
  • the reaction using the liquid as a medium can be a reaction containing any one of a protein, a peptide and a nucleic acid.
  • a reaction module for a reaction apparatus using any one of the above liquids as a medium, wherein the liquid channel system is exposed to the liquid channel system and is exposed to the liquid.
  • a reaction module comprising: one or two or more ventilation portions capable of flowing gas inside and outside the flow path system through a breathable material having liquid repellency.
  • the opening may be formed continuously or discontinuously along the concave portion, and the breathable material may be one or more membranes.
  • a liquid feeding device of a reaction apparatus for a reaction using a liquid as a medium, the liquid channel system, and the liquid channel system exposed to the liquid channel system comprising 1 or 2 or more ventilation parts that can circulate gas inside and outside the flow path system through a breathable material having liquid repellency, and a reaction module comprising: A module mounting portion, and a liquid feeding means for sucking at least a gas in the flow channel system from a part of the one or more vent portions to form a differential pressure in the flow channel system and feeding the liquid
  • a liquid feeding apparatus comprising liquid feeding control means for controlling the position where the liquid reaches by selecting the ventilation portion that sucks the gas in the flow path system.
  • the vent is arranged so that the flow of gas is quickly blocked by the liquid when the liquid that is fed through the flow path system reaches the arrival site. May be.
  • the liquid feeding means may be configured so that a suction part connected to a suction source is selectively relative to the flow path system so that gas can be selectively sucked from the flow path system in a part of one or more of the ventilation parts.
  • the liquid feeding control means may be means for controlling the position where the liquid reaches by controlling the position of the suction part.
  • the liquid delivery device of the present invention includes a suction pressure decrease detection unit capable of detecting a decrease in suction pressure in one or more of the vents where the gas in the flow path has been sucked.
  • the liquid supply control means controls to stop the suction of the gas in the flow path system from the ventilation part by the liquid supply means when the blockage of the ventilation part is detected by the suction pressure decrease detection means. It can be a means.
  • the liquid feeding control means detects from the ventilation section on the next stage side of the reaction in the reaction apparatus from the ventilation section in the flow path system when the suction pressure drop detection means detects the blocking of the ventilation section. It may be a means for controlling to start sucking the gas.
  • a method for producing a reaction module for a reaction apparatus for a reaction using a liquid as a medium, the concave portion constituting the liquid flow path system, and the concave portion A step of preparing a flat plate having an opening communicating with the outside; and a breathable material having liquid repellency with respect to the liquid so as to close the opening of the concave portion of the flat plate.
  • a step of applying, and a manufacturing method comprising:
  • an analysis method based on a reaction using a liquid as a medium comprising the step of performing a reaction for analysis using any one of the above-described reaction devices.
  • the liquid in the flow path system is evaporated or concentrated by sucking the gas in the flow path system using the liquid feeding means.
  • an apparatus for evaporating or concentrating a liquid, the liquid channel system, and a breathable material exposed in the liquid channel system and having liquid repellency with respect to the liquid is also provided.
  • an apparatus comprising: suction means for forming a differential pressure in the system.
  • FIG. 1A is a diagram showing a plan view of a reaction apparatus according to a first embodiment.
  • FIG. 1B is a cross-sectional view of the vicinity of the vent 2 O A of the reactor according to the first embodiment.
  • FIG. 2 is a view showing a cross-sectional structure of the reaction apparatus according to the first embodiment and showing an example of a ventilation part and a liquid feeding means.
  • FIG. 3 is a view showing another example of a cross-sectional structure in the reaction apparatus of the first embodiment, and showing another example of a vent part, a liquid feeding means and the like.
  • FIG. 4 is a view showing another example of the cross-sectional structure in the reaction apparatus of the first embodiment, and showing another example of the aeration part and the liquid feeding means.
  • FIG. 5 is a view showing another example of a cross-sectional structure in the reaction apparatus of the first embodiment, and showing another example of a ventilation part, a liquid feeding means, and the like.
  • FIG. 6 is a view showing an example of a cross-sectional structure in the reaction apparatus of the second embodiment, and showing an example of a ventilation part and a liquid feeding means.
  • FIG. 7A is a view showing another example of a cross-sectional structure in the reaction apparatus of the second embodiment, and showing an example of an aeration part and a liquid feeding means.
  • FIG. 7B is a diagram showing another example of a cross-sectional structure in the reaction apparatus of the second embodiment, and showing an example of an aeration part and a liquid feeding means.
  • FIG. 8 is a diagram showing a difference between liquid feeding by suction and liquid feeding by pressurization.
  • FIG. 9 is a diagram showing an outline of a reaction apparatus according to a third embodiment.
  • FIG. 10 is a diagram showing an outline of another reaction apparatus of the third embodiment.
  • the reaction apparatus of the present invention is a reaction apparatus for a reaction using a liquid as a medium, and has a liquid flow path system and a liquid repellency with respect to the liquid exposed in the liquid flow path system.
  • 1 or 2 or more ventilation parts capable of circulating the gas inside and outside the flow path system through the air permeable material, and at least the gas in the flow path system is sucked from a part of the 1 or 2 or more ventilation parts.
  • means for forming a differential pressure in the flow path system and feeding the liquid are provided.
  • one or two or more ventilation portions capable of flowing gas inside and outside the flow path system through the breathable material having liquid repellency with respect to the liquid are used as the flow path system.
  • the liquid can be sent to reach the vent.
  • the ventilation section is blocked, so that the differential pressure is eliminated and the liquid feeding is stopped. That is, according to the reaction apparatus of the present invention, liquid feeding is performed by forming a differential pressure by suction in the flow path system, so that accurate control of the liquid feeding position can be realized with a simple configuration.
  • the reaction apparatus of the present invention can detect the arrival of the liquid to the aeration part that has sucked the gas by blocking the aeration part, the liquid supply control part and the liquid position control part are separated from the liquid in the flow path system. It can be concentrated at the place where it is going to reach. Therefore, a liquid feeding system that can easily automate the liquid feeding is provided. Furthermore, since the reaction apparatus of the present invention can perform liquid feeding and liquid feeding control with a simple configuration, the apparatus can be miniaturized. In particular, by providing liquid supply means so that it can move relative to the flow path system, it is possible to control liquid supply at multiple locations without requiring a large number of liquid supply means. It can be downsized.
  • FIG. 1A shows a plan view and outline of the reaction apparatus of the present invention
  • FIG. 1B shows a cross-sectional structure in the vicinity of the vent 2OA of FIG. 1A
  • FIGS. And ventilating means in the reactor Various forms of are shown. Note that the reactor 2 and the like shown in these drawings are examples for facilitating understanding of the present invention, and do not limit the present invention.
  • the reaction apparatus 2 of the present invention is an apparatus for performing a reaction using a liquid as a medium.
  • a reaction using a liquid as a medium in addition to a liquid phase reaction, it can be applied to a solid phase one liquid phase reaction, a gas phase one liquid phase reaction, and the like.
  • the reaction is a general chemical reaction or electrochemical reaction such as synthesis or decomposition, as well as various intermolecular interactions such as hydrogen bond, hydrophobic bond, dipole interaction, van der Waals force, etc.
  • the reaction includes, for example, biochemical reactions such as antigen-antibody reaction, enzyme reaction, nucleic acid hybridization, etc., and dissolution, dilution, concentration, mixing, separation, extraction, washing, adsorption It includes various processing operations such as desorption, drying, heating, cooling, irradiation with various electron beams, ultrasonic processing, electrical processing, and detection.
  • biochemical reactions such as antigen-antibody reaction, enzyme reaction, nucleic acid hybridization, etc.
  • processing operations such as desorption, drying, heating, cooling, irradiation with various electron beams, ultrasonic processing, electrical processing, and detection.
  • the components involved in these reactions can include cells in addition to compounds.
  • the compounds can include nucleic acids, proteins, saccharides, cells, and the like that contain DNA, RNA, DNA NARNA chimeras or derivatives thereof. Nucleic acids, proteins, etc. may be previously labeled with a fluorescent dye or the like. Examples of proteins include enzymes, antibodies, antigens, ligands and receptors, and peptides.
  • the reaction component is a cell
  • the reaction includes expression and change of interaction between the cell and the cell, cell culture, cell destruction (or extraction accompanying it), cell separation, and the like.
  • the cells include microorganisms (bacteria, fungi, viruses, etc.), animal and plant cells and tissues.
  • the reaction component may be supplied from the outside of the reaction apparatus 2, or in the case of a reaction by two or more reaction components, a part of the reaction component (for example, one component that generates one reaction) ) Only from the outside of the reactor 2, and the other part (for example, the component on the other side of the one reaction) may be prepared in the flow path system in advance. it can.
  • the reaction component prepared in the flow path system may be prepared by being directly fixed to the flow path system, or a cartridge that can be detached or attached to a predetermined part of the flow path system. It may be mounted as.
  • the reaction components that are prepared in advance in the flow path system in this way vary depending on the reaction to be carried out in the reaction apparatus.
  • antigens and Z or antibodies, enzymes and Z or substrates, nucleic acid probes Examples include labeling substances and various reagents (coloring reagents, reaction reagents, etc.).
  • the reaction may involve auxiliary materials such as a carrier, a filter, and a catalyst that can also serve as a reaction site.
  • auxiliary materials such as a carrier, a filter, and a catalyst that can also serve as a reaction site.
  • a reaction auxiliary material may be contained in a liquid as a medium, or may be prepared in the flow path system by being fixed to a part of the flow path system.
  • the liquid as a reaction medium is not particularly limited. In addition to water, various organic solvents and mixtures thereof are included. These liquids may contain a solute as a part of a medium such as a salt such as a buffer solution.
  • a medium such as a salt such as a buffer solution.
  • the liquid is often an aqueous liquid containing water.
  • the reaction apparatus 2 of the present invention can include a liquid flow path system 10.
  • the flow path system 10 includes a site where the reaction is performed, and a site where a liquid is fed, supplied, stored, injected, and the like for the reaction.
  • the reaction apparatus 2 of the present invention can be provided with such a flow path system 10 as a channel or a chamber in an appropriate solid phase substrate 4.
  • a liquid feeding system for feeding a liquid is often provided as a channel
  • a reaction part for performing nucleic acid hybridization is often provided as a channel.
  • chambers A, B, C, D, and E are formed by being connected by a channel.
  • the size of such channels and chambers is not particularly limited, Has a width of about several m / m to several mm, and the depth of the channel and chamber is several // ⁇ ! ⁇ It can be about several mm.
  • the channel for carrying out the reaction or quantifying the amount of liquid can have a volume corresponding to the amount of liquid for reaction or the amount of liquid for quantification.
  • the solid phase substrate 4 provided with the flow path system 10 may be a flat plate, a cube, a cuboid, or an indeterminate three-dimensional shape.
  • a flat plate body When the flow path system is arranged approximately on the same plane, it is preferable to use a flat plate body.
  • a three-dimensional shape body having a thickness at least at a high portion can be obtained.
  • a thick three-dimensional shape can be obtained even when two or more flow path systems on the same plane are stacked.
  • the solid phase substrate 4 can be a laminate of two or more layers as shown in FIG.
  • the first layer 4 a that forms the bottom of the flow path system 10
  • the second layer 4 b that forms the pattern of the flow path system
  • the third layer 4 that forms the ceiling of the flow path system 10.
  • You can also have c.
  • the second layer can be provided with a pattern corresponding to a channel, a chamber, or the like as a penetrating part in order to constitute the flow path system 10.
  • Each layer 4a, 4b, 4c can be fixed to the laminate by mechanical pressing as well as by bonding or thermocompression.
  • the solid phase substrate 4 is not particularly limited, and one or more materials can be used in combination.
  • one or more materials can be used in combination.
  • glass, silicon, ceramics, glass ceramics, plastics such as P M M A and P D M S, metals, and the like can be used.
  • the constituent material of the flow path system 10 can be selected in consideration of the liquidity of the liquid.
  • the constituent material may be selected in consideration of liquid repellency such as hydrophobicity and hydrophilicity.
  • a manufacturing technique of a micromachine or MEMS is applied. be able to.
  • Various etching techniques, lithography techniques, bonding techniques, film forming techniques, precision fine processing techniques using lasers, ultrasonic techniques, etc. can be used in appropriate combination.
  • micro plastic processing technology, micro shooting Micro molding technology such as extrusion molding technology and micro stereolithography technology can also be used.
  • the solid phase substrate 4 may be appropriately selected according to the molding and processing technique used.
  • the solid phase base material 4 patterned with the flow path system 10 as a through-hole or the like and another flat solid phase base material. 4 may be bonded or bonded to each other by an appropriate technique such as thermocompression bonding or ultrasonic bonding.
  • double-sided adhesive or double-sided adhesive tape can also be used for adhesion.
  • the reaction device 2 of the present invention can also include such a flow path system 10 as a three-dimensional structure in which a tube and a chamber are connected separately.
  • a hollow body having such a three-dimensional structure can be manufactured by a micro stereolithography method, joining of other members, or the like.
  • the reaction device 2 of the present invention can include a venting unit 20 that allows the gas inside and outside the channel system 10 to selectively flow.
  • the ventilation part 20 can be made of a gas permeable material provided on the wall part of the flow path system 10.
  • the ventilation part 20 can be provided along the liquid feeding direction in the flow path system 10.
  • the portion provided with the ventilation part 20 is a flow control part that requires at least liquid supply control in the flow path system 10, that is, a part where the liquid should reach and be held or a position where the liquid should be stopped (liquid Position).
  • the ventilation section 20 is a place where the liquid is made to reach by sucking the gas in the flow path system 10 by the liquid feeding means 40 described later.
  • a plurality of such liquid feeding control portions are usually provided along the flow path system 10.
  • the ventilation unit 20 or the liquid supply control unit can be provided at the junction of the chamber and the channel, and can also be provided at the channel (portion or part other than the junction). .
  • the ventilation portion 20 may be configured by arranging a breathable material in the opening portion 12 that opens in the wall portion of the flow path system 10. it can.
  • the vent portion corresponding to the liquid feed control portion is formed by shielding the opening portion 12 corresponding to each liquid feed control portion in the flow path system 10 with the air-permeable material. 2 0 can be formed.
  • the ventilation part 20 is fed to the flow path system 10. A plurality are provided along the liquid direction.
  • the ventilation portion 20 may be provided only on one side of the flow path system 10 as shown in FIG. 1B and the like. In the form shown in FIG. 1B and the like, the ventilation portion 20 is provided at the bottom of the flow path system 10, but may be provided at the ceiling. Further, the flow path system 10 may be provided on the opposite side of this one side. Furthermore, it may be provided together with a portion that is neither the one side nor the opposite side. In consideration of the formation of the ventilation section 20 and the convenience of the liquid feeding system in the flow path system 10 through the ventilation section 20, it is preferable that the ventilation section 20 is provided on one side of the flow path system 10.
  • the flow path system 10 is provided with a ventilation part 20 on one side and another side (preferably the opposite side) different from that. It is preferable to provide the ventilation part 20 in the. According to such an arrangement of the ventilation portion 20, liquid feeding control by the one-side ventilation portion 20 and liquid feeding control by the other-side ventilation portion 20 are applied to one channel system 10. be able to.
  • the most advanced ventilation portion 20 in which the ventilation portion 20 is in the liquid feeding direction is such that when the liquid fed through the flow path system 10 arrives, the flow of regas is quickly blocked by the liquid. It is preferable that they are arranged at positions. In this way, when the liquid reaches a predetermined arrival position, the liquid stops immediately at that position.
  • the position and size of the ventilation portion 20 and the inner surface shape of the flow path system 10 are considered so that the liquid is closed at the same time as it arrives. More specifically, a channel system 10 such as a channel that is immediately filled with the liquid to be sent or a channel in which the vent 20 is immediately closed without being filled with the liquid to be sent.
  • the ventilation section 20 is closed as soon as the liquid reaches, regardless of whether the ventilation section 20 is on the bottom, ceiling, or side wall of the flow path system 10. The liquid is stopped.
  • the ventilation part 20 is arranged in a ceiling part of a cavity such as a chamber having a ceiling higher than the front and rear channels in the flow path system 10, the tip of the liquid to be fed However, liquid does not reach the ventilation part 20 in the ceiling immediately after reaching the chamber. In the case of multi ⁇ , the liquid should be placed at the position of the vent 20 as long as the liquid does not fill the cavity. Can not be stopped at the same time.
  • the liquid position can be accurately controlled by providing the vent 20 as a liquid control part at a position on the flow path system 10 that is immediately closed by the leading edge of the supplied liquid. .
  • such liquid position control is first achieved by forming a differential pressure by suction.
  • an open / close valve can be provided on the outside of the flow path system 10 of the ventilation portion 20 such as being opened when gas is sucked and closed when gas suction is stopped. By providing such a valve, it is possible to easily ensure the sealing performance in the ventilation portion 20 when gas is not sucked.
  • the ventilation part 20 can be made of a gas permeable material that selectively permeates gas rather than liquid.
  • a gas permeable material that selectively permeates gas rather than liquid.
  • a material having liquid repellency with respect to the liquid supplied to the reactor 2 or the flow path system 10 can be used. By providing liquid repellency with respect to the liquid, the liquid tightness in the vent 20 can be enhanced.
  • the liquid is highly polar, such as when the liquid is aqueous, at least the surface layer exposed in the flow path system 10 has hydrophobicity, and the liquid is polar, such as an organic solvent.
  • the thickness is low, such a surface layer side can be provided with hydrophilicity. Therefore, when the liquid is aqueous, it is sufficient that the surface layer has an appropriate liquid repellency, such as a surface layer of a hydrophilic material and a hydrophobic material.
  • the breathable material may be any breathable material that allows gas to flow inside and outside the flow path system 10, but is preferably a breathable material that exhibits good permeability to air. .
  • Examples of such a breathable material include a material in which fine holes (through-holes) are formed in an organic material such as plastic or an inorganic material. Such a hole can be formed by laser processing or the like. The size of the hole is not particularly limited, but can be appropriately selected in the range of about 1 m to several hundreds / m. Such breathable materials include porous organic materials and porous inorganic materials. Materials can also be used.
  • the average pore size of such a porous membrane is preferably from 0.01 m to 10 m, but when trying to control gas permeability in the film thickness direction, the average pore size is It is preferably about 0.1 m or more and 0.3 m or less.
  • Typical hydrophobic organic materials used for the breathable material include polytetrafluoroethylene (PTFE), silicone, polyethylene, polypropylene, polyethylene, polystyrene, polyvinyl chloride, polycarbonate, polysulfone, polyethersulfone, polyarylene cocoon, Examples include polymethylpentene and 1,3-cyclohexadiene polymers.
  • PTFE polytetrafluoroethylene
  • silicone silicone
  • polyethylene polypropylene
  • polyethylene polyethylene
  • polystyrene polyvinyl chloride
  • polycarbonate polysulfone
  • polyethersulfone polyarylene cocoon
  • Examples include polymethylpentene and 1,3-cyclohexadiene polymers.
  • the ventilation direction and ventilation through the ventilation part 20 It is possible to perform preferable liquid feeding control by adjusting the amount and the like.
  • the reaction apparatus 2 of the present invention can be provided with such a flow path system 10 and a vent part 20 as a reaction module 30. That is, the reactor 2 can replace these parts (the channel system 10 and the vent part 20) as an integral part with respect to the parts other than the channel system 10 and the vent part 20 of the reactor 2. Can be prepared.
  • the reaction module 30 including the flow path system 10 and the ventilation section 20 is configured, the flow path system 10 is provided on the solid-phase substrate 4 having a flat body, and the ventilation section 20 is It is preferable that the solid phase substrate 4 is provided so as to shield the opening portion of the flow path system 10 formed as a through hole portion or a concave portion.
  • a method for producing the reaction module 30 comprises a step of preparing a plate-like body comprising a concave portion constituting the flow path system 10 and an opening that communicates the concave portion with the outside, and has a liquid repellency with respect to the liquid body.
  • a step of applying the air-permeable material having the air-permeable material so as to block the opening of the flat plate-like body can be provided.
  • the step of preparing the flat plate includes forming a recess or a through hole with a pattern corresponding to the flow path system 10 with respect to the solid phase substrate 4.
  • the ventilation part 20 which is a liquid feeding control part Forming through holes corresponding to the pattern of the corresponding openings 12 in the solid phase substrate 4 is also included.
  • various methods such as MEMS can be used.
  • the step of applying the breathable material so as to shield the opening is applied to, for example, the opening 12 of the flow path system 10 in which the porous material or the like is formed on the solid phase base material 4.
  • the breathable material the various materials described above can be used.
  • closing the opening 12 with a breathable material conventionally known techniques such as adhesion, adhesion, welding, and thermocompression bonding can be used depending on the type of the breathable material.
  • the reaction apparatus 2 of the present invention is a liquid feeding means for feeding a liquid by sucking a gas in the flow path system 10 from at least a part of the ventilation section 20 to form a differential pressure in the flow path system 10. It has 4 0.
  • the liquid arrival position can be accurately controlled by sucking the gas in the flow path system 10 to form a differential pressure and feeding the liquid.
  • Fig. 8 (a) and (b) when a liquid is sent with a differential pressure formed in the flow path system 10, there are cases where pressure is reduced (suction) and pressure is increased. .
  • Fig. 8 (a) in the case of depressurization, the gas is sucked from the vent 20 (one), and as shown in Fig.
  • liquid feeding by suction as in the present invention can be reliably realized regardless of the liquid feeding speed or the like that requires position control.
  • the liquid feeding means 40 may be provided integrally with the reaction apparatus 2, or may be provided separately so as to be detachable. As shown in FIG. 1A and FIG. 2, the liquid feeding means 40 includes a gas suction unit 42 capable of sucking a gas in the flow channel system 10 from a part of the ventilation unit 20 of the flow channel system 10 and A gas suction source 50. It should be noted that the gas suction source 50 need not be provided for each suction unit 42, and gas may be sucked from each gas suction unit 42 by valve operation from the collective gas suction source 50.
  • the suction part 42 may be anything that can connect the ventilation part 20 and the gas suction source 50.
  • the suction part 42 may be anything that can connect the ventilation part 20 and the gas suction source 50.
  • it is only necessary to have a cavity for communicating the suction part 20 and the suction source 50 formed independently at the liquid feeding control part. Therefore, it may be a simple tube-like body, or a suction cavity having a larger volume than the suction source 50 may be provided on the ventilation section 20 side.
  • the suction part 42 does not necessarily mean all members between the ventilation part 20 and the gas suction source 50, but includes at least a part connected to the ventilation part 20. To do.
  • the suction part 42 can be provided with a connection part on the ventilation part 20 side and the gas suction source 50 side, respectively, and either of these connection parts or the ventilation part 20 and the gas suction part can be provided. It is also possible to adjust the start and stop of suction by appropriately providing a valve or the like at any part between the source 50 and the source 50.
  • the suction part 42 may be fixedly attached corresponding to each ventilation part 20, but can also be provided so as to be movable relative to the flow path system 10. In this way, since it is not necessary to provide the suction part 42 for all the ventilation parts 20, the liquid feeding means 40 and the reaction apparatus 2 can be simplified.
  • a suction part 42 may be configured to be movable with respect to the flow path system 10, or the flow path system 10 may be configured to be movable with respect to the fixed suction part 42. Also good. Alternatively, both may be configured to be movable.
  • FIG. 3 An example of such a suction unit 42 is shown in FIG. As shown in Figure 3, this suction The part 42 can have a base part 41 corresponding to the surface form of one side surface of the flow path system 10 including the ventilation part 20. By having the base part 41, smooth relative movement becomes possible.
  • the liquid feeding means 40 can include a seal part 60 that blocks the gas flow in the ventilation part 20.
  • the seal part 60 allows the gas to flow from the ventilation part 20 when the ventilation part 20 exists in the liquid supply range where the liquid is sucked from the liquid supply control part to send the liquid. Provided to shut off. By blocking the gas flow from the vent 20, liquid feeding and liquid position control are facilitated.
  • the ventilation part 20 may be able to send liquid without providing the seal part 60 due to the liquid repellency and air permeability of the air-permeable material.
  • the seal part 60 can also be provided to block the gas flow in the ventilation part 20 on the downstream side of the liquid feeding control part. By blocking the gas flow at the ventilation part 20 on the downstream side of the liquid feeding control part, the liquid feeding and the liquid position can be easily controlled. In order to facilitate liquid feeding by suction, it is preferable that gas flow is allowed upstream of the liquid feeding range. Furthermore, gas can be supplied from the aeration unit 20 upstream of the liquid feeding range to the flow path system 10 to assist liquid feeding by suction.
  • the seal part 60 can be provided individually as a valve in the ventilation part 20, or can be provided on the liquid feeding means 40 side such as the gas suction part 42 provided in the ventilation part 20. It can also be provided as a possible valve. Both can be configured as cantilever beams or doubly supported beams that function as check valves. Note that such a seal portion 60 may be one whose opening and closing is controlled by the controller 100.
  • the seal part 60 can be provided as a part of the suction part 42 that can move relative to the flow path system 10. That is, the suction part 42 and the seal part 60 can be provided as an integral unit. In this way, it is possible to always accompany the suction part 42 positioned at the liquid feeding control part of the seal part 60, and to seal the liquid feeding range and the ventilation part 20 on the downstream side thereof.
  • liquid control can be simplified by unitization.
  • FIG. 5 Another example of the seal part 60 is shown in FIG.
  • a seal unit 60 that can seal the gas flow in the vent unit 20 is provided on one side of the flow path system 10 including the vent unit 20, and the seal unit 60 and the vent unit A suction part 42 connected to the suction source 50 is movably interposed between the two and 20.
  • the ventilation portion 20 is always sealed in a range where the seal portion 60 is laid, and the suction portion 42 is allowed to suck gas only when it becomes a liquid feeding control portion.
  • liquid feeding control is possible only by controlling the suction part 42.
  • a pressing portion 47 that presses the seal portion 60 in the vicinity of the suction portion 42 to one side of the flow path system 10 can be provided as necessary. .
  • the pressing part 47 By providing the pressing part 47, the floating of the seal part 60 in the vicinity of the suction part 42 can be suppressed.
  • the pressing portion 47 when the pressing portion 47 is a rotating body such as a pole body or a roll body, the relative movement of the suction portion 42 can be performed smoothly.
  • the pressing portion 47 is a rotating body, it may be provided as a relative moving means for the suction portion 42.
  • the reaction apparatus 2 of the present invention includes suction pressure reduction detection means 80 (see FIG. 1) that detects a reduction in suction pressure in the ventilation section 20 that sucks gas from the flow path system 10.
  • suction pressure reduction detection means 80 By providing this suction pressure drop detecting means 80, it is possible to detect a decrease in the gas suction pressure in the vent 20 due to the shut-off of the vent 20.
  • This suction pressure drop detecting means 80 can be provided at any point from the ventilation part 20 to the suction source 50, but the suction cavity provided near the ventilation part 20 by the suction part 42. Can also be prepared.
  • the suction pressure drop detecting means 80 may be a device that directly or electrically detects such a suction pressure drop in the suction cavity, but is a check that passively closes due to the suction pressure drop.
  • a gas pressure detecting means it may be detected indirectly through valve operation or the like.
  • a known gas pressure detecting means may be selected as necessary.
  • the attraction pressure reduction detecting means 80 can be replaced with a means for detecting a decrease in the gas suction flow rate. This is because the blockage of the vent 20 can also be detected by detecting a decrease in the gas suction flow rate.
  • a flow rate detecting means may be used instead of the gas pressure detecting means.
  • the liquid is moved by sucking the gas in the flow path system 10 from the ventilation unit 20 which is a liquid feeding control part.
  • the ventilation unit 20 which is a liquid feeding control part.
  • the liquid moves and reaches the ventilation section 20
  • the liquid is strongly sucked into the ventilation section 20, but the liquid repellent surface of the ventilation section 20 is exposed in the flow path system 10. Will not pass through the vent 20.
  • the ventilation part 20 is closed by the liquid, the suction of the gas from the flow path system 10 is suppressed or stopped, and the liquid feeding is substantially stopped.
  • the suction pressure detection means 80 can detect that the liquid has reached the liquid feed control portion A as intended by detecting the decrease in the gas suction pressure through the vent 20. Therefore, the liquid position detecting means can be simplified or omitted.
  • the suction pressure drop detecting means 80 detects a drop in the gas suction pressure
  • the suction from the suction source 50 can be controlled to stop. In this way, excessive suction pressure is not applied to the ventilation section 20 and control for sequentially feeding liquid to the next liquid position (for example, movement of the suction section 42 or start of suction) Can be started immediately.
  • the suction pressure lowering means 80 is suitable for quick liquid feeding control, but the liquid feeding control is possible even when the suction pressure lowering means 80 is not provided. For example, by securing sufficient suction pressure and time for liquid delivery of a predetermined amount of liquid, it is only necessary to stop suction and start liquid feed control at the next stage after a certain period of time at constant suction pressure. .
  • the suction part 42 and the suction source 50 described above constitute the liquid feeding means in the reaction apparatus 2 of the present invention, and can be used as a liquid feeding apparatus at the same time. That is, it can also be used as a liquid feeding device to which a reaction module 30 provided with a flow path system 10 and a vent 20 can be attached.
  • This liquid feeding device can also be provided with a seal part 60.
  • various reaction modules 30 Liquid feeding can be easily performed in the flow path system 10.
  • the reactor 2 includes a suction unit 42 in addition to the start of gas suction from the suction unit 42 attached to the ventilation unit 20 and the stop of gas suction based on the signal from the suction pressure drop detection means 80.
  • control means (controller) 100 for performing various control signals to and from each part of the reaction apparatus 2 for relative movement of the seal part 60 and the flow path system 10. it can.
  • controller 100 may be part of the reaction apparatus 2, but can also be a computer outside the reaction apparatus 2.
  • the controller 100 can control the liquid arrival position (stop position) by selecting which ventilation section 20 in the flow path system 10 is to suck the gas.
  • the controller 100 outputs a gas suction start signal from the suction part 42 attached to the ventilation part 20 at the position where the liquid should reach or stop for the reaction.
  • liquid feeding control with liquid position control can be performed.
  • the controller 100 can output a signal for moving the suction part 42 to the ventilation part 20 to control the position of the movable suction part 42.
  • the controller 100 can output a gas suction start signal from the suction unit 42 attached to the ventilation unit 20 by movement, and as a result, can perform liquid feeding control with liquid position control. .
  • the controller 10 0 detects a suction pressure drop signal in the specific ventilation part 20 from the suction pressure reduction detection means 80, the suction attached to the specific ventilation part 20 from the gas suction source 50 Control to stop gas suction from unit 42. Specifically, it is possible to execute signal processing such as stopping the suction itself by the gas suction source 50 or closing the valve to the suction unit 42 side where the suction pressure has decreased. Further, when the controller 100 detects the suction pressure decrease signal, the controller 100 can stop the gas suction from the transmission side of the signal and can immediately start the next process. For example, when performing the liquid feeding process at the next liquid position, gas suction from the suction unit 42 at the next liquid feeding control site is started, or The suction part 42 can be relatively moved to the liquid feeding control part. According to the reaction apparatus 2 of the present invention, by providing such a liquid feeding control means 100, the end of the intended liquid feeding and the liquid position can be detected quickly, and the next process can be performed. it can.
  • the controller 100 is configured to perform gas suction in the suction section 42 attached to the ventilation section 2OA at the end of the chamber A of the flow path system 10 of the reactor 2 shown in FIG. 1A.
  • a start signal is output to the gas suction source 50 side.
  • the gas is sucked only from the ventilation portion 20A, and all the other ventilation portions 20 are not sucked.
  • the liquid A is introduced into the chamber A through the channel connected to the liquid A reservoir of the reactor 2.
  • chamber A (capacity 10 I) is filled with liquid A
  • vent 2O A is closed with liquid A
  • liquid A is stopped being sent to chamber A.
  • the controller 100 of the reactor 2 detects the suction pressure drop signal from the suction pressure drop detection means 80 provided in the vicinity of the vent 2 OA, and the suction attached to the vent 2 OA.
  • the gas suction stop signal from section 42 is output to the gas suction source 50 side.
  • the controller 100 detects that the gas suction from the suction part 4 2 has stopped, the suction part 4 2 B attached to the ventilation part 2 OB at the end of the chamber B
  • the gas suction start signal is output to the gas suction source 50 side.
  • the gas is sucked only from the ventilation part 20 B and is not sucked in all the other ventilation parts 20.
  • the liquid B is introduced into the chamber B through the channel connected to the liquid B reservoir of the reaction device 2.
  • the controller 100 of the reactor 2 detects the suction pressure drop signal from the suction pressure drop detecting means 80 provided in the vicinity of the ventilation part 20 B, and attaches it to the ventilation part 20 B.
  • the gas suction stop signal from the suction section 42 is output to the gas suction source 50 side.
  • liquid A and liquid B are stored in chamber A and chamber B, respectively.
  • liquid C is introduced into chamber C (capacity 21 I) in the same manner, and liquids A, B, and C are introduced into chambers A, B, and C, respectively.
  • controller 100 detects that gas suction from suction part 4 2 attached to vent 2 OC has stopped, suction part 4 attached to vent 20 0 D at the end of chamber D A signal to start gas suction from 2 is output to the gas suction source 50 side. As a result, liquid A and liquid B are introduced into chamber D. Liquid A and liquid B are mixed in the channel and chamber D from the vent 2 O A B to the chamber D to become a mixed liquid A B. In chamber D, various reactions can be carried out, not just mixing.
  • chamber D (capacity 30 I) is filled with liquid A and liquid B
  • vent 20 0 D is closed with a mixture of liquid A and liquid B, and as a result, liquid A and liquid B are transferred to chamber D.
  • the pumping stops.
  • the controller 100 of the reaction device 2 detects the suction pressure drop signal from the suction pressure drop detection means 80 provided in the vicinity of the ventilation part 20 D, and the suction attached to the ventilation part 2 OD. Outputs gas suction stop signal from section 42 to gas suction source 50 side.
  • chamber E Capacity 5 1 I
  • vent 20O is closed with mixed liquid A C
  • liquid C and mixed liquid A B are not fed to chamber ⁇ .
  • the controller 100 of the reactor 2 detects the suction pressure drop signal from the suction pressure drop detection means 80 provided in the vicinity of the ventilation part 20 E and is attached to the ventilation part 20 E. Venting 2 0 Stop gas suction from E.
  • the reaction device 2 of the present invention a differential pressure is formed in the flow channel system 10 by gas suction through the vent 20 provided in the flow channel system 10.
  • the liquid can be moved.
  • the liquid feeding is automatically stopped, and the arrival of the liquid and the position of the liquid can be detected by the decrease of the suction pressure. it can. Therefore, liquid feeding can be realized and liquid feeding control can be easily performed without using a micro pump that directly drives liquid or liquid position detecting means using various methods.
  • the reaction apparatus since the liquid is fed by suction, accurate liquid position control is possible. Therefore, the reaction apparatus includes a liquid feeding system that is simple and excellent in position controllability and liquid feeding controllability. At the same time, it is a reaction device suitable for automation, compactness, and P O C T.
  • the suction section 32 that sucks gas from the ventilation section 20 of the flow path system 10 is movable relative to the flow path system 10. Therefore, even if the complex or multistage reaction requires a large number of liquid feeding control sites, the complexity of the liquid feeding mechanism can be suppressed. For this reason, the reactor is suitable for automation, compactness, and POCT. Furthermore, according to the reaction apparatus 2 of the present invention, since the liquid feeding control is performed by suction, the liquid feeding direction is not limited to one direction from upstream to downstream, but the reverse flow direction or a plurality of liquids are joined and mixed. Can also be done easily. This is due to the fact that, in liquid feeding control by suction, suction can be performed at the position where the liquid reaches, and bubbles mixed in at the time of merging can be removed.
  • the vent 20 is used to remove bubbles or gas. It can also be used as a part or a liquid concentrating part. That is, since the liquid is sent by suction of the gas in the flow path system 10 through the vent 20, if there are bubbles in the liquid being sent, the bubbles are removed at the vent 20. It becomes possible. It is also possible to exclude gas dissolved in the liquid as bubbles. Furthermore, by sucking the gas while the liquid is in contact with the vent 20, the vaporized component in the liquid can be discharged out of the flow path system 10 through the vent 20, and as a result, the liquid Can be concentrated and thus dried or solidified.
  • an analysis method using such a reaction apparatus is also provided.
  • the analysis method of the present invention since various reactions are automated by using the reaction apparatus of the present invention, analysis by simple operation and rapid analysis are possible, and human error is suppressed or avoided. Analysis becomes possible.
  • P O C T can be performed efficiently.
  • reaction apparatus 102 of this embodiment is the same as the reaction apparatus 2 of the first embodiment, except that the form of the vent is different. Accordingly, in the following description, members and the like that are common to the reactor 2 of the first embodiment will be described using the same reference numerals.
  • the reaction apparatus 10 2 of the present embodiment includes a ventilation section 120 throughout the predetermined range of the flow path system 10 (in FIG. 6, the entire ventilation section 120).
  • the vent portion 120 is provided with an air-permeable material so as to shield the entire opening portion 112 formed over a predetermined range of the flow path system 10 such as a concave portion formed in the solid phase base material 4.
  • a vent portion 120 it is not necessary to provide an opening portion independently for each liquid feeding control portion, and it is not necessary to close these openings portions with a breathable material. Therefore, the ventilation part 120 and the reaction module 30 can be efficiently manufactured.
  • a specific part of the ventilation part 120 is selectively used as a liquid feeding control part from the part to the flow path system.
  • the gas in 10 can be sucked.
  • it is possible to effectively control the flow of the gas by effectively suppressing the gas flow in the ventilation section 120 other than the liquid transfer control part.
  • the ventilation part 120 since the ventilation part 120 has liquid repellency with respect to the liquid, it is possible to prevent the generation of bubbles in the flow path system 10 and to promote the discharge of the bubbles.
  • any part can be used as a liquid-feeding control part, so that a liquid-feeding path or the like in the flow path system 10 can be freely used. Can be changed.
  • the ventilation portion 120 can be provided over the entire flow path system 10 or can be provided only within a certain range. In this case, the independent ventilation part 20 described in the first embodiment can be provided at a place other than the flow path system 10 provided with the ventilation part 120.
  • the liquid feeding can be controlled by sucking at an arbitrary place, so that there are the following merits.
  • One is that it is possible to avoid or suppress the stoppage of liquid feeding due to unintentional fragmentation or adhesion of the liquid being fed.
  • the ventilation part 20 is individually provided as in the previous embodiment, when the ventilation part 20 is blocked by the liquid, the liquid feeding is stopped accordingly. For this reason, when the liquid being pumped is interrupted for some reason, the liquid is not transferred while the vent 20 is blocked by the liquid that has previously reached the vent 20 and the predetermined amount of liquid is not completed. It may be stopped.
  • the entire liquid supply range is the ventilation part 120, effective suction is possible until the entire ventilation part 120 is cut off. It is possible to avoid or suppress the occurrence of an unintended liquid supply stop.
  • the reaction apparatus of the present invention is mainly used as a liquid concentrating or concentrating apparatus.
  • FIG. 9 shows a plan view and a cross-sectional view of the reaction apparatus 20 2 of this embodiment
  • FIG. 10 shows a plan view and a cross-sectional view of another reaction apparatus 30 2 of this embodiment.
  • the reaction apparatus 202 mainly includes a chamber F for vaporizing or concentrating liquid, and the one side (bottom surface) of the chamber F is entirely the ventilation section 220, except that the vent part 220 is the same as that of the first embodiment. Similar to reactor 2.
  • the reaction apparatus 30 2 is the same as the reaction apparatus 2 of the first embodiment, except that it mainly includes a chamber for liquid evaporation or concentration. Therefore, in the following description, members and the like that are common to the reaction apparatus 2 of the first embodiment will be described using the same reference numerals.
  • the reaction apparatus 20 2 of the present embodiment can include a chamber F on a part of the solid phase substrate 4.
  • a ventilation part 220 is a concave part formed by the solid phase base material 4 as shown in FIG. Opening formed across the entire surface 2 1 2 is formed by placing a hydrophobic air permeable material so as to shield the entire surface of the reactor 2 0 2, as shown in FIG.
  • the suction part 2 4 2 can be provided with respect to 0.
  • the suction part 2 4 2 has a suction cavity formed including the ventilation part 2 2 0 and is connected to a suction source (not shown). It is formed so that the inside of the chamber F can be sucked through the ventilation part 2 2 0.
  • the reaction apparatus 302 can include a chamber G in a part of the solid phase base material 4.
  • This chamber G has two vents 320 on each side.
  • the vent 320 is formed by disposing a hydrophobic breathable material that shields the opening 31 2 that opens near both ends of the bottom surface of the chamber G.
  • the reaction device 302 can include a suction unit 342 for each ventilation unit 320.
  • the suction part 342 is connected to a suction source (not shown) so as to be able to suck the inside of the chamber G through the ventilation part 320.
  • the reaction device 302 is formed so that the liquid in the chamber G can be moved or stirred by alternately operating the suction from the two vent portions 320.
  • the liquid supplied into the chambers F and G can be evaporated, dried or concentrated.
  • the entire surface of one side of the 8mm x 52mm x 0.16mm thickness formed on a solid glass substrate 4 of slide glass size is a breathable material.
  • the chamber F which is shielded by using Temish NTF 2 122 A, manufactured by Pingtung Denko, is filled with distilled water 65 I (equivalent to almost the entire volume of the chamber F).
  • the initial drying rate was 1.5 I ZH, but after the amount of water reached about half of chamber F, drying proceeded at about 2 I ZH.
  • condition (2) it took 32 minutes to dry the entire water in chamber F, resulting in a drying rate of approximately 2 I Z. From the above results, it was found that the chamber F can be dried by evaporating the water in the chamber F by simply contacting with the outside air through the ventilation part 220. Further, it has been found that the inside of the chamber F can be dried by quickly evaporating the liquid in the chamber F by actively sucking it through the ventilation part 220.
  • the flow path system 10 such as a chamber provided with a ventilation part is useful for the evaporation and concentration of liquid.
  • the form of the ventilation part is provided by shielding a large opening provided in the flow path system 10 such as a chamber with a liquid repellent air permeable material even if it is provided in a part of the flow path system 10. I understood that it could be a thing. It was also found that it is more preferable for the liquid to evaporate or concentrate to keep sucking the inside of the chamber through the ventilation section. Further, almost one side of the chamber F is used as the ventilation section as in the reactor 2 0 2.
  • the reaction apparatus or liquid feeding apparatus of the present invention can be used as a liquid evaporation or concentration device. Therefore, all the various aspects of the liquid feeding means can be applied to the suction means for evaporating or concentrating the liquid.
  • the liquid feed control means The present invention can be applied to a liquid evaporation or concentration apparatus as a suction control means for controlling the liquid suction position for promoting the evaporation or concentration of the liquid in the flow path system.
  • the suction pressure drop detecting means can also be applied to a liquid evaporation or concentration apparatus as a suction switching means for liquid evaporation or concentration.
  • the ventilation part 20 or the like is not necessarily a liquid. It is not necessary to provide along the liquid feeding direction.
  • the ventilation part 20 etc. can be provided at a place where it is desired to evaporate or concentrate the liquid or at a place convenient for moving the liquid by sucking the inside of the flow path system 10 by the ventilation part 20 etc.
  • the evaporation rate of the liquid in the chamber can be controlled by the presence / absence of suction through the vent and the suction method.
  • the suction method in the liquid evaporation or concentration device is not limited to suction from the entire vents 2 20 and 3 20 as exemplified in the reaction devices 2 0 2 and 3 0 2. That is, it is not limited to the one-way suction or the two-way suction illustrated in the reaction devices 20 2 and 30 2, but may be continuous or intermittent suction from one or more directions. .
  • the suction part 42 may be disposed in a part of the ventilation part 120, or the suction part 42 is moved in the ventilation part 120.
  • the ventilation part 1 20 is made of a liquid-repellent breathable material, and the suction part 4 2 partially formed with respect to the ventilation part 1 2 0, the suction part 4 2 provided movably, intermittently By operating the suction part 42, etc., which performs the suction operation so as to suck the inside of the flow path system 10 from these suction parts 42, the liquid can be moved on the surface of the ventilation part 120. Evaporation of water can be effectively promoted.
  • the liquid evaporation or concentration apparatus of the present invention can be used as a liquid evaporation or concentration apparatus by providing at least the flow path system 10 such as a chamber or a channel with a vent 20 or the like.
  • the flow path system 10 such as a chamber or a channel with a vent 20 or the like.
  • suction means including suction part I 2 and suction source that sucks the inside of the flow path system 10 through the ventilation part, it is possible to move the liquid and promote liquid evaporation more effectively. Or it can be used as a concentrating device.
  • the liquid evaporation or concentration apparatus of the present invention can be used as a liquid evaporation or concentration apparatus per se, and a flow path system 10 including a chamber or the like provided with other vents 20 or the like.
  • a reaction apparatus provided as a liquid evaporation and concentration part can be configured. Since the suction means can be used also as the liquid feeding means, the suction means and the liquid feeding means are not necessarily provided separately.
  • the flow path system may be provided on a flat plate body, and the breathable material may be a hydrophobic material.
  • these concentrating devices may be a part of a reaction apparatus using the liquid as a medium, and the reaction using the liquid as a medium may be a reaction containing any one of protein, peptide and nucleic acid. it can.
  • the liquid channel system
  • One or two or more ventilation portions that are exposed in the liquid flow path system and are capable of circulating gas inside and outside the flow path system through a breathable material having liquid repellency to the liquid;
  • a suction means for sucking at least a gas in the flow path system from a part of the one or more vent portions to form a differential pressure in the flow path system;
  • the suction means includes a suction part connected to a suction source so that gas can be selectively sucked from the flow path system in a part of one or more of the ventilation parts.
  • suction means has a first-stage suction portion that can move relative to the flow path system.
  • suction means includes a seal portion that selectively blocks a gas flow in a part of the one or more ventilation portions.
  • the suction means can move the seal portion relative to the flow path system.
  • the suction means is disposed on a suction part capable of selectively sucking gas from the flow path system in at least a part of the one or more ventilation parts, and a pipe wall of the flow path system.
  • suction control means for controlling a suction position of the liquid by selecting a site for sucking a gas in the flow path system.
  • the suction means may be configured so that a suction part connected to a suction source so as to be able to suck gas from the flow path system selectively in a part of one or more of the ventilation sections is relative to the flow path system.
  • the suction control means is a means for controlling the suction position of the liquid by performing position control of the suction part.
  • a suction pressure reduction detecting unit capable of detecting a decrease in suction pressure in one or more of the vents where the gas in the flow path has been sucked, wherein the suction control unit includes a suction pressure reduction detecting unit
  • the suction control means is a means for controlling to start sucking the gas in the flow path system from the other ventilation portion in the device when the suction pressure drop detection means detects the blocking of the ventilation portion.
  • One or more of the ventilation portions are formed of a breathable material disposed in an opening portion that opens to a pipe wall of a pipe line that constitutes the flow path system. (1) to (1 The device according to any one of 3).
  • One or more of the ventilation portions are formed of the breathable material arranged over a predetermined range of the flow path system, and any one of (1) to (14) The device described.
  • the liquid channel system
  • a reaction device comprising the liquid evaporation / concentration device according to any one of (16).

Abstract

A reaction apparatus equipped with simple liquid feeding system. There is provided a reaction apparatus for reaction using a liquid as a medium, comprising liquid flow channel system (10); one or two or more ventilation parts (20) exposed in the liquid flow channel system and adapted to allow circulation of gas inside and outside the liquid flow channel system (10) through an air permeable material exhibiting repellency against the liquid; and liquid feeding means (40) for sucking gas from at least within the liquid flow channel system (10) through portion of the one or two or more ventilation parts (20) and accordingly creating a pressure difference within the liquid flow channel system (10) to thereby accomplish feeding of the liquid. In this reaction apparatus, by virtue of the attainment of liquid feeding through creation of a pressure difference within the liquid flow channel system (10) by suction, accurate controlling of the liquid feeding position can be realized by simple arrangement.

Description

明 細 書  Specification
反応装置、 該反応装置用反応モジュール及び該反応装置用送液装置 技術分野  TECHNICAL FIELD The present invention relates to a reaction device, a reaction module for the reaction device, and a liquid feeding device for the reaction device.
[0001 ] 本発明は、 液体を媒体とする反応のための反応装置、 該反応装置用反応モ ジュール、 該反応装置用送液装置等に関し、 詳しくは、 平板上でマイクロリ ットルレベルの液体を媒体とする反応を行う反応装置、 該反応装置用反応モ ジュール及び該反応装置用送液装置等に関する。  TECHNICAL FIELD [0001] The present invention relates to a reaction apparatus for a reaction using a liquid as a medium, a reaction module for the reaction apparatus, a liquid feeding apparatus for the reaction apparatus, and the like. Specifically, a liquid of a microliter level on a flat plate is used as a medium. The present invention relates to a reaction apparatus for performing the reaction, a reaction module for the reaction apparatus, a liquid feeding apparatus for the reaction apparatus, and the like.
背景技術  Background art
[0002] 近年、 基板等の微細加工技術や表面処理技術が発展した結果、 基板上にお いて液体を送液し、 分離し、 混合し、 反応させたりすることができる、 μ Τ A S、 ラボオンチップ、 マイクロ化学チップなどの各種反応デバイスの開発 が行われるようになってきている。 こうしたデバイスとして、 例えば、 気体 は透過するが液体は透過しない疎水性膜を液体リザーバーなどにおいて外部 への開口部に備えるものが知られている (国際公開 WO O 1 / 0 1 3 1 2 7 号パンフレット) 。 このデバイスでは、 疎水性膜を有するリザーバーの上流 側を加圧して疎水性膜を空気排出孔 (ベント) として用いることで、 リザー バーへの流体の流入等を制御することができるようになつている。  [0002] In recent years, as a result of the development of microfabrication technology and surface treatment technology for substrates, etc., μ Τ AS, labs can send liquids on the substrate, separate, mix and react with them. Various reaction devices such as on-chip and microchemical chips are being developed. As such a device, for example, a device that has a hydrophobic membrane that allows gas to permeate but does not allow liquid to permeate to an external opening in a liquid reservoir or the like is known (International Publication WO O 1/0 1 3 1 2 7 Pamphlet) . In this device, the upstream side of a reservoir having a hydrophobic membrane is pressurized and the hydrophobic membrane is used as an air discharge hole (vent), so that the flow of fluid into the reservoir can be controlled. Yes.
発明の開示  Disclosure of the invention
[0003] しかしながら、 上記先行技術においては、 リザーバーの疎水性膜毎に設け たカップラーを介したポンプの制御及びバルブの開閉により送液や貯留を制 御していた。 このため、 送液のための機構が増加し複雑化してしまっていた 。 また、 液体を空気等を媒体として送液する場合、 液体の到達位置の制御が 困難であるため、 光学的あるいは電気的な液位置の検出を要し、 液体の液位 置検出機構を液体の送液経路路の所定部位ゃ貯留部位毎に液位置検出機構を 設ける必要があった。  [0003] However, in the above prior art, liquid feeding and storage are controlled by controlling the pump via a coupler provided for each hydrophobic membrane of the reservoir and opening and closing the valve. For this reason, the mechanism for liquid delivery has been increased and complicated. In addition, when liquid is sent using air or the like as a medium, it is difficult to control the position where the liquid reaches, so it is necessary to detect the optical or electrical position of the liquid. It was necessary to provide a liquid position detection mechanism for each predetermined part of the liquid delivery path and the storage part.
[0004] さらに、 上記先行技術を用いて多段階の反応や精度の要求される反応を行 うには、 多段でかつ複雑なポンプ、 バルブ及び位置検出のための機構が必要 となるとともに、 送液制御も複雑化してしまうことになる。 したがって、 結 果として自動化も困難となり、 ヒューマンエラーゃコンタミネーシヨン等が 発生する余地が生じやすくなる。 また、 こうした送液システムを含む反応装 置自体が大型化してしまうことになる。 さらにこうした問題は、 近年要請の 大きい医療現場における迅速診断用途へのマイクロデバイスへの適用を困難 にしている。 [0004] Furthermore, a multi-stage and complicated pump, valve, and a mechanism for position detection are required to perform a multi-stage reaction and a reaction that requires high precision using the above-described prior art. At the same time, the delivery control becomes complicated. As a result, automation becomes difficult as a result, and human error tends to generate room for contamination. Moreover, the reaction apparatus itself including such a liquid delivery system will be enlarged. In addition, these problems make it difficult to apply microdevices for rapid diagnostic applications in the medical field, which have been in great demand in recent years.
[0005] そこで、 本発明は、 簡易な送液システムを備える反応装置、 該反応装置用 モジュール及びその製造方法、 該反応装置用送液装置、 並びに該反応装置を 利用した分析方法を提供することを一つの目的とする。 また、 本発明は、 自 動化が容易な送液システムを備える反応装置、 該反応装置用モジュール及び その製造方法、 該反応装置用送液装置、 並びに該反応装置を利用した分析方 法を提供することを一つの目的とする。 さらに、 本発明は、 小型化が容易な 送液システムを備える該反応装置用モジュール及びその製造方法、 該反応装 置用送液装置、 並びに該反応装置を利用した分析方法を提供することを一つ の目的とする。 さらに、 本発明は、 液体の蒸発■濃縮装置を備える反応装置 、 液体の蒸発■濃縮装置及び液体の蒸発■濃縮方法を提供することを他の一 つの目的とする。  [0005] Therefore, the present invention provides a reaction apparatus provided with a simple liquid feeding system, the module for the reaction apparatus and a method for producing the same, a liquid feeding apparatus for the reaction apparatus, and an analysis method using the reaction apparatus. For one purpose. In addition, the present invention provides a reaction apparatus including a liquid feeding system that can be easily automated, a module for the reaction apparatus and a method for producing the same, a liquid feeding apparatus for the reaction apparatus, and an analysis method using the reaction apparatus. One purpose is to do. Furthermore, the present invention provides a module for a reaction apparatus including a liquid supply system that can be easily reduced in size, a method for manufacturing the same, a liquid supply apparatus for the reaction apparatus, and an analysis method using the reaction apparatus. One purpose. Furthermore, another object of the present invention is to provide a reaction apparatus including a liquid evaporation / concentration device, a liquid evaporation / concentration device, and a liquid evaporation / concentration method.
[0006] 本発明者らは、 液体を媒体とする反応のための反応装置における送液シス テムの簡素化について検討した結果、 液体の送液及び送液位置を制御するた めに、 使用する液体に対する撥液性を備える通気性材料を流路系の液体の移 送、 分離、 混合、 貯留、 反応及び検出など液体の送液位置 (液体を到達させ ようとする位置) に備えさせて、 当該材料を介した流路系内のガスの吸引に よリ流路系内に差圧を形成することで、 流路系内での液体の送液と送液位置 の制御とを同時にしかも簡易に実現できることを見出し、 本発明を完成した 。 また、 この送液装置は、 液体の蒸発■濃縮装置にも用いることができるこ とを見出し、 本発明の発明を完成した。 本発明によれば、 以下の手段が提供 される。  [0006] As a result of studying simplification of a liquid feeding system in a reaction apparatus for a reaction using a liquid as a medium, the present inventors use the liquid for feeding and controlling a liquid feeding position. By providing a breathable material with liquid repellency to the liquid at the liquid transfer position (position where the liquid is to reach) such as liquid transfer, separation, mixing, storage, reaction and detection in the flow path system, By creating a differential pressure in the flow path system by suctioning the gas in the flow path system through the material, it is possible to simultaneously control liquid feed and liquid feed position in the flow path system. As a result, the present invention has been completed. Further, the present inventors have found that this liquid feeding device can also be used for a liquid evaporation / concentration device, and completed the invention of the present invention. According to the present invention, the following means are provided.
[0007] 本発明によれば、 液体を媒体とする反応のための反応装置であって、 前記 液体の流路系と、 前記液体の流路系内に露出され前記液体に対する撥液性を 有する通気性材料を介して前記流路系内外のガスを流通可能な 1又は 2以上 の通気部と、 1又は 2以上の前記通気部の一部から少なくとも前記流路系内 のガスを吸引して流路系内に差圧を形成して前記液体を送液する送液手段と 、 を備える、 反応装置が提供される。 [0007] According to the present invention, there is provided a reaction apparatus for reaction using a liquid as a medium, A liquid flow path system, and one or more ventilation portions that are capable of flowing gas inside and outside the flow path system through a breathable material that is exposed in the liquid flow path system and has liquid repellency to the liquid. Liquid feeding means for sucking at least a gas in the flow path system from a part of the one or more ventilation portions to form a differential pressure in the flow path system and feeding the liquid. A reactor is provided.
[0008] 前記送液手段は、 1又は 2以上の前記通気部の一部において選択的に前記 流路系からガスを吸引可能に吸引源に接続される吸引部を有するものであつ てもよいし、 前記吸引部を前記流路系に対して相対移動可能に有するもので あってもよい。 また、 前記送液手段は、 1又は 2以上の前記通気部の一部に おいて選択的にガスの流通を遮断するシール部を備えることもできるし、 前 記シール部を前記流路系に対して相対移動可能に有することもできる。  [0008] The liquid feeding means may include a suction part connected to a suction source so that gas can be selectively sucked from the flow path system in a part of one or more of the ventilation parts. In addition, the suction portion may be movable relative to the flow path system. In addition, the liquid feeding means may include a seal portion that selectively blocks gas flow in a part of one or more of the vent portions, and the seal portion is provided in the flow path system. It can also have relative movement.
[0009] 前記送液手段は、 1又は 2以上の前記通気部の少なくとも一部において選 択的に前記流路系からガスを吸引可能とする吸引部と、 前記流路系の管壁に 配置される 1又は 2以上の前記通気部の少なくとも一部において選択的にガ スの流通を遮断するシール部とを備える 1又は 2以上の送液ュニッ卜を有す ることもできる。 そして、 前記送液ユニットを前記流路系に沿って相対移動 可能に有することができる。  [0009] The liquid feeding means is disposed on at least a part of the one or two or more ventilation portions, and a suction portion capable of selectively sucking gas from the flow path system, and a tube wall of the flow path system. It is also possible to have one or two or more liquid-feeding units provided with a seal portion that selectively blocks gas flow in at least a part of the one or more vent portions. And it can have the said liquid feeding unit so that relative movement is possible along the said flow-path system.
[0010] 液体の到達位置を制御する送液制御手段を備えることができる。 こうした 反応装置においては、 前記通気部は、 前記流路系を送液される前記液体が到 達部位に到達すると当該液体によリ速やかにガスの流通が遮断されるように 配置されていてもよい。 また、 前記送液手段は、 1又は 2以上の前記通気部 の一部において選択的に前記流路系からガスを吸引可能に吸引源に接続され る吸引部を前記流路系に対して相対移動可能に備え、 前記送液制御手段は、 前記吸引部の位置制御を行うことで前記液体の到達位置を制御する手段とす ることができる。 さらに、 こうした反応装置においては、 前記流路内のガス が吸引された 1又は 2以上の前記通気部における吸引圧の低下を検出可能な 吸引圧低下検出手段を備え、 前記送液制御手段は、 吸引圧低下検出手段によ リ前記通気部の遮断を検出したとき、 前記送液手段による前記通気部からの 前記流路系内のガス吸引を停止するよう制御する手段を備えることもできる 。 また、 前記送液制御手段は、 前記吸引圧低下検出手段により前記通気部の 遮断を検出したとき、 前記反応装置における反応の次段側にある前記通気部 から前記流路系内のガスを吸引開始するよう制御する手段とすることができ る。 [0010] Liquid feeding control means for controlling the arrival position of the liquid can be provided. In such a reaction apparatus, the aeration part may be arranged so that when the liquid fed through the flow path system reaches the reaching part, the flow of gas is quickly blocked by the liquid. Good. In addition, the liquid feeding means may be configured such that a suction part connected to a suction source so that a gas can be selectively sucked from the flow path system in a part of the one or two or more of the ventilation parts is relative to the flow path system. In preparation for movement, the liquid feeding control means may be means for controlling the position where the liquid reaches by controlling the position of the suction part. Further, in such a reaction apparatus, the reaction apparatus further includes a suction pressure decrease detection unit capable of detecting a decrease in suction pressure in one or more of the ventilation portions from which the gas in the flow path has been sucked. When the suction pressure drop detecting means detects the blockage of the ventilation part, the liquid feeding means removes the ventilation part from the ventilation part. A means for controlling the gas suction in the flow path system to stop may be provided. Further, the liquid feeding control means sucks the gas in the flow path system from the vent part on the next stage side of the reaction in the reaction apparatus when the blockage of the vent part is detected by the suction pressure drop detecting means. It can be a means to control to start.
[0011 ] 本発明の反応装置は、 1若しくは 2以上の前記通気部又は全ての通気部は 、 前記流路系の一側に配置されるように構成されていてもよい。 また、 1又 は 2以上の前記通気部は、 前記流路系における前記液体の送液方向に沿って 複数個独立して備えられていてもよい。 さらに、 1又は 2以上の前記通気部 は、 前記流路系を構成する管路の管壁に開口する開口部に配置された通気性 材料により形成されていてもよい。 さらにまた、 1又は 2以上の前記通気部 は、 前記流路系の所定の送液範囲にわたって配置された前記通気性材料によ リ形成されていてもよい。  [0011] The reaction apparatus of the present invention may be configured such that one or more of the vents or all of the vents are arranged on one side of the flow path system. Further, one or two or more of the ventilation portions may be independently provided along the liquid feeding direction of the liquid in the flow path system. Furthermore, one or more of the ventilation portions may be formed of a breathable material disposed in an opening portion that opens in a pipe wall of a pipe line constituting the flow path system. Furthermore, one or more of the vents may be formed of the breathable material disposed over a predetermined liquid feeding range of the flow path system.
[0012] 本発明の反応装置は、 前記流路系を平板状体上に備えることができる。 前 記通気性材料は疎水性材料であってもよい。 また、 前記液体を媒体とする反 応は、 タンパク質、 ペプチド及び核酸のいずれかを含む反応とすることがで さる。  [0012] The reaction apparatus of the present invention can include the flow path system on a flat plate. The breathable material may be a hydrophobic material. The reaction using the liquid as a medium can be a reaction containing any one of a protein, a peptide and a nucleic acid.
[0013] 本発明によれば、 上記いずれかの液体を媒体とする反応の反応装置の反応 モジュールであって、 前記液体の流路系と、 前記液体の流路系内に露出され 前記液体に対する撥液性を有する通気性材料を介して前記流路系内外のガス を流通可能な 1又は 2以上の通気部と、 を備える、 反応モジュールが提供さ れる。 本発明の反応モジュールにおいては、 前記開口部は前記凹状部に沿つ て連続に又は不連続に形成され、 前記通気性材料は、 1又は 2以上の膜状体 とすることができる。  [0013] According to the present invention, there is provided a reaction module for a reaction apparatus using any one of the above liquids as a medium, wherein the liquid channel system is exposed to the liquid channel system and is exposed to the liquid. There is provided a reaction module comprising: one or two or more ventilation portions capable of flowing gas inside and outside the flow path system through a breathable material having liquid repellency. In the reaction module of the present invention, the opening may be formed continuously or discontinuously along the concave portion, and the breathable material may be one or more membranes.
[0014] 本発明によれば、 液体を媒体とする反応のための反応装置の送液装置であ つて、 前記液体の流路系と、 前記液体の流路系内に露出され前記液体に対す る撥液性を有する通気性材料を介して前記流路系内外のガスを流通可能な 1 又は 2以上の通気部と、 を備える反応モジュールを交換可能に装着する反応 モジュール装着部と、 1又は 2以上の前記通気部の一部から少なくとも前記 流路系内のガスを吸引して流路系内に差圧を形成して前記液体を送液する送 液手段と、 前記流路系内のガスを吸引する前記通気部を選択することで前記 液体の到達位置を制御する送液制御手段を備える、 送液装置が提供される。 [0014] According to the present invention, there is provided a liquid feeding device of a reaction apparatus for a reaction using a liquid as a medium, the liquid channel system, and the liquid channel system exposed to the liquid channel system. A reaction module comprising 1 or 2 or more ventilation parts that can circulate gas inside and outside the flow path system through a breathable material having liquid repellency, and a reaction module comprising: A module mounting portion, and a liquid feeding means for sucking at least a gas in the flow channel system from a part of the one or more vent portions to form a differential pressure in the flow channel system and feeding the liquid There is provided a liquid feeding apparatus comprising liquid feeding control means for controlling the position where the liquid reaches by selecting the ventilation portion that sucks the gas in the flow path system.
[0015] 本発明の送液装置においては、 前記通気部は、 前記流路系を送液される前 記液体が到達部位に到達すると当該液体により速やかにガスの流通が遮断さ れるように配置されていてもよい。 また、 前記送液手段は、 1又は 2以上の 前記通気部の一部において選択的に前記流路系からガスを吸引可能に吸引源 に接続される吸引部を前記流路系に対して相対移動可能に備え、 前記送液制 御手段は、 前記吸引部の位置制御を行うことで前記液体の到達位置を制御す る手段とすることができる。  [0015] In the liquid feeding device of the present invention, the vent is arranged so that the flow of gas is quickly blocked by the liquid when the liquid that is fed through the flow path system reaches the arrival site. May be. Further, the liquid feeding means may be configured so that a suction part connected to a suction source is selectively relative to the flow path system so that gas can be selectively sucked from the flow path system in a part of one or more of the ventilation parts. In preparation for movement, the liquid feeding control means may be means for controlling the position where the liquid reaches by controlling the position of the suction part.
[0016] また、 本発明の送液装置においては、 前記流路内のガスが吸引された 1又 は 2以上の前記通気部における吸引圧の低下を検出可能な吸引圧低下検出手 段を備え、 前記送液制御手段は、 吸引圧低下検出手段により前記通気部の遮 断を検出したとき、 前記送液手段による前記通気部からの前記流路系内のガ ス吸引を停止するよう制御する手段とすることができる。 さらに、 前記送液 制御手段は、 前記吸引圧低下検出手段によリ前記通気部の遮断を検出したと き、 前記反応装置における反応の次段側にある前記通気部から前記流路系内 のガスを吸引開始するよう制御する手段とすることができる。  [0016] In addition, the liquid delivery device of the present invention includes a suction pressure decrease detection unit capable of detecting a decrease in suction pressure in one or more of the vents where the gas in the flow path has been sucked. The liquid supply control means controls to stop the suction of the gas in the flow path system from the ventilation part by the liquid supply means when the blockage of the ventilation part is detected by the suction pressure decrease detection means. It can be a means. Further, the liquid feeding control means detects from the ventilation section on the next stage side of the reaction in the reaction apparatus from the ventilation section in the flow path system when the suction pressure drop detection means detects the blocking of the ventilation section. It may be a means for controlling to start sucking the gas.
[0017] 本発明によれば、 液体を媒体とする反応のための上記いずれかの反応装置 用反応モジュールの製造方法であって、 前記液体の流路系を構成する凹状部 と該凹状部と外部とを連通する開口部とを備える平板状体を準備する工程と 、 前記液体に対して撥液性を有する通気性材料を、 前記平板状体の前記凹部 の前記開口部を閉鎖するように付与する工程と、 を備える、 製造方法が提供 される。  [0017] According to the present invention, there is provided a method for producing a reaction module for a reaction apparatus for a reaction using a liquid as a medium, the concave portion constituting the liquid flow path system, and the concave portion, A step of preparing a flat plate having an opening communicating with the outside; and a breathable material having liquid repellency with respect to the liquid so as to close the opening of the concave portion of the flat plate. A step of applying, and a manufacturing method comprising:
[0018] 本発明によれば、 液体を媒体とする反応による分析方法であって、 上記い ずれかの反応装置を用いて分析のための反応を実施する工程を備える、 分析 方法も提供される。 [0019] さらに、 本発明によれば、 前記送液手段を用いて、 前記流路系内のガスを 吸引することにより、 前記流路系内の液体を蒸発又は濃縮する、 上記いずれ かに記載の反応装置も提供される。 また、 本発明によれば、 液体を蒸発又は 濃縮するための装置であって、 前記液体の流路系と、 前記液体の流路系内に 露出され前記液体に対する撥液性を有する通気性材料を介して前記流路系内 外のガスを流通可能な 1又は 2以上の通気部と、 1又は 2以上の前記通気部 の一部から少なくとも前記流路系内のガスを吸引して流路系内に差圧を形成 する吸引手段と、 を備える、 装置も提供される。 [0018] According to the present invention, there is also provided an analysis method based on a reaction using a liquid as a medium, the method comprising the step of performing a reaction for analysis using any one of the above-described reaction devices. . [0019] Further, according to the present invention, the liquid in the flow path system is evaporated or concentrated by sucking the gas in the flow path system using the liquid feeding means. Is also provided. Further, according to the present invention, there is provided an apparatus for evaporating or concentrating a liquid, the liquid channel system, and a breathable material exposed in the liquid channel system and having liquid repellency with respect to the liquid. 1 or 2 or more ventilation parts capable of circulating the gas inside and outside the flow path system via the flow path, and at least the gas in the flow path system is sucked from a part of the 1 or 2 or more ventilation parts There is also provided an apparatus comprising: suction means for forming a differential pressure in the system.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1A]第 1の実施形態の反応装置の平面形態を示す図である。  FIG. 1A is a diagram showing a plan view of a reaction apparatus according to a first embodiment.
[図 1 B]第 1の実施形態の反応装置の通気部 2 O A近傍の断面図を示す図であ る。  FIG. 1B is a cross-sectional view of the vicinity of the vent 2 O A of the reactor according to the first embodiment.
[図 2]第 1の実施形態の反応装置における断面構造を示し、 通気部及び送液手 段の一例を示す図である。  FIG. 2 is a view showing a cross-sectional structure of the reaction apparatus according to the first embodiment and showing an example of a ventilation part and a liquid feeding means.
[図 3]第 1の実施形態の反応装置における断面構造の他の一例を示し、 通気部 及び送液手段等の他の一例を示す図である。  FIG. 3 is a view showing another example of a cross-sectional structure in the reaction apparatus of the first embodiment, and showing another example of a vent part, a liquid feeding means and the like.
[図 4]第 1の実施形態の反応装置における断面構造の他の一例を示し、 通気部 及び送液手段等の他の一例を示す図である。  FIG. 4 is a view showing another example of the cross-sectional structure in the reaction apparatus of the first embodiment, and showing another example of the aeration part and the liquid feeding means.
[図 5]第 1の実施形態の反応装置における断面構造の他の一例を示し、 通気部 及び送液手段等の他の一例を示す図である。  FIG. 5 is a view showing another example of a cross-sectional structure in the reaction apparatus of the first embodiment, and showing another example of a ventilation part, a liquid feeding means, and the like.
[図 6]第 2の実施形態の反応装置における断面構造の一例を示し、 通気部及び 送液手段等の一例を示す図である。  FIG. 6 is a view showing an example of a cross-sectional structure in the reaction apparatus of the second embodiment, and showing an example of a ventilation part and a liquid feeding means.
[図 7A]第 2の実施形態の反応装置における断面構造の他の一例を示し、 通気 部及び送液手段等の一例を示す図である。  FIG. 7A is a view showing another example of a cross-sectional structure in the reaction apparatus of the second embodiment, and showing an example of an aeration part and a liquid feeding means.
[図 7B]第 2の実施形態の反応装置における断面構造の他の一例を示し、 通気 部及び送液手段等の一例を示す図である。  FIG. 7B is a diagram showing another example of a cross-sectional structure in the reaction apparatus of the second embodiment, and showing an example of an aeration part and a liquid feeding means.
[図 8]吸引による送液と加圧による送液との相違を示す図。  FIG. 8 is a diagram showing a difference between liquid feeding by suction and liquid feeding by pressurization.
[図 9]第 3の実施形態の反応装置の概略を示す図である。 [図 10]第 3の実施形態の他の反応装置の概略を示す図である。 FIG. 9 is a diagram showing an outline of a reaction apparatus according to a third embodiment. FIG. 10 is a diagram showing an outline of another reaction apparatus of the third embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021 ] 本発明の反応装置は、 液体を媒体とする反応のための反応装置であって、 前記液体の流路系と、 前記液体の流路系内に露出され前記液体に対する撥液 性を有する通気性材料を介して前記流路系内外のガスを流通可能な 1又は 2 以上の通気部と、 1又は 2以上の前記通気部の一部から少なくとも前記流路 系内のガスを吸引して流路系内に差圧を形成して前記液体を送液する手段と 、 を備えることができる。  [0021] The reaction apparatus of the present invention is a reaction apparatus for a reaction using a liquid as a medium, and has a liquid flow path system and a liquid repellency with respect to the liquid exposed in the liquid flow path system. 1 or 2 or more ventilation parts capable of circulating the gas inside and outside the flow path system through the air permeable material, and at least the gas in the flow path system is sucked from a part of the 1 or 2 or more ventilation parts. And means for forming a differential pressure in the flow path system and feeding the liquid.
[0022] 本発明の反応装置によれば、 液体に対して撥液性を有する通気性材料を介 して流路系内外のガスを流通可能な 1又は 2以上の通気部を流路系に設けて 、 この通気部を介して流路系内のガスを吸引することで、 当該通気部にまで 液体を到達させるよう送液することができる。 また、 通気部への液体の到達 により通気部が遮断されることによリ差圧が解消されて送液が停止される。 すなわち、 本発明の反応装置によれば、 流路系において吸引によって差圧を 形成することにより送液することとしたため、 送液位置の正確な制御を簡易 な構成で実現することができる。  [0022] According to the reaction apparatus of the present invention, one or two or more ventilation portions capable of flowing gas inside and outside the flow path system through the breathable material having liquid repellency with respect to the liquid are used as the flow path system. By providing and sucking the gas in the flow path system through this vent, the liquid can be sent to reach the vent. In addition, when the liquid reaches the ventilation section, the ventilation section is blocked, so that the differential pressure is eliminated and the liquid feeding is stopped. That is, according to the reaction apparatus of the present invention, liquid feeding is performed by forming a differential pressure by suction in the flow path system, so that accurate control of the liquid feeding position can be realized with a simple configuration.
[0023] また、 本発明の反応装置は、 ガスを吸引した通気部への液体の到達を通気 部の遮断により検出できるため、 送液制部位と液体位置制御部位とを流路系 の液体を到達させようとする箇所に集約することができる。 したがって、 送 液の自動化が容易な送液システムが提供される。 さらに、 本発明の反応装置 は、 簡易な構成により送液と送液制御が可能であるため、 装置の小型化が可 能となる。 特に、 送液手段を流路系に対して相対移動可能に設けることで多 数の送液手段を要することもなく複数箇所における送液制御を可能とするこ とで送液システムを簡素化■小型化することができる。  [0023] In addition, since the reaction apparatus of the present invention can detect the arrival of the liquid to the aeration part that has sucked the gas by blocking the aeration part, the liquid supply control part and the liquid position control part are separated from the liquid in the flow path system. It can be concentrated at the place where it is going to reach. Therefore, a liquid feeding system that can easily automate the liquid feeding is provided. Furthermore, since the reaction apparatus of the present invention can perform liquid feeding and liquid feeding control with a simple configuration, the apparatus can be miniaturized. In particular, by providing liquid supply means so that it can move relative to the flow path system, it is possible to control liquid supply at multiple locations without requiring a large number of liquid supply means. It can be downsized.
[0024] 以下、 本発明の反応装置、 反応モジュール、 送液装置等について、 図 1〜 図 5及び図 8を適宜参照しながら説明する。 図 1 Aには、 本発明の反応装置 の平面形態及び概略を示し、 図 1 Bには図 1 Aの通気部 2 O A近傍の断面構 造を示し、 図 2〜図 5には、 本発明の反応装置における通気部及び送液手段 の各種形態について示す。 なお、 これらの図に示す反応装置 2等は、 本発明 の理解を容易にするための一例であって、 本発明を限定するものではない。 Hereinafter, the reaction apparatus, reaction module, liquid feeding apparatus, etc. of the present invention will be described with reference to FIGS. 1 to 5 and FIG. 8 as appropriate. FIG. 1A shows a plan view and outline of the reaction apparatus of the present invention, FIG. 1B shows a cross-sectional structure in the vicinity of the vent 2OA of FIG. 1A, and FIGS. And ventilating means in the reactor Various forms of are shown. Note that the reactor 2 and the like shown in these drawings are examples for facilitating understanding of the present invention, and do not limit the present invention.
[0025] (第 1の実施形態)  [First Embodiment]
(反応装置)  (Reactor)
図 1 Aに示すように、 本発明の反応装置 2は、 液体を媒体とする反応を実 施するための装置である。 液体を媒体とする反応としては、 液相反応のほか 、 固相一液相反応、 気相一液相反応等に適用することができる。 また、 本発 明において反応とは、 合成や分解等の一般的な化学反応や電気化学反応のほ か、 水素結合、 疎水結合、 双極子相互作用、 ファンデルワールス力等の各種 分子間相互作用の発現あるいは変化を包含している。 したがって、 反応とは 、 例えば、 抗原抗体反応、 酵素反応、 核酸ハイブリダィゼーシヨン、 などの 生化学的な反応も包含するほか、 溶解、 希釈、 濃縮、 混合、 分離、 抽出、 洗 浄、 吸着、 脱離、 乾燥、 加熱、 冷却、 各種電子線等の照射、 超音波処理、 電 気的処理、 及び検出などの各種処理操作を包含している。  As shown in FIG. 1A, the reaction apparatus 2 of the present invention is an apparatus for performing a reaction using a liquid as a medium. As a reaction using a liquid as a medium, in addition to a liquid phase reaction, it can be applied to a solid phase one liquid phase reaction, a gas phase one liquid phase reaction, and the like. In addition, in the present invention, the reaction is a general chemical reaction or electrochemical reaction such as synthesis or decomposition, as well as various intermolecular interactions such as hydrogen bond, hydrophobic bond, dipole interaction, van der Waals force, etc. Of the expression or change of Therefore, the reaction includes, for example, biochemical reactions such as antigen-antibody reaction, enzyme reaction, nucleic acid hybridization, etc., and dissolution, dilution, concentration, mixing, separation, extraction, washing, adsorption It includes various processing operations such as desorption, drying, heating, cooling, irradiation with various electron beams, ultrasonic processing, electrical processing, and detection.
[0026] これらの反応に関わる成分としては、 化合物のほか、 細胞を含むことがで きる。 化合物としては、 D N A、 R N A、 D N AZ R N Aキメラ又はこれら の誘導体を含む核酸、 タンパク質、 糖類及び細胞などを含むことができる。 核酸やタンパク質等は、 予め蛍光色素などにより標識されたものであっても よい。 また、 タンパク質としては、 酵素、 抗体、 抗原、 リガンド及びレセプ ター並びにペプチド等が挙げられる。 なお、 反応成分が細胞の場合には、 細 胞と細胞との間における相互作用の発現及び変化や細胞培養や細胞破壊 (あ るいはそれに伴う抽出) 、 細胞分離なども反応に包含される。 なお、 ここで いう細胞には、 微生物 (細菌、 カビ、 ウィルス等) 、 動植物細胞及び組織も 包含される。 [0026] The components involved in these reactions can include cells in addition to compounds. The compounds can include nucleic acids, proteins, saccharides, cells, and the like that contain DNA, RNA, DNA NARNA chimeras or derivatives thereof. Nucleic acids, proteins, etc. may be previously labeled with a fluorescent dye or the like. Examples of proteins include enzymes, antibodies, antigens, ligands and receptors, and peptides. When the reaction component is a cell, the reaction includes expression and change of interaction between the cell and the cell, cell culture, cell destruction (or extraction accompanying it), cell separation, and the like. Here, the cells include microorganisms (bacteria, fungi, viruses, etc.), animal and plant cells and tissues.
[0027] 反応成分は、 反応装置 2の外部から供給されてもよいし、 2以上の反応成 分による反応の場合には、 反応成分の一部 (例えば、 一つの反応を生じる一 方の成分) のみを反応装置 2の外部から供給するようにし、 他の一部 (例え ば、 前記一つの反応の他方側の成分) を予め流路系内に準備しておくことも できる。 流路系内に準備する反応成分は、 流路系に直接固定されるなどして 準備されるものであってもよいし、 流路系の所定部位に脱離あるいは装着可 能なカー卜リッジとして装着されるものであってもよい。 このように流路系 に予め準備されることのある反応成分としては、 反応装置で実施しようとす る反応によって異なるが、 例えば、 抗原及び Z又は抗体、 酵素及び Z又は基 質、 核酸プローブ、 標識物質及び各種試薬類 (呈色試薬、 反応試薬など) が 挙げられる。 [0027] The reaction component may be supplied from the outside of the reaction apparatus 2, or in the case of a reaction by two or more reaction components, a part of the reaction component (for example, one component that generates one reaction) ) Only from the outside of the reactor 2, and the other part (for example, the component on the other side of the one reaction) may be prepared in the flow path system in advance. it can. The reaction component prepared in the flow path system may be prepared by being directly fixed to the flow path system, or a cartridge that can be detached or attached to a predetermined part of the flow path system. It may be mounted as. The reaction components that are prepared in advance in the flow path system in this way vary depending on the reaction to be carried out in the reaction apparatus. For example, antigens and Z or antibodies, enzymes and Z or substrates, nucleic acid probes, Examples include labeling substances and various reagents (coloring reagents, reaction reagents, etc.).
[0028] また、 反応には、 こうした反応主体のほか、 反応の場にもなりうる担体、 フィルター、 触媒など補助材料が関わっていてもよい。 こうした反応の補助 材料は、 媒体となる液体に含まれていてもよいし、 流路系の一部に固定され るなどして流路系に準備しておくことができる。  [0028] Further, in addition to such a reaction main body, the reaction may involve auxiliary materials such as a carrier, a filter, and a catalyst that can also serve as a reaction site. Such a reaction auxiliary material may be contained in a liquid as a medium, or may be prepared in the flow path system by being fixed to a part of the flow path system.
[0029] (液体)  [0029] (Liquid)
本発明において反応の媒体となる液体とは、 特に限定しない。 水のほか、 各種有機溶媒、 これらの混合液を包含する。 これらの液体には、 緩衝液等の ように塩などの媒体の一部としての溶質を含むこともできる。 本発明の反応 装置において、 抗原抗体反応、 酵素反応及び核酸ハイブリダィゼーシヨン並 びに細胞に関する反応を実施する場合、 液体は、 水を含む水性の液体である ことが多い。  In the present invention, the liquid as a reaction medium is not particularly limited. In addition to water, various organic solvents and mixtures thereof are included. These liquids may contain a solute as a part of a medium such as a salt such as a buffer solution. In the reaction apparatus of the present invention, when an antigen-antibody reaction, an enzyme reaction, a nucleic acid hybridization, and a cell-related reaction are performed, the liquid is often an aqueous liquid containing water.
[0030] (流路系) [0030] (Flow path system)
本発明の反応装置 2は、 液体の流路系 1 0を備えることができる。 流路系 1 0は、 上記反応が行われる部位、 上記反応のために液体が送液、 供給、 貯 留、 注入等される部位を含んでいる。 本発明の反応装置 2は、 こうした流路 系 1 0を適当な固相基材 4においてチャネルやチェンバーとして備えること ができる。 例えば、 液体を送液する送液系は、 チャネルとして備えられるこ とが多く、 核酸ハイブリダイゼーシヨンなどを行う反応部はチャネルゃチェ ンバーとして備えられることが多い。 図 1 Aに示す反応装置 2では、 チェン バー A、 B、 C、 D、 Eがチャンネルにより連絡されて形成されている。  The reaction apparatus 2 of the present invention can include a liquid flow path system 10. The flow path system 10 includes a site where the reaction is performed, and a site where a liquid is fed, supplied, stored, injected, and the like for the reaction. The reaction apparatus 2 of the present invention can be provided with such a flow path system 10 as a channel or a chamber in an appropriate solid phase substrate 4. For example, a liquid feeding system for feeding a liquid is often provided as a channel, and a reaction part for performing nucleic acid hybridization is often provided as a channel. In the reactor 2 shown in FIG. 1A, chambers A, B, C, D, and E are formed by being connected by a channel.
[0031 ] こうしたチャネルやチェンバーの大きさは特に限定されないが、 チャネル は数// m〜数 m m程度の幅を有し、 チャネル及びチェンバーの深さは数// Γ!〜 数 m m程度とすることができる。 また、 反応を行ったり液量を定量したりす るチャンネルゃチェンバ一は、 反応のための液量や定量のための液量に応じ た容積とすることができる。 [0031] The size of such channels and chambers is not particularly limited, Has a width of about several m / m to several mm, and the depth of the channel and chamber is several // Γ! ~ It can be about several mm. In addition, the channel for carrying out the reaction or quantifying the amount of liquid can have a volume corresponding to the amount of liquid for reaction or the amount of liquid for quantification.
[0032] 流路系 1 0を備える固相基材 4としては、 平板状体としてもよいし、 立方 体や直方体あるいは不定形状の三次元形状体とすることもできる。 流路系を おおよそ同一平面に配するときには、 平板状体とすることが好ましいが、 流 路系に高低差を形成するときには、 少なくとも高位部において厚みのある三 次元形状体とすることができる。 また、 同一平面上の流路系を 2層以上積層 する場合にも厚みのある三次元形状体とすることができる。  [0032] The solid phase substrate 4 provided with the flow path system 10 may be a flat plate, a cube, a cuboid, or an indeterminate three-dimensional shape. When the flow path system is arranged approximately on the same plane, it is preferable to use a flat plate body. However, when a difference in height is formed in the flow path system, a three-dimensional shape body having a thickness at least at a high portion can be obtained. In addition, a thick three-dimensional shape can be obtained even when two or more flow path systems on the same plane are stacked.
[0033] 固相基材 4は、 図 2等に示すように 2層以上の積層体とすることができる 。 例えば、 流路系 1 0の底部を構成する第 1の層 4 aと流路系のパターンを 構成する第 2の層 4 bと流路系 1 0の天井部を構成する第 3の層 4 cを備え ることでもきる。 この場合、 第 2の層は流路系 1 0を構成するために、 チヤ ネルやチェンバー等に相当するパターンを貫通部として備えることができる 。 積層体に各層 4 a、 4 b、 4 cは、 接着や熱圧着などの方法によるほか、 機械的な圧締によっても固着することができる。  [0033] The solid phase substrate 4 can be a laminate of two or more layers as shown in FIG. For example, the first layer 4 a that forms the bottom of the flow path system 10, the second layer 4 b that forms the pattern of the flow path system, and the third layer 4 that forms the ceiling of the flow path system 10. You can also have c. In this case, the second layer can be provided with a pattern corresponding to a channel, a chamber, or the like as a penetrating part in order to constitute the flow path system 10. Each layer 4a, 4b, 4c can be fixed to the laminate by mechanical pressing as well as by bonding or thermocompression.
[0034] このような固相基材 4は、 特に限定しないで、 1種又は 2種以上の材料を 組み合わせて用いることができる。 例えば、 ガラス、 シリコン、 セラミック ス、 ガラスセラミックスのほか、 P M M A、 P D M Sなどのプラスチックや 金属等を用いることができる。 また、 流路系 1 0の構成材料は、 液体の液性 を考慮して選択することができる。 例えば、 疎水性、 親水性など、 液体に対 する撥液性を考慮して構成材料を選択してもよい。  [0034] The solid phase substrate 4 is not particularly limited, and one or more materials can be used in combination. For example, in addition to glass, silicon, ceramics, glass ceramics, plastics such as P M M A and P D M S, metals, and the like can be used. The constituent material of the flow path system 10 can be selected in consideration of the liquidity of the liquid. For example, the constituent material may be selected in consideration of liquid repellency such as hydrophobicity and hydrophilicity.
[0035] 固相基材 4に流路系 1 0のための凹部又は貫通孔を形成するには、 例えば 、 マイクロマシンや MEMS (m i cro E l ectro Mechan i ca l System) の製作技術 を適用することができる。 各種のエッチング技術、 リソグラフィ技術、 接合 技術、 成膜技術、 レーザ等による精密微細加工技術、 超音波技術等を適宜組 み合わせて用いることができる。 また、 マイクロ塑性加工技術、 マイクロ射 出成形技術、 マイクロ光造形技術などのマイクロ成形技術を用いることもで きる。 なお、 用いる成形,加工技術に応じて、 固相基材 4を適宜選択すれば よい。 また、 流路系 1 0を固相基材 4を積層して形成する場合には、 流路系 1 0を貫通孔等としてパターニングした固相基材 4と他の平板状の固相基材 4とを、 熱圧着や超音波接合等の適切な手法で接着又は接合すればよい。 接 着には、 このほか両面粘着又は両面接着テープを用いることもできる。 [0035] In order to form a recess or a through hole for the flow path system 10 in the solid phase base material 4, for example, a manufacturing technique of a micromachine or MEMS (micro Electro Mechanical System) is applied. be able to. Various etching techniques, lithography techniques, bonding techniques, film forming techniques, precision fine processing techniques using lasers, ultrasonic techniques, etc. can be used in appropriate combination. Also, micro plastic processing technology, micro shooting Micro molding technology such as extrusion molding technology and micro stereolithography technology can also be used. The solid phase substrate 4 may be appropriately selected according to the molding and processing technique used. When the flow path system 10 is formed by laminating the solid phase base material 4, the solid phase base material 4 patterned with the flow path system 10 as a through-hole or the like and another flat solid phase base material. 4 may be bonded or bonded to each other by an appropriate technique such as thermocompression bonding or ultrasonic bonding. In addition, double-sided adhesive or double-sided adhesive tape can also be used for adhesion.
[0036] なお、 本発明の反応装置 2は、 こうした流路系 1 0を別途、 チューブとチ ェンバーとが連結された三次元構造体として備えることもできる。 このよう な三次元構造を有する中空体はマイクロ光造形法、 その他部材の接合等によ リ製作することができる。  [0036] The reaction device 2 of the present invention can also include such a flow path system 10 as a three-dimensional structure in which a tube and a chamber are connected separately. A hollow body having such a three-dimensional structure can be manufactured by a micro stereolithography method, joining of other members, or the like.
[0037] (通気部) 本発明の反応装置 2は、 こうした流路系 1 0内外のガスを選択 的に流通可能とする通気部 2 0を備えることができる。 通気部 2 0は、 流路 系 1 0の壁部に備えられる通気性材料で構成することができる。  (Venting unit) [0037] The reaction device 2 of the present invention can include a venting unit 20 that allows the gas inside and outside the channel system 10 to selectively flow. The ventilation part 20 can be made of a gas permeable material provided on the wall part of the flow path system 10.
[0038] 通気部 2 0は、 流路系 1 0における液体の送液方向に沿って備えることが できる。 通気部 2 0を備える箇所は、 流路系 1 0において、 少なくとも送液 制御が必要な送液制御部位、 すなわち、 液を到達させ保持させたい部位若し くは液を停止させたい位置 (液位置) に対応させることができる。 通気部 2 0は、 後述する送液手段 4 0によって流路系 1 0内のガスを吸引して液体を 到達させる箇所となるからである。 こうした送液制御部位は、 通常、 流路系 1 0に沿って複数個備えられていることが多い。 通気部 2 0又は送液制御部 位は、 図 1 Aに示すようにチェンバーやチャネルの合流点に設けることがで きるほか、 チャネル (接続点あるいは合流点以外の部分) にも設けることが できる。  [0038] The ventilation part 20 can be provided along the liquid feeding direction in the flow path system 10. The portion provided with the ventilation part 20 is a flow control part that requires at least liquid supply control in the flow path system 10, that is, a part where the liquid should reach and be held or a position where the liquid should be stopped (liquid Position). This is because the ventilation section 20 is a place where the liquid is made to reach by sucking the gas in the flow path system 10 by the liquid feeding means 40 described later. In many cases, a plurality of such liquid feeding control portions are usually provided along the flow path system 10. As shown in Fig. 1A, the ventilation unit 20 or the liquid supply control unit can be provided at the junction of the chamber and the channel, and can also be provided at the channel (portion or part other than the junction). .
[0039] 通気部 2 0は、 図 1 B及び図 2〜図 5に示すように、 流路系 1 0の壁部に 開口する開口部 1 2に通気性材料を配して構成することができる。 本実施形 態では、 流路系 1 0にある個々の送液制御部位に対応する開口部 1 2を通気 性材料で遮蔽するようにすることによリ送液制御部位に対応して通気部 2 0 を形成することができる。 この場合、 通気部 2 0は、 流路系 1 0における送 液方向に沿って複数個備えられることになる。 [0039] As shown in FIG. 1B and FIGS. 2 to 5, the ventilation portion 20 may be configured by arranging a breathable material in the opening portion 12 that opens in the wall portion of the flow path system 10. it can. In this embodiment, the vent portion corresponding to the liquid feed control portion is formed by shielding the opening portion 12 corresponding to each liquid feed control portion in the flow path system 10 with the air-permeable material. 2 0 can be formed. In this case, the ventilation part 20 is fed to the flow path system 10. A plurality are provided along the liquid direction.
[0040] 通気部 2 0は、 図 1 B等に示すように、 流路系 1 0の一側にのみ備えられ ていてもよい。 図 1 B等に示す形態では、 通気部 2 0は、 流路系 1 0の底部 に設けられているが、 天井部に設けられていてもよい。 また、 流路系 1 0に おいてこの一側の反対側にも併せて備えられていてもよい。 さらに、 この一 側でも反対側でもない部分に併せて備えられていてもよい。 通気部 2 0の形 成や通気部 2 0を介した流路系 1 0内の送液システムの簡便性を考慮すると 、 流路系 1 0の一側に備えられていることが好ましい。 一方、 特に、 複雑な 送液系を簡易に実現するには、 流路系 1 0の一側に通気部 2 0を備えるとと もに、 それとは異なる他の一側 (好ましくは反対側) に通気部 2 0を備える ことが好ましい。 こうした通気部 2 0の配置によれば、 一側の通気部 2 0に よる送液制御と他側の通気部 2 0による送液制御とを一つの流路系 1 0に対 して適用することができる。  [0040] The ventilation portion 20 may be provided only on one side of the flow path system 10 as shown in FIG. 1B and the like. In the form shown in FIG. 1B and the like, the ventilation portion 20 is provided at the bottom of the flow path system 10, but may be provided at the ceiling. Further, the flow path system 10 may be provided on the opposite side of this one side. Furthermore, it may be provided together with a portion that is neither the one side nor the opposite side. In consideration of the formation of the ventilation section 20 and the convenience of the liquid feeding system in the flow path system 10 through the ventilation section 20, it is preferable that the ventilation section 20 is provided on one side of the flow path system 10. On the other hand, in particular, in order to easily realize a complicated liquid feeding system, the flow path system 10 is provided with a ventilation part 20 on one side and another side (preferably the opposite side) different from that. It is preferable to provide the ventilation part 20 in the. According to such an arrangement of the ventilation portion 20, liquid feeding control by the one-side ventilation portion 20 and liquid feeding control by the other-side ventilation portion 20 are applied to one channel system 10. be able to.
[0041 ] 通気部 2 0が送液方向の最先端通気部 2 0は、 流路系 1 0を送液される液 体が到達すると速やかに当該液体によリガスの流通が遮断されるような位置 に配置されていることが好ましい。 こうすることで、 所定の到達位置に液体 が到達したとき、 液体は、 当該位置で速やかに停止することになる。 このた めには、 例えば、 液体が到達するのと同時に閉鎖されるように通気部 2 0の 位置、 大きさ及び流路系 1 0の内面形状が考慮される。 より具体的には、 送 液される液体で直ちに充填される程度のチャネルなどの流路系 1 0又は送液 される液体で充填されなくても直ちに通気部 2 0が閉鎖されるチャネルゃチ ェンバーなどの流路系 1 0においては、 通気部 2 0は流路系 1 0の底部でも 天井でも側壁のいずれにあっても、 通気部 2 0が液体の到達と同時に閉鎖さ れて、 送液が停止される。 これに対し、 通気部 2 0が流路系 1 0内において 前後のチャネルよリも天井の高いチェンバーなどのキヤビティの天井部分な どに配置されている場合には、 送液される液体の先端がそのチエンバーに到 達しても直ちに天井部分の通気部 2 0には液体が到達されない。 そして、 多 <の場合そのキヤビティを液体が充填しない限リ液体をこの通気部 2 0の位 置で停止させることができない。 したがって、 このような通気部 2 0の配置 は液体の到達位置制御の観点からはこのましくないと考えられる。 すなわち 、 液体制御部位としての通気部 2 0を、 送液された液体の最先端によって直 ちに閉鎖される流路系 1 0上の位置に設けることで正確な液体位置制御が可 能となる。 なお、 後述するように、 こうした液位置制御は、 吸引による差圧 形成によって初めて達成されるものである。 [0041] The most advanced ventilation portion 20 in which the ventilation portion 20 is in the liquid feeding direction is such that when the liquid fed through the flow path system 10 arrives, the flow of regas is quickly blocked by the liquid. It is preferable that they are arranged at positions. In this way, when the liquid reaches a predetermined arrival position, the liquid stops immediately at that position. For this purpose, for example, the position and size of the ventilation portion 20 and the inner surface shape of the flow path system 10 are considered so that the liquid is closed at the same time as it arrives. More specifically, a channel system 10 such as a channel that is immediately filled with the liquid to be sent or a channel in which the vent 20 is immediately closed without being filled with the liquid to be sent. In the flow path system 10 such as a chamber, the ventilation section 20 is closed as soon as the liquid reaches, regardless of whether the ventilation section 20 is on the bottom, ceiling, or side wall of the flow path system 10. The liquid is stopped. On the other hand, when the ventilation part 20 is arranged in a ceiling part of a cavity such as a chamber having a ceiling higher than the front and rear channels in the flow path system 10, the tip of the liquid to be fed However, liquid does not reach the ventilation part 20 in the ceiling immediately after reaching the chamber. In the case of multi <, the liquid should be placed at the position of the vent 20 as long as the liquid does not fill the cavity. Can not be stopped at the same time. Therefore, it is considered that such an arrangement of the ventilation part 20 is not preferable from the viewpoint of the liquid arrival position control. That is, the liquid position can be accurately controlled by providing the vent 20 as a liquid control part at a position on the flow path system 10 that is immediately closed by the leading edge of the supplied liquid. . As will be described later, such liquid position control is first achieved by forming a differential pressure by suction.
[0042] なお、 通気部 2 0の流路系 1 0の外部側には、 例えば、 ガス吸引時には開 放し、 ガス吸引停止時には閉鎖するような開閉バルブを設けることができる 。 こうしたバルブを設けることで、 ガス非吸引時における通気部 2 0におけ るシール性を容易に確保できる。  [0042] It should be noted that an open / close valve can be provided on the outside of the flow path system 10 of the ventilation portion 20 such as being opened when gas is sucked and closed when gas suction is stopped. By providing such a valve, it is possible to easily ensure the sealing performance in the ventilation portion 20 when gas is not sucked.
[0043] 通気部 2 0は、 液体よリもガスを選択的に透過する通気性材料で構成する ことができる。 このような通気性材料としては、 反応装置 2又は流路系 1 0 に供給される液体に対して撥液性を備える材料を用いることができる。 液体 に対して撥液性を備えることで、 通気部 2 0における液密性を高めることが できる。  [0043] The ventilation part 20 can be made of a gas permeable material that selectively permeates gas rather than liquid. As such a breathable material, a material having liquid repellency with respect to the liquid supplied to the reactor 2 or the flow path system 10 can be used. By providing liquid repellency with respect to the liquid, the liquid tightness in the vent 20 can be enhanced.
[0044] 通気性材料は、 液体が水性であるなど極性が高い場合には、 少なくとも流 路系 1 0内に露出される表層側には疎水性を備え、 液体が有機溶媒であるな ど極性が低い場合には、 そのような表層側には親水性を備えることができる 。 したがって、 液体が水性の場合には、 親水性材料の表層に疎水性材料をコ 一卜したものなど、 表層側において適切な撥液性を備えていれば足りる。 ま た、 通気性材料は、 流路系 1 0の内外でガスを流通可能な通気性を有するも のであればよいが、 空気に対して良好な透過性を示す通気性材料であること が好ましい。  [0044] When the liquid is highly polar, such as when the liquid is aqueous, at least the surface layer exposed in the flow path system 10 has hydrophobicity, and the liquid is polar, such as an organic solvent. When the thickness is low, such a surface layer side can be provided with hydrophilicity. Therefore, when the liquid is aqueous, it is sufficient that the surface layer has an appropriate liquid repellency, such as a surface layer of a hydrophilic material and a hydrophobic material. Further, the breathable material may be any breathable material that allows gas to flow inside and outside the flow path system 10, but is preferably a breathable material that exhibits good permeability to air. .
[0045] こうした通気性材料としては、 例えば、 プラスチックなどの有機質材料や 無機質材料に微細な孔部 (貫通孔) を形成したものが挙げられる。 こうした 孔部は、 レーザ加工等により形成することができる。 孔部のサイズは特に限 定されないが、 1 m程度から数百// m程度の範囲で適宜選択することができ る。 また、 こうした通気性材料としては、 多孔質有機質材料や多孔質無機質 材料を用いることもできる。 このような多孔質膜の平均細孔径は、 0 . 0 1 m以上 1 0 m以下であることが好ましいが、 膜厚方向にガス透過性を制御 しょうとする場合には、 平均細孔径は、 0 . 1 m以上 0 . 3 m以下程度で あることが好ましい。 [0045] Examples of such a breathable material include a material in which fine holes (through-holes) are formed in an organic material such as plastic or an inorganic material. Such a hole can be formed by laser processing or the like. The size of the hole is not particularly limited, but can be appropriately selected in the range of about 1 m to several hundreds / m. Such breathable materials include porous organic materials and porous inorganic materials. Materials can also be used. The average pore size of such a porous membrane is preferably from 0.01 m to 10 m, but when trying to control gas permeability in the film thickness direction, the average pore size is It is preferably about 0.1 m or more and 0.3 m or less.
[0046] 通気性材料に用いる典型的な疎水性有機質材料としては、 ポリテトラフル ォロエチレン (P T F E ) 、 シリコーン、 ポリエチレン、 ポリプロピレン、 ポリエチレン、 ポリスチレン、 ポリ塩化ビニル、 ポリカーボネート、 ポリス ルホン、 ポリエーテルスルホン、 ポリアリレー卜、 ポリメチルペンテン及び 1, 3—シクロへキサジェン系重合体等が挙げられる。  [0046] Typical hydrophobic organic materials used for the breathable material include polytetrafluoroethylene (PTFE), silicone, polyethylene, polypropylene, polyethylene, polystyrene, polyvinyl chloride, polycarbonate, polysulfone, polyethersulfone, polyarylene cocoon, Examples include polymethylpentene and 1,3-cyclohexadiene polymers.
[0047] 通気部 2 0を構成する通気性材料の材質、 孔部の大きさや個数又は平均細 孔径ゃ気孔率等を必要に応じて選択することで通気部 2 0を介した通気方向 や通気量等を調節して好ましい送液制御が可能となる。  [0047] By selecting the material of the air-permeable material constituting the ventilation part 20, the size and number of the hole parts, the average pore diameter, the porosity, or the like as necessary, the ventilation direction and ventilation through the ventilation part 20 It is possible to perform preferable liquid feeding control by adjusting the amount and the like.
[0048] (反応モジュール)  [0048] (Reaction module)
本発明の反応装置 2は、 このような流路系 1 0と通気部 2 0とを反応モジ ユール 3 0として備えることができる。 すなわち、 反応装置 2は、 反応装置 2の流路系 1 0及び通気部 2 0以外の部分に対して、 これらの部分 (流路系 1 0と通気部 2 0 ) を一体のものとして交換可能に備えることができる。 流 路系 1 0と通気部 2 0とを備える反応モジュール 3 0を構成する場合、 流路 系 1 0は、 平板状体の固相基材 4上に備えられており、 通気部 2 0は、 こう した固相基材 4において貫通孔部又は凹部として形成された流路系 1 0の開 口部を遮蔽するように備えられていることが好ましい。  The reaction apparatus 2 of the present invention can be provided with such a flow path system 10 and a vent part 20 as a reaction module 30. That is, the reactor 2 can replace these parts (the channel system 10 and the vent part 20) as an integral part with respect to the parts other than the channel system 10 and the vent part 20 of the reactor 2. Can be prepared. When the reaction module 30 including the flow path system 10 and the ventilation section 20 is configured, the flow path system 10 is provided on the solid-phase substrate 4 having a flat body, and the ventilation section 20 is It is preferable that the solid phase substrate 4 is provided so as to shield the opening portion of the flow path system 10 formed as a through hole portion or a concave portion.
[0049] (反応モジュールの製造方法) 本発明によれば、 反応モジュール 3 0の製造 方法も提供される。 本発明の製造方法は、 流路系 1 0を構成する凹状部と該 凹状部と外部とを連通する開口部とを備える平板状体を準備する工程と、 液 体に対して撥液性を有する通気性材料を、 平板状体の開口部を遮断するよう に付与する工程を備えることができる。 平板状体の準備工程は、 既に説明し たように、 固相基材 4に対して流路系 1 0に対応するパターンで凹部又は貫 通孔を形成することが含まれる。 また、 送液制御部位となる通気部 2 0に対 応する開口部 1 2のパターンに対応する貫通孔を固相基材 4に形成すること も含まれる。 こうした工程には上記した MEMS等各種の手法を用いることがで さる。 (Method for Producing Reaction Module) According to the present invention, a method for producing the reaction module 30 is also provided. The production method of the present invention comprises a step of preparing a plate-like body comprising a concave portion constituting the flow path system 10 and an opening that communicates the concave portion with the outside, and has a liquid repellency with respect to the liquid body. A step of applying the air-permeable material having the air-permeable material so as to block the opening of the flat plate-like body can be provided. As described above, the step of preparing the flat plate includes forming a recess or a through hole with a pattern corresponding to the flow path system 10 with respect to the solid phase substrate 4. In addition, the ventilation part 20 which is a liquid feeding control part Forming through holes corresponding to the pattern of the corresponding openings 12 in the solid phase substrate 4 is also included. For these processes, various methods such as MEMS can be used.
[0050] また、 通気性材料を開口部を遮蔽するように付与する工程は、 例えば、 多孔 質材料等を固相基材 4に形成した流路系 1 0の開口部 1 2に適用して閉鎖す ることを含んでいる。 通気性材料は、 既に説明した各種の材料を用いること ができる。 また、 開口部 1 2を通気性材料で閉鎖するのに際しては、 通気性 材料の種類等に応じて、 接着、 粘着、 溶着、 熱圧着等の従来公知の技術を用 いることができる。  [0050] In addition, the step of applying the breathable material so as to shield the opening is applied to, for example, the opening 12 of the flow path system 10 in which the porous material or the like is formed on the solid phase base material 4. Including closing. As the breathable material, the various materials described above can be used. In closing the opening 12 with a breathable material, conventionally known techniques such as adhesion, adhesion, welding, and thermocompression bonding can be used depending on the type of the breathable material.
[0051 ] (送液手段)  [0051] (Liquid feeding means)
本発明の反応装置 2は、 通気部 2 0の少なくとも一部から流路系 1 0内の ガスを吸引して流路系 1 0内に差圧を形成して液体を送液する送液手段 4 0 を備えている。 流路系 1 0内のガスを吸引して差圧を形成して液体を送液す ることで、 液到達位置の制御を正確に行うことができる。 図 8 ( a ) 及び ( b ) に示すように、 流路系 1 0内において差圧を形成して液体を送液する場 合、 減圧 (吸引) による場合と加圧による場合とが考えられる。 図 8 ( a ) に示すように、 減圧の場合には、 通気部 2 0からガスを吸引し (一ひ) 、 図 8 ( b ) に示すように、 加圧の場合には、 通気部 2 0に向けてガスを供給す る (+ Qf ) 。 このとき、 差圧 Qfが大きければ大きいほど送液速度が大きくな る。 減圧による場合、 液体が通気部 2 0に到達すると流路系 1 0において液 体の上流側及び下流側では圧力が同等となり差圧が解消されるため、 液体は 通気部 2 0で停止する。 一方、 加圧による場合、 液体が通気部 2 0に到達し ても、 液体の上流側に差圧 Qfの圧力が残るため、 液体の上流側と下流側との 圧力が平衡に達するまで液体は停止しない。 すなわち、 液体は通気部 2 0で 停止せず通気部 2 0を通過して送液されることがあるのである。 高速で液体 を送液したり、 高粘度の液体を送液する場合には、 送液可能差圧 +速度を得 るための差圧 Qfが大きくなるため、 一層通気部 2 0で停止しがたく、 また、 位置制御が困難になってしまう。 したがって加圧による送液は位置制御が困 難であるのに対し、 本発明のように吸引による送液によれば、 位置制御を必 要とする送液速度等に拘わらず確実に実現することができる。 The reaction apparatus 2 of the present invention is a liquid feeding means for feeding a liquid by sucking a gas in the flow path system 10 from at least a part of the ventilation section 20 to form a differential pressure in the flow path system 10. It has 4 0. The liquid arrival position can be accurately controlled by sucking the gas in the flow path system 10 to form a differential pressure and feeding the liquid. As shown in Fig. 8 (a) and (b), when a liquid is sent with a differential pressure formed in the flow path system 10, there are cases where pressure is reduced (suction) and pressure is increased. . As shown in Fig. 8 (a), in the case of depressurization, the gas is sucked from the vent 20 (one), and as shown in Fig. 8 (b), in the case of pressurization, the vent 2 Supply gas toward 0 (+ Qf). At this time, the higher the differential pressure Qf, the higher the liquid feeding speed. In the case of depressurization, when the liquid reaches the vent 20, the pressure is equal on the upstream side and downstream side of the liquid in the flow path system 10, and the differential pressure is eliminated. Therefore, the liquid stops at the vent 20. On the other hand, in the case of pressurization, even if the liquid reaches the vent 20, the pressure of the differential pressure Qf remains on the upstream side of the liquid, so the liquid does not flow until the pressure on the upstream and downstream sides of the liquid reaches equilibrium. Do not stop. That is, the liquid may not be stopped at the vent 20 and may be sent through the vent 20. When liquid is fed at high speed or when liquid with high viscosity is fed, differential pressure Qf for obtaining liquid feed differential pressure + speed increases, so it will stop further at the vent 20. In addition, position control becomes difficult. Therefore, it is difficult to control the position of liquid feeding by pressurization. On the other hand, liquid feeding by suction as in the present invention can be reliably realized regardless of the liquid feeding speed or the like that requires position control.
[0052] 送液手段 4 0は、 反応装置 2に一体に備えられていてもよいし、 別個に装 脱着可能に備えられていてもよい。 図 1 A及び図 2に示すように、 送液手段 4 0は、 流路系 1 0の通気部 2 0の一部から流路系 1 0内のガスを吸引可能 なガス吸引部 4 2とガス吸引源 5 0とを備えている。 なお、 ガス吸引源 5 0 は、 吸引部 4 2毎に備える必要はなく、 一括したガス吸引源 5 0からバルブ 操作によって各ガス吸引部 4 2からガスを吸引するようにしてもよい。  [0052] The liquid feeding means 40 may be provided integrally with the reaction apparatus 2, or may be provided separately so as to be detachable. As shown in FIG. 1A and FIG. 2, the liquid feeding means 40 includes a gas suction unit 42 capable of sucking a gas in the flow channel system 10 from a part of the ventilation unit 20 of the flow channel system 10 and A gas suction source 50. It should be noted that the gas suction source 50 need not be provided for each suction unit 42, and gas may be sucked from each gas suction unit 42 by valve operation from the collective gas suction source 50.
[0053] 吸引部 4 2は通気部 2 0とガス吸引源 5 0とを接続可能なものであればよ い。 例えば、 図 2〜図 5に示すように、 送液制御部位に独立して形成した通 気部 2 0と吸引源 5 0とを連通させるキヤビティを有していればよい。 した がって、 単なるチューブ状体であってもよいし、 通気部 2 0側に吸引源 5 0 よリも大きな容積を持った吸引キヤビティを備えるようにしてもよい。 なお 、 吸引部 4 2は、 通気部 2 0とガス吸引源 5 0との間の全ての部材を必ずし も意味するものではないが、 少なくとも通気部 2 0に接続される部分を含む ものとする。  [0053] The suction part 42 may be anything that can connect the ventilation part 20 and the gas suction source 50. For example, as shown in FIG. 2 to FIG. 5, it is only necessary to have a cavity for communicating the suction part 20 and the suction source 50 formed independently at the liquid feeding control part. Therefore, it may be a simple tube-like body, or a suction cavity having a larger volume than the suction source 50 may be provided on the ventilation section 20 side. The suction part 42 does not necessarily mean all members between the ventilation part 20 and the gas suction source 50, but includes at least a part connected to the ventilation part 20. To do.
[0054] こうした吸引部 4 2には、 通気部 2 0側とガス吸引源 5 0側にそれぞれ接 続部を備えることができるが、 これらの接続部のいずれか又は通気部 2 0と ガス吸引源 5 0との間のいずれかの部位に適宜バルブなどを備えて、 吸引の 開始と停止を調節するようにすることもできる。  [0054] The suction part 42 can be provided with a connection part on the ventilation part 20 side and the gas suction source 50 side, respectively, and either of these connection parts or the ventilation part 20 and the gas suction part can be provided. It is also possible to adjust the start and stop of suction by appropriately providing a valve or the like at any part between the source 50 and the source 50.
[0055] 吸引部 4 2は、 個々の通気部 2 0に対応して固定的に装着されていてもよ いが、 流路系 1 0に対して相対移動可能に設けることもできる。 こうするこ とで、 全ての通気部 2 0に対して吸引部 4 2を備える必要がないため、 送液 手段 4 0及び反応装置 2を簡素化することができる。 このような吸引部 4 2 は、 流路系 1 0に対して移動可能に構成してもよいし、 また、 固定した吸引 部 4 2に対して流路系 1 0を移動可能に構成してもよい。 あるいは双方を移 動可能に構成してもよい。  The suction part 42 may be fixedly attached corresponding to each ventilation part 20, but can also be provided so as to be movable relative to the flow path system 10. In this way, since it is not necessary to provide the suction part 42 for all the ventilation parts 20, the liquid feeding means 40 and the reaction apparatus 2 can be simplified. Such a suction part 42 may be configured to be movable with respect to the flow path system 10, or the flow path system 10 may be configured to be movable with respect to the fixed suction part 42. Also good. Alternatively, both may be configured to be movable.
[0056] このような吸引部 4 2の一例を図 3に示す。 図 3に示すように、 この吸引 部 4 2は、 通気部 2 0を備える流路系 1 0の一側面の表面形態に対応したベ ース部 4 1を有することができる。 ベース部 4 1を有することでスムーズな 相対移動が可能となる。 An example of such a suction unit 42 is shown in FIG. As shown in Figure 3, this suction The part 42 can have a base part 41 corresponding to the surface form of one side surface of the flow path system 10 including the ventilation part 20. By having the base part 41, smooth relative movement becomes possible.
[0057] また、 送液手段 4 0は、 通気部 2 0におけるガスの流通を遮断するシール 部 6 0を備えることができる。 シール部 6 0は、 送液制御部位からガスを吸 引して液体を送液しょうとする送液範囲内に通気部 2 0が存在する場合に、 こうした通気部 2 0からのガスの流通を遮断するために備えられる。 通気部 2 0からのガスの流通を遮断することで送液及び液位置制御が容易になる。 なお、 通気部 2 0は、 通気性材料の有する撥液性及び通気性により、 シール 部 6 0を設けなくても送液が可能である場合もある。  In addition, the liquid feeding means 40 can include a seal part 60 that blocks the gas flow in the ventilation part 20. The seal part 60 allows the gas to flow from the ventilation part 20 when the ventilation part 20 exists in the liquid supply range where the liquid is sucked from the liquid supply control part to send the liquid. Provided to shut off. By blocking the gas flow from the vent 20, liquid feeding and liquid position control are facilitated. Note that the ventilation part 20 may be able to send liquid without providing the seal part 60 due to the liquid repellency and air permeability of the air-permeable material.
[0058] シール部 6 0は、 送液制御部位より下流側の通気部 2 0におけるガス流通を 遮断するためにも備えることができる。 送液制御部位よりも下流側の通気部 2 0でガス流通を遮断することで送液及び液位置の制御が容易になる。 なお 、 吸引による送液を容易にするには、 送液範囲より上流側においてガス流通 が許容されていることが好ましい。 さらに、 送液範囲よりも上流側の通気部 2 0から流路系 1 0にガスを供給して、 吸引による送液を補助するようにす ることもできる。  [0058] The seal part 60 can also be provided to block the gas flow in the ventilation part 20 on the downstream side of the liquid feeding control part. By blocking the gas flow at the ventilation part 20 on the downstream side of the liquid feeding control part, the liquid feeding and the liquid position can be easily controlled. In order to facilitate liquid feeding by suction, it is preferable that gas flow is allowed upstream of the liquid feeding range. Furthermore, gas can be supplied from the aeration unit 20 upstream of the liquid feeding range to the flow path system 10 to assist liquid feeding by suction.
[0059] シール部 6 0は、 例えば、 通気部 2 0に個別にバルブとして設けることも できるし、 通気部 2 0に設けるガス吸引部 4 2などの送液手段 4 0側に備え ることのできるバルブとして設けることもできる。 いずれも逆止弁として機 能するような片持ち梁あるいは両持ち梁等として構成することができる。 な お、 こうしたシール部 6 0は、 コントローラ 1 0 0によって開閉が制御され るものであってもよい。  [0059] For example, the seal part 60 can be provided individually as a valve in the ventilation part 20, or can be provided on the liquid feeding means 40 side such as the gas suction part 42 provided in the ventilation part 20. It can also be provided as a possible valve. Both can be configured as cantilever beams or doubly supported beams that function as check valves. Note that such a seal portion 60 may be one whose opening and closing is controlled by the controller 100.
[0060] さらに、 シール部 6 0は、 図 4に示すように、 流路系 1 0に対して相対移 動可能な吸引部 4 2の一部として設けることもできる。 すなわち、 吸引部 4 2とシール部 6 0とを一体のュニッ卜として有することもできる。 こうする ことで、 シール部 6 0の送液制御部位に位置される吸引部 4 2に常に付随す ることができ、 送液範囲やその下流側の通気部 2 0をシールすることができ る。 また、 ユニット化により、 送液制御を単純化することができる。 Further, as shown in FIG. 4, the seal part 60 can be provided as a part of the suction part 42 that can move relative to the flow path system 10. That is, the suction part 42 and the seal part 60 can be provided as an integral unit. In this way, it is possible to always accompany the suction part 42 positioned at the liquid feeding control part of the seal part 60, and to seal the liquid feeding range and the ventilation part 20 on the downstream side thereof. The Also, liquid control can be simplified by unitization.
[0061 ] また、 シール部 6 0の他の一例を図 5に示す。 図 5に示す例では、 通気部 2 0を備える流路系 1 0の一側に通気部 2 0におけるガスの流通をシール可能 なシール部 6 0を備えるとともに、 このシール部 6 0と通気部 2 0との間に 、 吸引源 5 0に接続される吸引部 4 2が移動可能に介在している。 このよう な構成によれば、 通気部 2 0はこのシール部 6 0が敷設される範囲において は常時シールされ、 吸引部 4 2は、 送液制御部位となる場合にのみガス吸引 が許容されるように相対移動することにより、 効果的な送液が可能となって いる。 また、 吸引部 4 2を制御するだけで送液制御が可能となっている。  Further, another example of the seal part 60 is shown in FIG. In the example shown in FIG. 5, a seal unit 60 that can seal the gas flow in the vent unit 20 is provided on one side of the flow path system 10 including the vent unit 20, and the seal unit 60 and the vent unit A suction part 42 connected to the suction source 50 is movably interposed between the two and 20. According to such a configuration, the ventilation portion 20 is always sealed in a range where the seal portion 60 is laid, and the suction portion 42 is allowed to suck gas only when it becomes a liquid feeding control portion. As a result of relative movement, effective liquid feeding is possible. Moreover, liquid feeding control is possible only by controlling the suction part 42.
[0062] さらに、 図 5に示す例においては、 必要に応じ吸引部の 4 2の近傍のシー ル部 6 0を流路系 1 0の一側に押圧する押圧部 4 7を備えることができる。 押圧部 4 7を備えることで吸引部 4 2の近傍のシール部 6 0の浮き上がリを 抑制できる。 また、 図 5に示すように、 押圧部 4 7がポール体又はロール体 などの回転体である場合には、 吸引部 4 2の相対移動を円滑に行うことがで きる。 なお、 押圧部 4 7が回転体である場合には、 吸引部 4 2の相対移動手 段として備えられていてもよい。  Further, in the example shown in FIG. 5, a pressing portion 47 that presses the seal portion 60 in the vicinity of the suction portion 42 to one side of the flow path system 10 can be provided as necessary. . By providing the pressing part 47, the floating of the seal part 60 in the vicinity of the suction part 42 can be suppressed. Further, as shown in FIG. 5, when the pressing portion 47 is a rotating body such as a pole body or a roll body, the relative movement of the suction portion 42 can be performed smoothly. When the pressing portion 47 is a rotating body, it may be provided as a relative moving means for the suction portion 42.
[0063] (吸引圧低下検出手段)  [0063] (Suction pressure drop detection means)
本発明の反応装置 2は、 流路系 1 0からガスを吸引している通気部 2 0に おける吸引圧の低下を検出する吸引圧低下検出手段 8 0 (図 1参照) を備え ている。 この吸引圧低下検出手段 8 0を備えることで、 通気部 2 0の遮断に よる通気部 2 0におけるガス吸引圧の低下を検出することができる。 この吸 引圧低下検出手段 8 0は、 通気部 2 0から吸引源 5 0にいたるまでのいずれ かの箇所に備えることができるが、 吸引部 4 2が通気部 2 0近傍に備える吸 引キヤビティに備えることもできる。 この吸引圧低下検出手段 8 0は、 こう した吸引用キヤビティ内での吸引圧低下を直接電気的又は機械的に検出する ものであってもよいが、 吸引圧低下によって受動的に閉鎖する逆止弁の作動 等を介して間接的に検出するものであってもよい。 こうしたガス圧検出手段 としては、 公知のガス圧検出手段を必要に応じて選択すればよい。 また、 吸 引圧低下検出手段 8 0は、 ガス吸引流量の低下を検出する手段で代替するこ とができる。 ガス吸引流量の低下を検出することでも通気部 2 0の遮断を検 出できるからである。 この場合、 ガス圧検出手段に替えて、 流量検出手段を 用いればよい。 The reaction apparatus 2 of the present invention includes suction pressure reduction detection means 80 (see FIG. 1) that detects a reduction in suction pressure in the ventilation section 20 that sucks gas from the flow path system 10. By providing this suction pressure drop detecting means 80, it is possible to detect a decrease in the gas suction pressure in the vent 20 due to the shut-off of the vent 20. This suction pressure drop detecting means 80 can be provided at any point from the ventilation part 20 to the suction source 50, but the suction cavity provided near the ventilation part 20 by the suction part 42. Can also be prepared. The suction pressure drop detecting means 80 may be a device that directly or electrically detects such a suction pressure drop in the suction cavity, but is a check that passively closes due to the suction pressure drop. It may be detected indirectly through valve operation or the like. As such a gas pressure detecting means, a known gas pressure detecting means may be selected as necessary. Also suck The attraction pressure reduction detecting means 80 can be replaced with a means for detecting a decrease in the gas suction flow rate. This is because the blockage of the vent 20 can also be detected by detecting a decrease in the gas suction flow rate. In this case, a flow rate detecting means may be used instead of the gas pressure detecting means.
[0064] 本発明の反応装置 2においては、 流路系 1 0のガスを送液制御部位である 通気部 2 0より吸引して液体を移動させる。 液体が移動して通気部 2 0に到 達すると、 液体は通気部 2 0に強く吸引されるが通気部 2 0は撥液性面が流 路系 1 0内に露出されているため、 液体は通気部 2 0を通過せずに留まる。 この結果、 通気部 2 0は液体により閉鎖され、 流路系 1 0内からのガスの吸 引が抑制されあるいは停止し、 送液は実質上停止する。 ここで、 吸引圧検出 手段 8 0がこの通気部 2 0を介したガス吸引圧の低下を検出することで、 液 が意図したとおリに送液制御部位 Aに到達したことを検出できる。 したがつ て、 液位置検出手段を簡素化又は省略することができる。 また、 吸引圧低下 検出手段 8 0がガス吸引圧の低下を検出したら、 吸引源 5 0からの吸引を停 止するよう制御することができる。 こうすることで、 通気部 2 0に過度の吸 引圧をかけることがないとともに、 逐次的に次の液位置まで送液するための 制御 (例えば、 吸引部 4 2の移動等や吸引開始) を速やかに開始することが できる。 なお、 吸引圧低下手段 8 0は速やかな送液制御に好適であるが、 吸 引圧低下手段 8 0を備えない場合であっても、 送液制御は可能である。 例え ば、 所定量の液体の送液に十分な吸引圧力と時間とを確保することで、 一定 吸引圧力で一定時間経過後に、 吸引を停止して次段での送液制御を開始すれ ばよい。  [0064] In the reactor 2 of the present invention, the liquid is moved by sucking the gas in the flow path system 10 from the ventilation unit 20 which is a liquid feeding control part. When the liquid moves and reaches the ventilation section 20, the liquid is strongly sucked into the ventilation section 20, but the liquid repellent surface of the ventilation section 20 is exposed in the flow path system 10. Will not pass through the vent 20. As a result, the ventilation part 20 is closed by the liquid, the suction of the gas from the flow path system 10 is suppressed or stopped, and the liquid feeding is substantially stopped. Here, the suction pressure detection means 80 can detect that the liquid has reached the liquid feed control portion A as intended by detecting the decrease in the gas suction pressure through the vent 20. Therefore, the liquid position detecting means can be simplified or omitted. Further, when the suction pressure drop detecting means 80 detects a drop in the gas suction pressure, the suction from the suction source 50 can be controlled to stop. In this way, excessive suction pressure is not applied to the ventilation section 20 and control for sequentially feeding liquid to the next liquid position (for example, movement of the suction section 42 or start of suction) Can be started immediately. The suction pressure lowering means 80 is suitable for quick liquid feeding control, but the liquid feeding control is possible even when the suction pressure lowering means 80 is not provided. For example, by securing sufficient suction pressure and time for liquid delivery of a predetermined amount of liquid, it is only necessary to stop suction and start liquid feed control at the next stage after a certain period of time at constant suction pressure. .
[0065] 以上説明した吸引部 4 2及び吸引源 5 0は本発明の反応装置 2における送 液手段を構成し、 同時に送液装置としても利用可能である。 すなわち、 流路 系 1 0と通気部 2 0とを備える反応モジュール 3 0などを装着可能な送液装 置としても用いることができる。 この送液装置には、 シール部 6 0を備える こともできる。 特に、 流路系 1 0に対して相対移動可能に吸引部 4 2及び Z 又はシール部 6 0を備える送液装置によれば、 各種の反応モジュール 3 0の 流路系 1 0において送液を容易に実施することができる。 [0065] The suction part 42 and the suction source 50 described above constitute the liquid feeding means in the reaction apparatus 2 of the present invention, and can be used as a liquid feeding apparatus at the same time. That is, it can also be used as a liquid feeding device to which a reaction module 30 provided with a flow path system 10 and a vent 20 can be attached. This liquid feeding device can also be provided with a seal part 60. In particular, according to the liquid feeding device provided with the suction part 4 2 and Z or the seal part 60 so as to be relatively movable with respect to the flow path system 10, various reaction modules 30. Liquid feeding can be easily performed in the flow path system 10.
[0066] (制御手段)  [0066] (Control means)
本発明の反応装置 2は、 通気部 2 0に装着された吸引部 4 2からのガス吸 引開始、 吸引圧低下検出手段 8 0からの信号に基づくガスの吸引停止のほか 、 吸引部 4 2、 シール部 6 0及び流路系 1 0の相対移動などのための反応装 置 2の各部との各種の制御信号のやリとリを行う制御制手段 (コントローラ ) 1 0 0を備えることができる。 こうしたコントローラ 1 0 0は、 反応装置 2の一部であってもよいが、 反応装置 2の外部のコンピュータとすることも できる。  The reactor 2 according to the present invention includes a suction unit 42 in addition to the start of gas suction from the suction unit 42 attached to the ventilation unit 20 and the stop of gas suction based on the signal from the suction pressure drop detection means 80. And control means (controller) 100 for performing various control signals to and from each part of the reaction apparatus 2 for relative movement of the seal part 60 and the flow path system 10. it can. Such a controller 100 may be part of the reaction apparatus 2, but can also be a computer outside the reaction apparatus 2.
[0067] コントローラ 1 0 0は、 流路系内 1 0のどの通気部 2 0でガスを吸引する かを選択して液体の到達位置 (停止位置) を制御することができる。 すなわ ち、 コントローラ 1 0 0は、 反応を行うのに液体を到達させたり停止させた りすべき位置の通気部 2 0に装着された吸引部 4 2からガスの吸引の開始信 号を出力して液位置制御を伴う送液制御をすることができる。 また、 コント ローラ 1 0 0は、 当該通気部 2 0に吸引部 4 2を移動させる信号を出力して 、 可動性の吸引部 4 2の位置制御を行うこともできる。 さらに、 コントロー ラ 1 0 0は、 当該通気部 2 0に移動により装着した吸引部 4 2からのガスの 吸引開始信号を出力して、 結果として液位置制御を伴う送液制御を行うこと ができる。  The controller 100 can control the liquid arrival position (stop position) by selecting which ventilation section 20 in the flow path system 10 is to suck the gas. In other words, the controller 100 outputs a gas suction start signal from the suction part 42 attached to the ventilation part 20 at the position where the liquid should reach or stop for the reaction. Thus, liquid feeding control with liquid position control can be performed. Further, the controller 100 can output a signal for moving the suction part 42 to the ventilation part 20 to control the position of the movable suction part 42. Further, the controller 100 can output a gas suction start signal from the suction unit 42 attached to the ventilation unit 20 by movement, and as a result, can perform liquid feeding control with liquid position control. .
[0068] コントローラ 1 0 0は、 吸引圧低下検出手段 8 0からの特定の通気部 2 0 における吸引圧低下信号を検出すると、 ガス吸引源 5 0から特定の通気部 2 0に装着された吸引部 4 2からのガス吸引を停止するよう制御する。 具体的 には、 ガス吸引源 5 0による吸引自体を停止するかあるいは吸引圧が低下し た吸引部 4 2側へのバルブを閉じるなどの信号処理を実行することができる 。 また、 コントローラ 1 0 0は、 吸引圧低下信号を検出したときには、 当該 信号の発信側からのガス吸引を停止するほか、 次の工程処理を速やかに開始 することができる。 例えば、 次なる液位置の送液工程を実施する場合には、 次の送液制御部位にある吸引部 4 2からのガス吸引を開始したり、 あるいは 当該送液制御部位へ吸引部 4 2を相対移動させたりすることができる。 本発 明の反応装置 2によれば、 こうした送液制御手段 1 0 0を備えることで、 意 図した送液の終了及び液位置を速やかに検出して次の工程処理を実施するこ とができる。 When the controller 10 0 detects a suction pressure drop signal in the specific ventilation part 20 from the suction pressure reduction detection means 80, the suction attached to the specific ventilation part 20 from the gas suction source 50 Control to stop gas suction from unit 42. Specifically, it is possible to execute signal processing such as stopping the suction itself by the gas suction source 50 or closing the valve to the suction unit 42 side where the suction pressure has decreased. Further, when the controller 100 detects the suction pressure decrease signal, the controller 100 can stop the gas suction from the transmission side of the signal and can immediately start the next process. For example, when performing the liquid feeding process at the next liquid position, gas suction from the suction unit 42 at the next liquid feeding control site is started, or The suction part 42 can be relatively moved to the liquid feeding control part. According to the reaction apparatus 2 of the present invention, by providing such a liquid feeding control means 100, the end of the intended liquid feeding and the liquid position can be detected quickly, and the next process can be performed. it can.
[0069] 次に、 こうした反応装置 2を用いて、 流路系 1 0で液体を送液する工程に ついて説明する。 なお、 以下の説明においては、 吸引部 4 2は、 図 1 Aに示 すそれぞれの通気部 2 O A〜 2 0 Eに個別に装着されているものとする。 ま た、 反応装置 2においては、 当初、 ガス吸引源 5 0に接続される全ての吸引 部 4 2からのガス吸引が停止された状態となっている。  [0069] Next, a process of feeding a liquid through the channel system 10 using such a reaction apparatus 2 will be described. In the following description, it is assumed that the suction part 4 2 is individually attached to each ventilation part 2 O A to 20 E shown in FIG. 1A. In the reactor 2, gas suction from all the suction units 42 connected to the gas suction source 50 is initially stopped.
[0070] まず、 コントローラ 1 0 0は、 図 1 Aに示す反応装置 2の流路系 1 0のチ ェンバー Aの末端にある通気部 2 O Aに装着されている吸引部 4 2において ガス吸引の開始信号をガス吸引源 5 0側に出力する。 この結果、 通気部 2 0 Aのみからガスが吸引され他の全ての通気部 2 0においては吸引していない 状態となる。 これにより、 反応装置 2の液体 Aのリザーバーに接続されたチ ャネルを介して液体 Aがチェンバー Aに導入される。  [0070] First, the controller 100 is configured to perform gas suction in the suction section 42 attached to the ventilation section 2OA at the end of the chamber A of the flow path system 10 of the reactor 2 shown in FIG. 1A. A start signal is output to the gas suction source 50 side. As a result, the gas is sucked only from the ventilation portion 20A, and all the other ventilation portions 20 are not sucked. As a result, the liquid A is introduced into the chamber A through the channel connected to the liquid A reservoir of the reactor 2.
[0071 ] チェンバー A (容量 1 0 I ) が液体 Aで充てんされると通気部 2 O Aが液 体 Aで閉鎖され結果として液体 Aのチェンバー Aへの送液が停止する。 この とき、 反応装置 2のコントローラ 1 0 0は、 通気部 2 O Aの近傍に設けた吸 引圧低下検出手段 8 0からの吸引圧の低下信号を検出して、 通気部 2 O Aに 装着した吸引部 4 2からのガス吸引の停止信号をガス吸引源 5 0側に出力す る。  [0071] When chamber A (capacity 10 I) is filled with liquid A, vent 2O A is closed with liquid A, and as a result, liquid A is stopped being sent to chamber A. At this time, the controller 100 of the reactor 2 detects the suction pressure drop signal from the suction pressure drop detection means 80 provided in the vicinity of the vent 2 OA, and the suction attached to the vent 2 OA. The gas suction stop signal from section 42 is output to the gas suction source 50 side.
[0072] 次いで、 コントローラ 1 0 0は、 吸引部 4 2からのガス吸引が停止したこ とを検出したら、 チ Iンバー Bの末端にある通気部 2 O Bに装着されている 吸引部 4 2 Bにおいてガス吸引を開始する信号をガス吸引源 5 0側に出力す る。 この結果、 通気部 2 0 Bのみからガスが吸引され他の全ての通気部 2 0 においては吸引していない状態となる。 これにより、 反応装置 2の液体 Bの リザーバーに接続されたチャネルを介して液体 Bがチェンバー Bに導入され る。 [0073] チェンバー B (容量 2 0 I ) が液体 Bで充てんされると通気部 2 0 Bが 液体 Bで閉鎖され結果として液体 Bのチェンバー Bへの送液が停止する。 こ のとき、 反応装置 2のコントローラ 1 0 0は、 通気部 2 0 Bの近傍に設けた 吸引圧低下検出手段 8 0からの吸引圧の低下信号を検出して、 通気部 2 0 B に装着した吸引部 4 2からのガス吸引の停止信号をガス吸引源 5 0側に出力 する。 Next, when the controller 100 detects that the gas suction from the suction part 4 2 has stopped, the suction part 4 2 B attached to the ventilation part 2 OB at the end of the chamber B The gas suction start signal is output to the gas suction source 50 side. As a result, the gas is sucked only from the ventilation part 20 B and is not sucked in all the other ventilation parts 20. As a result, the liquid B is introduced into the chamber B through the channel connected to the liquid B reservoir of the reaction device 2. [0073] When the chamber B (capacity 20 I) is filled with the liquid B, the vent 20B is closed with the liquid B, and as a result, the liquid B is stopped to be fed to the chamber B. At this time, the controller 100 of the reactor 2 detects the suction pressure drop signal from the suction pressure drop detecting means 80 provided in the vicinity of the ventilation part 20 B, and attaches it to the ventilation part 20 B. The gas suction stop signal from the suction section 42 is output to the gas suction source 50 side.
[0074] こうしてチェンバー Aとチェンバー Bとにそれぞれ液体 A及び液体 Bとが 所定量貯留される。 また、 別途、 同様にしてチェンバー C (容量 2 1 I ) に液体 Cを導入し、 チェンバー A、 B、 Cのそれぞれに液体 A、 B、 Cを導 入しておく。  Thus, a predetermined amount of liquid A and liquid B are stored in chamber A and chamber B, respectively. Separately, liquid C is introduced into chamber C (capacity 21 I) in the same manner, and liquids A, B, and C are introduced into chambers A, B, and C, respectively.
[0075] コントローラ 1 0 0が、 通気部 2 O Cに装着した吸引部 4 2からのガス吸 引が停止したことを検出したら、 チェンバー Dの末端にある通気部 2 0 Dに 装着した吸引部 4 2からのガス吸引を開始する信号をガス吸引源 5 0側に出 力する。 この結果、 液体 A及び液体 Bは、 チェンバー Dに導入される。 液体 A及び液体 Bは、 通気部 2 O A Bからチェンバー Dに至るチャネル及びチェ ンバー Dにおいて混合され、 混液 A Bとなる。 なお、 チェンバー Dにおいて 、 単に混合だけでなく、 各種反応を実施することができる。  [0075] When controller 100 detects that gas suction from suction part 4 2 attached to vent 2 OC has stopped, suction part 4 attached to vent 20 0 D at the end of chamber D A signal to start gas suction from 2 is output to the gas suction source 50 side. As a result, liquid A and liquid B are introduced into chamber D. Liquid A and liquid B are mixed in the channel and chamber D from the vent 2 O A B to the chamber D to become a mixed liquid A B. In chamber D, various reactions can be carried out, not just mixing.
[0076] チェンバー D (容量 3 0 I ) が液体 A及び液体 Bで充てんされると通気 部 2 0 Dが液体 A及び液体 Bの混液で閉鎖され結果として液体 A及び液体 B のチェンバー Dへの送液が停止する。 このとき、 反応装置 2のコントローラ 1 0 0は、 通気部 2 0 Dの近傍に設けた吸引圧低下検出手段 8 0からの吸引 圧の低下信号を検出して、 通気部 2 O Dに装着した吸引部 4 2からのガス吸 引の停止信号をガス吸引源 5 0側に出力する。  [0076] When chamber D (capacity 30 I) is filled with liquid A and liquid B, vent 20 0 D is closed with a mixture of liquid A and liquid B, and as a result, liquid A and liquid B are transferred to chamber D. The pumping stops. At this time, the controller 100 of the reaction device 2 detects the suction pressure drop signal from the suction pressure drop detection means 80 provided in the vicinity of the ventilation part 20 D, and the suction attached to the ventilation part 2 OD. Outputs gas suction stop signal from section 42 to gas suction source 50 side.
[0077] コントローラ 1 0 0が、 通気部 2 Dに装着した吸引部 4 2からのガス吸引 が停止したことを検出したら、 チェンバー Eの末端にある通気部 2 0 Eに装 着した吸引部 4 2からのガス吸引を開始する信号をガス吸引源 5 0側に出力 する。 この結果、 液体 C及び混液 A Bは、 チ Iンバー Eに導入される。 これ らの液体は、 通気部 2 0 C Dからチェンバー Eに至るチャネル及びチェンバ 一 Eにおいて混合され、 混液 A B Cとなる。 なお、 チェンバー Eにおいて、 単に混合だけでなく、 各種反応を実施することもできる。 [0077] When the controller 100 detects that the suction of gas from the suction part 4 2 attached to the ventilation part 2 D has stopped, the suction part 4 attached to the ventilation part 20 E at the end of the chamber E A signal to start gas suction from 2 is output to the gas suction source 50 side. As a result, liquid C and mixture AB are introduced into chamber E. These liquids flow into the channel and chamber from the vent 20 CD to chamber E. 1 In E, it is mixed into ABC. In chamber E, not only mixing but also various reactions can be performed.
[0078] チェンバー E (容量 5 1 I ) が混液 A B Cで充てんされると通気部 2 0 Eが混液 A B Cで閉鎖され結果として液体 C及び混液 A Bのチェンバー巳へ の送液が停止する。 このとき、 反応装置 2のコントローラ 1 0 0は、 通気部 2 0 Eの近傍に設けた吸引圧低下検出手段 8 0からの吸引圧の低下信号を検 出して、 通気部 2 0 Eに装着した通気部 2 0 Eからのガス吸引を停止する。  [0078] When chamber E (capacity 5 1 I) is filled with mixed liquid A B C, vent 20O is closed with mixed liquid A C, and as a result, liquid C and mixed liquid A B are not fed to chamber 巳. At this time, the controller 100 of the reactor 2 detects the suction pressure drop signal from the suction pressure drop detection means 80 provided in the vicinity of the ventilation part 20 E and is attached to the ventilation part 20 E. Venting 2 0 Stop gas suction from E.
[0079] 以上説明したように、 本発明の反応装置 2によれば、 流路系 1 0に設けた 通気部 2 0を介したガス吸引によリ流路系 1 0内において差圧を形成して液 体を移動させることができる。 また、 通気部 2 0に液体が到達して液体によ リ閉鎖されることにより自動的に送液は停止し、 しかも、 吸引圧の低下によ リ液の到達及び液位置を検出することができる。 したがって、 液体を直接駆 動するマイクロポンプや各種手法による液位置検出手段も用いることなく送 液を実現するとともに、 送液制御を容易に行うことができる。 しかも、 吸引 により送液を行うため、 正確な液位置制御が可能となっている。 したがって 、 簡易でかつ位置制御性及び送液制御性に優れる送液システムを備える反応 装置となっている。 同時に、 自動化、 コンパクト化及び P O C Tに適した反 応装置となっている。  [0079] As described above, according to the reaction device 2 of the present invention, a differential pressure is formed in the flow channel system 10 by gas suction through the vent 20 provided in the flow channel system 10. Thus, the liquid can be moved. Further, when the liquid reaches the ventilation section 20 and is closed by the liquid, the liquid feeding is automatically stopped, and the arrival of the liquid and the position of the liquid can be detected by the decrease of the suction pressure. it can. Therefore, liquid feeding can be realized and liquid feeding control can be easily performed without using a micro pump that directly drives liquid or liquid position detecting means using various methods. Moreover, since the liquid is fed by suction, accurate liquid position control is possible. Therefore, the reaction apparatus includes a liquid feeding system that is simple and excellent in position controllability and liquid feeding controllability. At the same time, it is a reaction device suitable for automation, compactness, and P O C T.
[0080] また、 本発明の反応装置 2によれば、 流路系 1 0の通気部 2 0からガス吸 引する吸引部 3 2を流路系 1 0に対して相対移動可能に有しているため、 送 液制御部位を多くするような複雑なあるいは多段反応であっても、 送液機構 の複雑化を抑制できる。 このため、 自動化、 コンパクト化及び P O C Tに適 した反応装置となっている。 さらに、 本発明の反応装置 2によれば、 吸引に よって液体の送液制御を行うため、 送液方向を上流から下流へと一方向だけ でなく、 逆流する方向や複数液を合流,混合させることも容易に行うことが できる。 これは、 吸引による送液制御においては、 液体到達地位置で吸引で きる点と、 合流時に混入した気泡を除去できる点によるものである。  [0080] Further, according to the reaction apparatus 2 of the present invention, the suction section 32 that sucks gas from the ventilation section 20 of the flow path system 10 is movable relative to the flow path system 10. Therefore, even if the complex or multistage reaction requires a large number of liquid feeding control sites, the complexity of the liquid feeding mechanism can be suppressed. For this reason, the reactor is suitable for automation, compactness, and POCT. Furthermore, according to the reaction apparatus 2 of the present invention, since the liquid feeding control is performed by suction, the liquid feeding direction is not limited to one direction from upstream to downstream, but the reverse flow direction or a plurality of liquids are joined and mixed. Can also be done easily. This is due to the fact that, in liquid feeding control by suction, suction can be performed at the position where the liquid reaches, and bubbles mixed in at the time of merging can be removed.
[0081 ] なお、 本発明の反応装置 2によれば、 通気部 2 0は、 気泡又は気体の除去 部や液体濃縮部として用いることもできる。 すなわち、 通気部 2 0を介した 流路系 1 0内のガスの吸引により液体を送液するため、 送液される液体中に 気泡がある場合には、 通気部 2 0において気泡の除去が可能となる。 また、 液体に溶解している気体を気泡として排除することもできる。 さらに、 液体 を通気部 2 0接触させた状態でガスを吸引することで液体中の蒸発成分を通 気部 2 0を介して流路系 1 0外に排出させることができ、 この結果、 液体を 濃縮することができ、 ひいては乾燥ないし固化させることができる。 [0081] Note that, according to the reactor 2 of the present invention, the vent 20 is used to remove bubbles or gas. It can also be used as a part or a liquid concentrating part. That is, since the liquid is sent by suction of the gas in the flow path system 10 through the vent 20, if there are bubbles in the liquid being sent, the bubbles are removed at the vent 20. It becomes possible. It is also possible to exclude gas dissolved in the liquid as bubbles. Furthermore, by sucking the gas while the liquid is in contact with the vent 20, the vaporized component in the liquid can be discharged out of the flow path system 10 through the vent 20, and as a result, the liquid Can be concentrated and thus dried or solidified.
[0082] (分析方法)  [0082] (Analysis method)
本発明によれば、 こうした反応装置を用いた分析方法も提供される。 本発 明の分析方法によれば、 本発明の反応装置を用いることにより、 各種反応が 自動化されているため、 簡易な操作による分析及び迅速な分析が可能となり 、 ヒューマンエラーが抑制又は回避された分析が可能となる。 また、 P O C Tを効率的に実施することができる。  According to the present invention, an analysis method using such a reaction apparatus is also provided. According to the analysis method of the present invention, since various reactions are automated by using the reaction apparatus of the present invention, analysis by simple operation and rapid analysis are possible, and human error is suppressed or avoided. Analysis becomes possible. In addition, P O C T can be performed efficiently.
[0083] (第 2の実施形態)  [0083] (Second Embodiment)
次に、 本発明の反応装置の他の実施形態について、 図 6及び図 7を参照し ながら説明する。 本実施形態の反応装置 1 0 2は、 通気部の形態が異なる以 外は第 1の実施形態の反応装置 2と同様である。 したがって、 以下の説明に おいて、 第 1の実施形態の反応装置 2と共通する部材等については同じ符号 を用いて説明するものとする。  Next, another embodiment of the reaction apparatus of the present invention will be described with reference to FIG. 6 and FIG. The reaction apparatus 102 of this embodiment is the same as the reaction apparatus 2 of the first embodiment, except that the form of the vent is different. Accordingly, in the following description, members and the like that are common to the reactor 2 of the first embodiment will be described using the same reference numerals.
[0084] 本実施形態の反応装置 1 0 2は、 図 6に示すように、 流路系 1 0の所定範 囲にわたって (図 6においては全体にわたる通気部 1 2 0を備えている。 こ うした通気部 1 2 0は、 例えば、 固相基材 4に形成した凹状部等である流路 系 1 0の所定範囲にわたって形成した開口部 1 1 2の全体を遮蔽するよう通 気性材料が配置されて形成される。 このような通気部 1 2 0によれば、 送液 制御部位毎に独立に開口部を備える必要もなく、 また、 通気性材料でこれら の開口部を閉鎖する必要もないため、 通気部 1 2 0及び反応モジュール 3 0 を効率的に製造することができる。  [0084] As shown in FIG. 6, the reaction apparatus 10 2 of the present embodiment includes a ventilation section 120 throughout the predetermined range of the flow path system 10 (in FIG. 6, the entire ventilation section 120). For example, the vent portion 120 is provided with an air-permeable material so as to shield the entire opening portion 112 formed over a predetermined range of the flow path system 10 such as a concave portion formed in the solid phase base material 4. According to such a vent portion 120, it is not necessary to provide an opening portion independently for each liquid feeding control portion, and it is not necessary to close these openings portions with a breathable material. Therefore, the ventilation part 120 and the reaction module 30 can be efficiently manufactured.
[0085] また、 図 7 A及び図 7 Bに示すように、 このような通気部 1 2 0に対して は、 図 4及び図 5に示す吸引部 4 2及びシール部 6 0を適用することで、 通 気部 1 2 0の特定の一部を送液制御部位として選択的に当該部位から流路系 1 0内のガスを吸引することができる。 また、 同時に、 送液制御部位以外の 通気部 1 2 0におけるガスの流通を効果的に抑制して、 実効のある送液制御 を可能としている。 さらに、 通気部 1 2 0は、 液体に対する撥液性を備えて いるため、 流路系 1 0における気泡の発生を防ぐとともに気泡の排出を促進 することができる。 [0085] Further, as shown in FIG. 7A and FIG. By applying the suction part 42 and the seal part 60 shown in FIG. 4 and FIG. 5, a specific part of the ventilation part 120 is selectively used as a liquid feeding control part from the part to the flow path system. The gas in 10 can be sucked. At the same time, it is possible to effectively control the flow of the gas by effectively suppressing the gas flow in the ventilation section 120 other than the liquid transfer control part. Further, since the ventilation part 120 has liquid repellency with respect to the liquid, it is possible to prevent the generation of bubbles in the flow path system 10 and to promote the discharge of the bubbles.
[0086] さらに、 このような大面積の通気部 1 2 0を備えることで、 任意の箇所を 送液制御部位として利用することができるため、 流路系 1 0における送液経 路等を自在に変更することができる。 なお、 通気部 1 2 0は、 流路系 1 0の 全体にわたって設けることができるほか、 一定範囲にのみ設けることもでき る。 この場合、 通気部 1 2 0を設けた流路系 1 0以外の箇所においては、 第 1の実施形態において説明した独立した通気部 2 0を設けることができる。  [0086] Furthermore, by providing such a large-area ventilation section 120, any part can be used as a liquid-feeding control part, so that a liquid-feeding path or the like in the flow path system 10 can be freely used. Can be changed. The ventilation portion 120 can be provided over the entire flow path system 10 or can be provided only within a certain range. In this case, the independent ventilation part 20 described in the first embodiment can be provided at a place other than the flow path system 10 provided with the ventilation part 120.
[0087] また、 大面積の通気部 1 2 0を設ける場合には、 任意の箇所で吸引して送 液を制御できるため、 以下のメリットがある。 一つは、 送液中の液体の意図 しない分断や付着によつて送液が停止することが回避又は抑制できることで ある。 例えば、 先の実施形態のように通気部 2 0を個別に設けた場合には、 通気部 2 0が液体により遮断されたときには、 それによつて送液が停止され てしまう。 このため、 何らかの原因によって送液中の液体が分断された場合 など、 先に通気部 2 0に到達した液体によって通気部 2 0が遮断されて所定 量の送液が完了しない間に送液が停止されてしまうことがある。 これに対し て、 送液範囲の全てが通気部 1 2 0である場合には、 通気部 1 2 0全体を遮 断するまで有効な吸引が可能となるため、 先に送液された液体によって意図 しない送液停止が発生することが回避又は抑制できる。  [0087] Further, in the case where the large-area ventilation section 120 is provided, the liquid feeding can be controlled by sucking at an arbitrary place, so that there are the following merits. One is that it is possible to avoid or suppress the stoppage of liquid feeding due to unintentional fragmentation or adhesion of the liquid being fed. For example, when the ventilation part 20 is individually provided as in the previous embodiment, when the ventilation part 20 is blocked by the liquid, the liquid feeding is stopped accordingly. For this reason, when the liquid being pumped is interrupted for some reason, the liquid is not transferred while the vent 20 is blocked by the liquid that has previously reached the vent 20 and the predetermined amount of liquid is not completed. It may be stopped. On the other hand, if the entire liquid supply range is the ventilation part 120, effective suction is possible until the entire ventilation part 120 is cut off. It is possible to avoid or suppress the occurrence of an unintended liquid supply stop.
[0088] また、 二つ目は、 気泡の効率的な排除が可能となることである。 例えば、 液体の混合、 加熱、 冷却、 急速な温度変化プロセスなどの化学反応プロセス においては、 液体からの発泡や気化などによって送液中の液体に気泡が発生 する。 この場合、 個別通気部 2 0の場合には、 通気部 2 0で吸引して排除す るかあるいは特別な気泡排除機構を設ける必要があるが、 送液範囲にわたる 通気部 2 0を設ける場合には、 任意の場所で吸引が可能であるため、 どの位 置で発生した気泡に対しても速やかに排除することが可能である。 したがつ て、 こうした化学プロセスを含む反応装置においては、 その反応プロセスの 範囲にわたる通気部 1 2 0を設けることが特に好適である。 さらに、 大面積 の通気部 1 2 0を設けることで、 液体の蒸発 (気化) を促進することができ るため、 濃縮効果を発現させたい場合には有利である。 [0088] Second, it is possible to efficiently eliminate bubbles. For example, in chemical reaction processes such as liquid mixing, heating, cooling, and rapid temperature change processes, bubbles are generated in the liquid being fed due to foaming or vaporization from the liquid. In this case, in the case of the individual ventilation part 20, it is removed by suction with the ventilation part 20. It is necessary to provide a special bubble removal mechanism, but when a ventilation section 20 that covers the liquid feeding range is provided, suction can be performed at an arbitrary location, so it is possible to prevent bubbles generated at any position. Can be quickly eliminated. Therefore, in a reaction apparatus including such a chemical process, it is particularly preferable to provide a ventilation portion 120 over the range of the reaction process. Furthermore, the provision of a large-area ventilation section 120 can promote the evaporation (vaporization) of the liquid, which is advantageous when a concentration effect is desired.
[0089] (第 3の実施形態)  [0089] (Third embodiment)
次に、 本発明の反応装置の他の実施形態について、 図 9及び図 1 0を適宜 参照しながら説明する。 本実施形態は、 本発明の反応装置を主として液体の 濃縮又は濃縮装置として使用する形態である。 図 9には、 本実施形態の反応 装置 2 0 2の平面図と断面図とを示し、 図 1 0には、 本実施形態の他の反応 装置 3 0 2の平面図と断面図とを示す。 反応装置 2 0 2は、 液体の蒸発又は 濃縮用のチャンバ一 Fを主として備えて、 該チェンバー Fの片面 (底面) 全 面を通気部 2 2 0とする点以外は、 第 1の実施形態の反応装置 2と同様であ る。 また、 反応装置 3 0 2は、 液体の蒸発又は濃縮用のチェンバーを主とし て備える点以外は、 第 1の実施形態の反応装置 2と同様である。 したがって 、 以下の説明において、 第 1の実施形態の反応装置 2と共通する部材等につ いては同じ符号を用いて説明するものとする。  Next, another embodiment of the reaction apparatus of the present invention will be described with reference to FIGS. 9 and 10 as appropriate. In this embodiment, the reaction apparatus of the present invention is mainly used as a liquid concentrating or concentrating apparatus. FIG. 9 shows a plan view and a cross-sectional view of the reaction apparatus 20 2 of this embodiment, and FIG. 10 shows a plan view and a cross-sectional view of another reaction apparatus 30 2 of this embodiment. . The reaction apparatus 202 mainly includes a chamber F for vaporizing or concentrating liquid, and the one side (bottom surface) of the chamber F is entirely the ventilation section 220, except that the vent part 220 is the same as that of the first embodiment. Similar to reactor 2. The reaction apparatus 30 2 is the same as the reaction apparatus 2 of the first embodiment, except that it mainly includes a chamber for liquid evaporation or concentration. Therefore, in the following description, members and the like that are common to the reaction apparatus 2 of the first embodiment will be described using the same reference numerals.
[0090] 本実施形態の反応装置 2 0 2は、 図 9に示すように、 固相基材 4の一部に チャンバ一 Fを備えることができる。 このチェンバー「は、 その両端部に底 面全体を通気部 2 2 0としている。 こうした通気部 2 2 0は、 図 9にも示す ように、 固相基材 4によつて形成した凹状部の全体にわたつて形成した開口 部 2 1 2の全体を遮蔽するよう疎水性の通気性材料が配置されて形成される 。 反応装置 2 0 2は、 図 9に示すように、 こうした通気部 2 2 0に対して吸 引部 2 4 2を備えることができる。 吸引部 2 4 2は、 通気部 2 2 0を含んで 形成される吸引用のキヤビティを備えているとともに、 図示しない吸引源に 接続されて通気部 2 2 0を介してチェンバー F内を吸引可能に形成されてい る。 As shown in FIG. 9, the reaction apparatus 20 2 of the present embodiment can include a chamber F on a part of the solid phase substrate 4. In this chamber, the entire bottom surface is made into a ventilation part 220 at both end parts. Such a ventilation part 220 is a concave part formed by the solid phase base material 4 as shown in FIG. Opening formed across the entire surface 2 1 2 is formed by placing a hydrophobic air permeable material so as to shield the entire surface of the reactor 2 0 2, as shown in FIG. The suction part 2 4 2 can be provided with respect to 0. The suction part 2 4 2 has a suction cavity formed including the ventilation part 2 2 0 and is connected to a suction source (not shown). It is formed so that the inside of the chamber F can be sucked through the ventilation part 2 2 0. The
[0091] また、 反応装置 302は、 図 1 0に示すように、 固相基材 4の一部にチェ ンバー Gを備えることができる。 このチェンバー Gは、 その両側に 2か所の 通気部 320を備えている。 こうした通気部 320は、 図 1 0に示すように 、 チェンバー Gの底面の両端部近傍に開口する開口部 3 1 2を遮蔽する疎水 性の通気性材料が配置されて形成されている。 反応装置 302は、 図 1 0に 示すように、 各通気部 320に対してそれぞれ吸引部 342を備えることが できる。 吸引部 342は、 図示しない吸引源に接続されて通気部 320を介 してチェンバー G内を吸引可能に形成されている。 また、 反応装置 302は 、 2つの通気部 320からの吸引を交互に作動させることにより、 チェンバ 一 G内の液体を移動又は攪拌可能に形成されている。  In addition, as shown in FIG. 10, the reaction apparatus 302 can include a chamber G in a part of the solid phase base material 4. This chamber G has two vents 320 on each side. As shown in FIG. 10, the vent 320 is formed by disposing a hydrophobic breathable material that shields the opening 31 2 that opens near both ends of the bottom surface of the chamber G. As shown in FIG. 10, the reaction device 302 can include a suction unit 342 for each ventilation unit 320. The suction part 342 is connected to a suction source (not shown) so as to be able to suck the inside of the chamber G through the ventilation part 320. Further, the reaction device 302 is formed so that the liquid in the chamber G can be moved or stirred by alternately operating the suction from the two vent portions 320.
[0092] このような反応装置 202、 302を用いることで、 チェンバー F, G内に 供給した液体を蒸発、 乾燥又は濃縮することができる。 反応装置 202を用 いた水の蒸発例として、 図 9に示すように、 スライドガラスサイズの固相基 材 4に形成した縦 8mmX横 52mmX厚み 0. 1 6mmのキヤビティの片 側全面を通気性材料 (曰東電工製、 テミッシュ N T F 2 1 22 A) を用いて 遮蔽して構成したチェンバー Fに蒸留水 65 I (チェンバー Fのほぼ全容 量に相当) を満たして、 条件 (1 ) 室温、 吸引圧力 O k P a及び条件 (2) 室温、 吸引圧力 1 0 k P aで乾燥工程を実施した。  [0092] By using such reaction devices 202 and 302, the liquid supplied into the chambers F and G can be evaporated, dried or concentrated. As an example of water evaporation using the reactor 202, as shown in Figure 9, the entire surface of one side of the 8mm x 52mm x 0.16mm thickness formed on a solid glass substrate 4 of slide glass size is a breathable material. The chamber F, which is shielded by using Temish NTF 2 122 A, manufactured by Pingtung Denko, is filled with distilled water 65 I (equivalent to almost the entire volume of the chamber F). Conditions (1) Room temperature, suction pressure O k Pa and conditions (2) A drying step was performed at room temperature and a suction pressure of 10 k Pa.
[0093] 条件 (1 ) では、 当初 1. 5 I ZHの乾燥速度であつたが、 水量がチェ ンバー Fの半分程度まで到達した以降は、 2 I ZH程度で乾燥が進行した 。 また、 条件 (2) では、 チェンバー F内の水の全量乾燥に 32分を要し、 結果として約 2 I Z分の乾燥速度が得られた。 以上の結果から、 通気部 2 20を介して単に外気と接触させることでチ Iンバー F内の水を蒸発させて チェンバー F内を乾燥できることがわかった。 また、 通気部 220を介して 積極的に吸引することで、 速やかにチェンバー F内の液体を蒸発させてチェ ンバー F内を乾燥できることがわかつた。  [0093] Under condition (1), the initial drying rate was 1.5 I ZH, but after the amount of water reached about half of chamber F, drying proceeded at about 2 I ZH. Under condition (2), it took 32 minutes to dry the entire water in chamber F, resulting in a drying rate of approximately 2 I Z. From the above results, it was found that the chamber F can be dried by evaporating the water in the chamber F by simply contacting with the outside air through the ventilation part 220. Further, it has been found that the inside of the chamber F can be dried by quickly evaporating the liquid in the chamber F by actively sucking it through the ventilation part 220.
[0094] また、 反応装置 302を用いた例として、 図 1 0に示すように、 スライド ガラスサイズの固相基材 4で形成した縦方向最大寸法 4 mm X 2 O mm X厚 み 0 . 1 6 mmのキヤビティティの両側に形成した直径 2 mmの開口に通気 性材料 (曰東電工製、 テミッシュ N T F 2 1 2 2 A) を配して形成したチェ ンバー Gに蒸留水 6 I (チェンバー Gの容量の約 7 5 %相当) を満たして 、 室温、 吸引圧力 3 0 k P a、 2 H zの周期で交互に両側の通気部 3 2 0か ら吸引するという条件で乾燥工程を実施した。 この結果、 約 0 . 1 3 I Z 分で水が蒸発し、 チェンバー G内を乾燥できることがわかった。 この結果か ら、 通気部 3 2 0がチェンバー Gの一部であっても、 液体の蒸発、 濃縮に有 用であることがわかった。 また、 チェンバー G内の液体を通気部 3 2 0から の吸引の方法によつて移動又は攪拌することで蒸発速度を増大できることが わかった。 [0094] As an example using the reactor 302, as shown in FIG. Maximum size in the vertical direction formed with glass-size solid phase substrate 4 mm X 2 O mm X thickness 0.16 mm Cavity 2 mm diameter openings formed on both sides of breathable material (manufactured by Toto Denko) The chamber G formed by placing Temisch NTF 2 1 2 2 A) is filled with distilled water 6 I (corresponding to about 75% of the capacity of the chamber G), room temperature, suction pressure 30 kPa, 2 The drying process was carried out under the condition that suction was alternately conducted from the ventilation portions 3 20 on both sides at a cycle of Hz. As a result, it was found that water was evaporated in about 0.13 IZ and the inside of chamber G could be dried. From this result, it was found that even if the ventilation part 320 was part of the chamber G, it was useful for evaporation and concentration of liquid. Further, it was found that the evaporation rate can be increased by moving or stirring the liquid in the chamber G by the method of suction from the ventilation section 320.
[0095] 以上のことから、 通気部を備えるチェンバー等の流路系 1 0は、 液体の蒸 発、 濃縮に有用であることがわかった。 通気部の形態は、 流路系 1 0の一部 に設けられるものであっても、 チェンバーなどの流路系 1 0に設けた大きな 開口を撥液性の通気性材料で遮蔽して設けられるものであってもよいことも わかった。 また、 チェンバー内を通気部を介して吸引し続けることが液体の 蒸発又は濃縮にはより好ましいこともわかった、 さらに、 反応装置 2 0 2の ようにチェンバー Fの片面のほとんどを通気部とすることで液体の蒸発又は 濃縮を速やかに達成でき、 また、 こうした通気部から吸引を継続することで よリー層蒸発又は濃縮を促進できることがわかった。 さらにまた、 反応装置 3 0 2における吸引方法によれば、 チェンバー G内の液体の混合又は攪拌も 同時に実現されていたことから、 こうした吸引方法によれば液体を混合又は 攪拌しながら蒸発又は濃縮が可能であることがわかった。  [0095] From the above, it was found that the flow path system 10 such as a chamber provided with a ventilation part is useful for the evaporation and concentration of liquid. The form of the ventilation part is provided by shielding a large opening provided in the flow path system 10 such as a chamber with a liquid repellent air permeable material even if it is provided in a part of the flow path system 10. I understood that it could be a thing. It was also found that it is more preferable for the liquid to evaporate or concentrate to keep sucking the inside of the chamber through the ventilation section. Further, almost one side of the chamber F is used as the ventilation section as in the reactor 2 0 2. As a result, it was found that the evaporation or concentration of the liquid can be achieved quickly, and the evaporation or concentration of the Lee layer can be promoted by continuing the suction from the vent. Furthermore, according to the suction method in the reactor 300, mixing or stirring of the liquid in the chamber G was realized at the same time. According to such suction method, evaporation or concentration was performed while mixing or stirring the liquid. I found it possible.
[0096] したがって、 本発明においてすでに説明した送液手段を、 液体の蒸発■濃 縮のための流路系 1 0の吸引手段として用いることで、 本発明の反応装置又 は送液装置を、 液体の蒸発又は濃縮装置として用いることができることがわ かった。 したがって、 送液手段における各種態様は、 いずれも液体の蒸発又 は濃縮のための吸引手段に適用することができる。 また、 送液制御手段は、 流路系における液体の蒸発又は濃縮を促進するための液体の吸引位置を制御 する吸引制御手段として、 液体の蒸発又は濃縮装置に適用することができる 。 さらに、 吸引圧低下検出手段も、 液体の蒸発又は濃縮のための吸引切リ替 えの手段として液体の蒸発又は濃縮装置に適用することができる。 Therefore, by using the liquid feeding means already described in the present invention as the suction means of the flow path system 10 for liquid evaporation and concentration, the reaction apparatus or liquid feeding apparatus of the present invention It has been found that it can be used as a liquid evaporation or concentration device. Therefore, all the various aspects of the liquid feeding means can be applied to the suction means for evaporating or concentrating the liquid. In addition, the liquid feed control means The present invention can be applied to a liquid evaporation or concentration apparatus as a suction control means for controlling the liquid suction position for promoting the evaporation or concentration of the liquid in the flow path system. Furthermore, the suction pressure drop detecting means can also be applied to a liquid evaporation or concentration apparatus as a suction switching means for liquid evaporation or concentration.
[0097] 本発明の液体の蒸発又は濃縮装置では、 チ Iンバーやチャネルなどの流路 系 1 0において通気部 2 0等を介して液体を蒸発させる場合、 通気部 2 0等 は、 必ずしも液体の送液方向に沿って設ける必要はない。 通気部 2 0等は、 液体を蒸発又は濃縮させたい個所あるいは通気部 2 0等によリ流路系 1 0内 を吸引して液体を移動させるのに都合のおい箇所に設けることができる。  [0097] In the liquid evaporation or concentration apparatus of the present invention, when the liquid is evaporated via the ventilation part 20 or the like in the flow path system 10 such as a chamber or channel, the ventilation part 20 or the like is not necessarily a liquid. It is not necessary to provide along the liquid feeding direction. The ventilation part 20 etc. can be provided at a place where it is desired to evaporate or concentrate the liquid or at a place convenient for moving the liquid by sucking the inside of the flow path system 10 by the ventilation part 20 etc.
[0098] 本発明の液体の蒸発又は濃縮装置では、 通気部を介した吸引の有無や吸引 方法によってチエンバー内の液体の蒸発速度を制御できる。 液体の蒸発又は 濃縮装置における吸引方法は、 反応装置 2 0 2、 3 0 2で例示したように、 通気部 2 2 0, 3 2 0の全体から吸引するのに限定されない。 すなわち、 反 応装置 2 0 2、 3 0 2で例示した一方向吸引や二方向からの交互吸引のみな らず、 一方向又は二方向以上からの連続的又は断続的な吸引であってもよい 。 さらに、 例えば、 たとえば、 第 2の実施形態で示したように、 通気部 1 2 0の一部に吸引部 4 2を配置してもよいし、 通気部 1 2 0において吸引部 4 2を移動可能に備えてもよい。 通気部 1 2 0を撥液性の通気性材料で構成す るとともに、 通気部 1 2 0に対して部分的に形成した吸引部 4 2、 移動可能 に設けた吸引部 4 2、 断続的に吸引作動する吸引部 4 2等を、 これらの吸引 部 4 2から流路系 1 0内を吸引するように作動させることで、 通気部 1 2 0 表面で液体を移動させることができるため、 液体の蒸発を効果的に促進でき る。  In the liquid evaporation or concentration apparatus of the present invention, the evaporation rate of the liquid in the chamber can be controlled by the presence / absence of suction through the vent and the suction method. The suction method in the liquid evaporation or concentration device is not limited to suction from the entire vents 2 20 and 3 20 as exemplified in the reaction devices 2 0 2 and 3 0 2. That is, it is not limited to the one-way suction or the two-way suction illustrated in the reaction devices 20 2 and 30 2, but may be continuous or intermittent suction from one or more directions. . Further, for example, as shown in the second embodiment, the suction part 42 may be disposed in a part of the ventilation part 120, or the suction part 42 is moved in the ventilation part 120. It may be possible. The ventilation part 1 20 is made of a liquid-repellent breathable material, and the suction part 4 2 partially formed with respect to the ventilation part 1 2 0, the suction part 4 2 provided movably, intermittently By operating the suction part 42, etc., which performs the suction operation so as to suck the inside of the flow path system 10 from these suction parts 42, the liquid can be moved on the surface of the ventilation part 120. Evaporation of water can be effectively promoted.
[0099] 本発明の液体の蒸発又は濃縮装置は、 少なくともチェンバーやチェネルな どの流路系 1 0は通気部 2 0等を備えることにより、 液体の蒸発又は濃縮装 置として使用できるが、 さらに、 通気部を介して流路系 1 0内を吸引する吸 弓 I部 4 2や吸引源を含む吸引手段を備えることで、 液体を移動させて液体の 蒸発を促進できるより効果的な液体の蒸発又は濃縮装置として使用できる。 [0100] また、 本発明の液体の蒸発又は濃縮装置は、 それ自体液体の蒸発や濃縮装 置として使用できるとともに、 その他の通気部 2 0等を備えたチェンバー等 を含む流路系 1 0、 送液手段としての吸引部 4 2や吸引源を組み合わせるこ とで、 液体の蒸発及び濃縮部として備える反応装置を構成することができる 。 なお、 吸引手段は送液手段と兼用することができるため、 吸引手段と送液 手段とを必ずしも別個のものとして備える必要はない。 [0099] The liquid evaporation or concentration apparatus of the present invention can be used as a liquid evaporation or concentration apparatus by providing at least the flow path system 10 such as a chamber or a channel with a vent 20 or the like. By providing suction means including suction part I 2 and suction source that sucks the inside of the flow path system 10 through the ventilation part, it is possible to move the liquid and promote liquid evaporation more effectively. Or it can be used as a concentrating device. [0100] Further, the liquid evaporation or concentration apparatus of the present invention can be used as a liquid evaporation or concentration apparatus per se, and a flow path system 10 including a chamber or the like provided with other vents 20 or the like. By combining a suction part 42 as a liquid feeding means and a suction source, a reaction apparatus provided as a liquid evaporation and concentration part can be configured. Since the suction means can be used also as the liquid feeding means, the suction means and the liquid feeding means are not necessarily provided separately.
[0101] 以上のことから、 本発明によれば、 以下の手段も提供される。 なお、 以下 に列挙される液体の蒸発■濃縮装置並びに反応装置においては、 前記流路系 を平板状体上に備えていてもよいし、 前記通気性材料は疎水性材料としても よい。 また、 これらの濃縮装置は、 前記液体を媒体とする反応装置の一部で あってもよく、 前記液体を媒体とする反応は、 タンパク質、 ペプチド及び核 酸のいずれかを含む反応とすることができる。  [0101] From the above, according to the present invention, the following means are also provided. In the liquid evaporation / concentration device and the reaction device listed below, the flow path system may be provided on a flat plate body, and the breathable material may be a hydrophobic material. Further, these concentrating devices may be a part of a reaction apparatus using the liquid as a medium, and the reaction using the liquid as a medium may be a reaction containing any one of protein, peptide and nucleic acid. it can.
[0102] ( 1 ) 液体の蒸発■濃縮装置であって、  [0102] (1) Evaporation of liquid
前記液体の流路系と、  The liquid channel system;
前記液体の流路系内に露出され前記液体に対する撥液性を有する通気性材 料を介して前記流路系内外のガスを流通可能な 1又は 2以上の通気部と、  One or two or more ventilation portions that are exposed in the liquid flow path system and are capable of circulating gas inside and outside the flow path system through a breathable material having liquid repellency to the liquid;
1又は 2以上の前記通気部の一部から少なくとも前記流路系内のガスを吸 引して流路系内に差圧を形成する吸引手段と、  A suction means for sucking at least a gas in the flow path system from a part of the one or more vent portions to form a differential pressure in the flow path system;
を備える、 装置。  Comprising an apparatus.
( 2 ) 前記吸引手段は、 1又は 2以上の前記通気部の一部において選択的に 前記流路系からガスを吸引可能に吸引源に接続される吸引部を有する、 ( 1 (2) The suction means includes a suction part connected to a suction source so that gas can be selectively sucked from the flow path system in a part of one or more of the ventilation parts.
) に記載の装置。 The device described in).
( 3 ) 前記吸引手段は、 前期吸引部を前記流路系に対して相対移動可能に有 する、 (2 ) に記載の装置。  (3) The apparatus according to (2), wherein the suction means has a first-stage suction portion that can move relative to the flow path system.
( 4 ) 前記吸引手段は、 1又は 2以上の前記通気部の一部において選択的に ガスの流通を遮断するシール部を備える、 (1 ) 〜 (3 ) のいずれかに記載 の装置。  (4) The device according to any one of (1) to (3), wherein the suction means includes a seal portion that selectively blocks a gas flow in a part of the one or more ventilation portions.
( 5 ) 前記吸引手段は、 前記シール部を前記流路系に対して相対移動可能に 有する、 (4) に記載の装置。 (5) The suction means can move the seal portion relative to the flow path system. The device according to (4).
(6) 前記吸引手段は、 1又は 2以上の前記通気部の少なくとも一部におい て選択的に前記流路系からガスを吸引可能とする吸引部と、 前記流路系の管 壁に配置される 1又は 2以上の前記通気部の少なくとも一部において選択的 にガスの流通を遮断するシール部とを備える 1又は 2以上の吸引ュニッ卜を 有する、 (1 ) 〜 (5) のいずれかに記載の反応装置。  (6) The suction means is disposed on a suction part capable of selectively sucking gas from the flow path system in at least a part of the one or more ventilation parts, and a pipe wall of the flow path system. (1) to (5) having at least one suction unit including a seal portion that selectively blocks gas flow in at least a part of the one or more vent portions. The reactor described.
(7) 前記吸引ユニットを前記流路系に沿って相対移動可能に有する、 (6 ) に記載の反応装置。  (7) The reaction device according to (6), wherein the suction unit is movable relative to the flow path system.
(8) 前記流路系内のガスを吸引する部位を選択することで前記液体の吸引 位置を制御する吸引制御手段を備える、 (1 ) 〜 (7) のいずれかに記載の 装置。  (8) The apparatus according to any one of (1) to (7), further including suction control means for controlling a suction position of the liquid by selecting a site for sucking a gas in the flow path system.
(9) 前記吸引手段は、 1又は 2以上の前記通気部の一部において選択的に 前記流路系からガスを吸引可能に吸引源に接続される吸引部を前記流路系に 対して相対移動可能に備え、 前記吸引制御手段は、 前記吸引部の位置制御を 行うことで前記液体の吸引位置を制御する手段である、 (8) に記載の装置  (9) The suction means may be configured so that a suction part connected to a suction source so as to be able to suck gas from the flow path system selectively in a part of one or more of the ventilation sections is relative to the flow path system. The apparatus according to (8), wherein the suction control means is a means for controlling the suction position of the liquid by performing position control of the suction part.
(1 0) 前記流路内のガスが吸引された 1又は 2以上の前記通気部における 吸引圧の低下を検出可能な吸引圧低下検出手段を備え、 前記吸引制御手段は 、 吸引圧低下検出手段により前記通気部の遮断を検出したとき、 前記吸引手 段による前記通気部からの前記流路系内のガス吸引を停止するよう制御する 手段である、 (8) 又は (9) に記載の装置。 (10) A suction pressure reduction detecting unit capable of detecting a decrease in suction pressure in one or more of the vents where the gas in the flow path has been sucked, wherein the suction control unit includes a suction pressure reduction detecting unit The apparatus according to (8) or (9), wherein when the blocking of the ventilation portion is detected by the control unit, the suction unit controls the gas suction in the flow path system from the ventilation portion to stop. .
(1 1 ) 前記吸引制御手段は、 前記吸引圧低下検出手段により前記通気部の 遮断を検出したとき、 前記装置における他の通気部から前記流路系内のガス を吸引開始するよう制御する手段である、 (1 0) に記載の装置。  (1 1) The suction control means is a means for controlling to start sucking the gas in the flow path system from the other ventilation portion in the device when the suction pressure drop detection means detects the blocking of the ventilation portion. The device according to (1 0).
(1 2) 1又は 2以上の前記通気部は、 前記流路系の一側に配置されている 、 (1 ) 〜 (1 1 ) のいずれかに記載の装置。  (1 2) The device according to any one of (1) to (1 1), wherein one or more of the ventilation portions are arranged on one side of the flow path system.
(1 3) 1又は 2以上の前記通気部は、 前記流路系における前記液体の送液 方向に沿って複数個独立して備えられている、 (1 ) 〜 (1 2) のいずれか に記載の装置。 (1 3) Any one of (1) to (1 2), wherein a plurality of the one or more ventilation portions are independently provided along a liquid feeding direction of the liquid in the flow path system. The device described in 1.
(1 4) 1又は 2以上の前記通気部は、 前記流路系を構成する管路の管壁に 開口する開口部に配置された通気性材料により形成されている、 (1 ) 〜 ( 1 3) のいずれかに記載の装置。  (1 4) One or more of the ventilation portions are formed of a breathable material disposed in an opening portion that opens to a pipe wall of a pipe line that constitutes the flow path system. (1) to (1 The device according to any one of 3).
(1 5) 1又は 2以上の前記通気部は、 前記流路系の所定の範囲にわたって 配置された前記通気性材料により形成されている、 (1 ) 〜 (1 4) のいず れかに記載の装置。  (15) One or more of the ventilation portions are formed of the breathable material arranged over a predetermined range of the flow path system, and any one of (1) to (14) The device described.
(1 6) 液体の蒸発■濃縮装置であって、  (1 6) Evaporation of liquid
前記液体の流路系と、  The liquid channel system;
前記液体の流路系内に露出され前記液体に対する撥液性を有する通気性材 料を介して前記流路系内外のガスを流通可能な 1又は 2以上の通気部と、 を備える、 装置。  1 or 2 or more ventilation | gas_flowing parts which can distribute | circulate the gas inside and outside the said flow-path system through the breathable material which is exposed in the flow-path system of the said liquid and has the liquid repellency with respect to the said liquid.
(1 7) 液体を媒体とする反応のための反応装置であって、  (1 7) A reaction apparatus for a reaction using a liquid as a medium,
(1 ) 〜 (1 6) のいずれかに記載の液体の蒸発■濃縮装置を備える、 反 応装置。  (1) A reaction device comprising the liquid evaporation / concentration device according to any one of (16).

Claims

請求の範囲 The scope of the claims
[1 ] 液体を媒体とする反応のための反応装置であって、  [1] A reaction apparatus for reaction using a liquid as a medium,
前記液体の流路系と、  The liquid channel system;
前記液体の流路系内に露出され前記液体に対する撥液性を有する通気性材 料を介して前記流路系内外のガスを流通可能な 1又は 2以上の通気部と、  One or two or more ventilation portions that are exposed in the liquid flow path system and are capable of circulating gas inside and outside the flow path system through a breathable material having liquid repellency to the liquid;
1又は 2以上の前記通気部の一部から少なくとも前記流路系内のガスを吸 引して流路系内に差圧を形成して前記液体を送液する送液手段と、 を備える、 反応装置。  Liquid feeding means for sucking at least a gas in the flow path system from a part of one or more of the ventilation portions to form a differential pressure in the flow path system and feeding the liquid. Reactor.
[2] 前記送液手段は、 1又は 2以上の前記通気部の一部において選択的に前記 流路系からガスを吸引可能に吸引源に接続される吸引部を有する、 請求項 1 に記載の反応装置。  [2] The liquid feeding means may include a suction part connected to a suction source so that gas can be selectively sucked from the flow path system in a part of the one or more ventilation parts. Reactor.
[3] 前記送液手段は、 前記吸引部を前記流路系に対して相対移動可能に有する [3] The liquid feeding means has the suction part so as to be movable relative to the flow path system.
、 請求項 2に記載の反応装置。 The reaction apparatus according to claim 2.
[4] 前記送液手段は、 1又は 2以上の前記通気部の一部において選択的にガス の流通を遮断するシール部を備える、 請求項 1〜3のいずれかに記載の反応 装置。 [4] The reaction device according to any one of [1] to [3], wherein the liquid feeding means includes a seal portion that selectively blocks a gas flow in a part of the one or more vent portions.
[5] 前記送液手段は、 前記シール部を前記流路系に対して相対移動可能に有す る、 請求項 4に記載の反応装置。  [5] The reaction device according to [4], wherein the liquid feeding means has the seal portion movable relative to the flow path system.
[6] 前記送液手段は、 1又は 2以上の前記通気部の少なくとも一部において選 択的に前記流路系からガスを吸引可能とする吸引部と、 前記流路系の管壁に 配置される 1又は 2以上の前記通気部の少なくとも一部において選択的にガ スの流通を遮断するシール部とを備える 1又は 2以上の送液ュニッ卜を有す る、 請求項 1〜 5のいずれかに記載の反応装置。  [6] The liquid feeding means is disposed on a suction portion that can selectively suck a gas from the flow path system in at least a part of the one or more ventilation sections, and a pipe wall of the flow path system. The at least one of the one or two or more vent portions has a seal portion that selectively blocks gas flow, and has one or more liquid feeding units. The reaction apparatus in any one.
[7] 前記送液ュニッ卜を前記流路系に沿って相対移動可能に有する、 請求項 6 に記載の反応装置。  [7] The reaction apparatus according to [6], wherein the liquid supply unit is movable relative to the flow path system.
[8] 前記流路系内のガスを吸引する部位を選択することで前記液体の到達位置 を制御する送液制御手段を備える、 請求項 1〜7のいずれかに記載の反応装 置。 前記通気部は、 前記流路系を送液される前記液体が到達部位に到達すると 当該液体により速やかにガスの流通が遮断されるように配置されている、 請 求項 8に記載の反応装置。 [8] The reaction device according to any one of [1] to [7], further comprising a liquid feeding control unit that controls a position where the liquid reaches by selecting a site for sucking a gas in the flow path system. 9. The reaction device according to claim 8, wherein the aeration part is arranged so that when the liquid fed through the flow path system reaches an arrival site, the flow of gas is quickly blocked by the liquid. .
前記送液手段は、 1又は 2以上の前記通気部の一部において選択的に前記 流路系からガスを吸引可能に吸引源に接続される吸引部を前記流路系に対し て相対移動可能に備え、 前記送液制御手段は、 前記吸引部の位置制御を行う ことで前記液体の到達位置を制御する手段である、 請求項 8又は 9に記載の 反応装置。  The liquid feeding means can move relative to the flow path system a suction section connected to a suction source so that gas can selectively be sucked from the flow path system in a part of one or more of the ventilation sections. The reaction apparatus according to claim 8 or 9, wherein the liquid feeding control means is means for controlling the position where the liquid reaches by controlling the position of the suction part.
前記流路内のガスが吸引された 1又は 2以上の前記通気部における吸引圧 の低下を検出可能な吸引圧低下検出手段を備え、  A suction pressure decrease detecting means capable of detecting a decrease in suction pressure in one or more of the vents where the gas in the flow path has been sucked;
前記送液制御手段は、 吸引圧低下検出手段によリ前記通気部の遮断を検出 したとき、 前記送液手段による前記通気部からの前記流路系内のガス吸引を 停止するよう制御する手段である、 請求項 8〜 1 0のいずれかに記載の反応 装置。  The liquid feeding control means is a means for controlling to stop the gas suction in the flow path system from the vent by the liquid feeding means when the suction pressure drop detecting means detects the blocking of the vent. The reaction apparatus according to any one of claims 8 to 10, wherein
前記送液制御手段は、 前記吸引圧低下検出手段によリ前記通気部の遮断を 検出したとき、 前記反応装置における反応の後段側にある前記通気部から前 記流路系内のガスを吸引開始するよう制御する手段である、 請求項 1 1に記 載の反応装置。  The liquid feeding control means sucks the gas in the flow path system from the vent part on the rear stage side of the reaction in the reaction device when the suction pressure drop detecting means detects the blocking of the vent part. The reactor according to claim 11, which is means for controlling to start.
1又は 2以上の前記通気部は、 前記流路系の一側に配置されている、 請求 項 1〜 1 2のいずれかに記載の反応装置。  The reaction apparatus according to any one of claims 1 to 12, wherein one or more of the ventilation portions are arranged on one side of the flow path system.
1又は 2以上の前記通気部は、 前記流路系における前記液体の送液方向に 沿って複数個独立して備えられている、 請求項 1〜 1 3のいずれかに記載の 反応装置。  The reaction apparatus according to any one of claims 1 to 13, wherein one or two or more ventilation portions are independently provided along a liquid feeding direction of the liquid in the flow path system.
1又は 2以上の前記通気部は、 前記流路系を構成する管路の管壁に開口す る開口部に配置された通気性材料により形成されている、 請求項 1〜 1 4の いずれかに記載の反応装置。  The 1 or 2 or more said ventilation parts are formed of the air permeable material arrange | positioned at the opening part opened to the pipe wall of the pipe line which comprises the said flow-path system, The any one of Claims 1-4 A reactor according to 1.
1又は 2以上の前記通気部は、 前記流路系の所定の送液範囲にわたって配 置された前記通気性材料により形成されている、 請求項 1〜 1 5のいずれか に記載の反応装置。 1 or 2 or more of said ventilation parts are formed of the said air-permeable material arrange | positioned over the predetermined liquid feeding range of the said flow-path system, The any one of Claims 1-15 A reactor according to 1.
[17] 前記流路系を平板状体上に備える、 請求項 1 〜 1 6のいずれかに記載の反 応装置。  [17] The reaction device according to any one of [1] to [16], wherein the flow path system is provided on a flat body.
[18] 前記通気性材料は疎水性材料である、 請求項 1 〜 1 7のいずれかに記載の 反応装置。  [18] The reaction device according to any one of [1] to [17], wherein the breathable material is a hydrophobic material.
[19] 前記液体を媒体とする反応は、 タンパク質、 ペプチド及び核酸のいずれか を含む反応である、 請求項 1 〜 1 8のいずれかに記載の反応装置。  [19] The reaction device according to any one of [1] to [18], wherein the reaction using the liquid as a medium is a reaction containing any one of a protein, a peptide, and a nucleic acid.
[20] 請求項 1 〜 1 9のいずれかに記載の液体を媒体とする反応の反応装置の反 応モジュールであって、  [20] A reaction module of a reaction apparatus for a reaction using a liquid as a medium according to any one of claims 1 to 19,
前記液体の流路系と、  The liquid channel system;
前記液体の流路系内に露出され前記液体に対する撥液性を有する通気性材 料を介して前記流路系内外のガスを流通可能な 1又は 2以上の通気部と、 を備える、 反応モジュール。  1 or 2 or more ventilation parts which are able to circulate the gas inside and outside the flow path system through a breathable material exposed to the liquid flow path system and having liquid repellency with respect to the liquid. .
[21 ] 前記開口部は前記凹状部に沿って連続に又は不連続に形成され、 前記通気 性材料は、 1又は 2以上の膜状体である、 請求項 2 0に記載の反応モジユー ル。 [21] The reaction module according to claim 20, wherein the opening is formed continuously or discontinuously along the concave portion, and the breathable material is one or more film-like bodies.
[22] 液体を媒体とする反応のための反応装置の送液装置であって、  [22] A liquid feeder for a reaction apparatus for a reaction using a liquid as a medium,
前記液体の流路系と、 前記液体の流路系内に露出され前記液体に対する撥 液性を有する通気性材料を介して前記流路系内外のガスを流通可能な 1又は 2以上の通気部と、 を備える反応モジュールを交換可能に装着する反応モジ ユール装着部と、  1 or 2 or more ventilation parts which can distribute | circulate the gas inside and outside the said flow-path system through the said liquid flow-path system and the breathable material which is exposed in the said liquid flow-path system and has the liquid repellency with respect to the said liquid And a reaction module mounting part for mounting a reaction module comprising:
1又は 2以上の前記通気部の一部から少なくとも前記流路系内のガスを吸 引して流路系内に差圧を形成して前記液体を送液する送液手段と、 前記流路 系内のガスを吸引する前記通気部を選択することで前記液体の到達位置を制 御する送液制御手段を備える、 送液装置。  A liquid feeding means for sucking at least a gas in the flow path system from a part of the one or two or more ventilation portions to form a differential pressure in the flow path system and feeding the liquid; and A liquid-feeding device comprising liquid-feeding control means for controlling the arrival position of the liquid by selecting the ventilation part that sucks the gas in the system.
[23] 前記通気部は、 前記流路系を送液される前記液体が到達部位に到達すると 当該液体により速やかにガスの流通が遮断されるように配置されている、 請 求項 2 2に記載の送液装置。 [23] In the claim 22, wherein the ventilation portion is arranged so that the flow of the gas is quickly blocked by the liquid when the liquid sent through the flow path system reaches the arrival site. The liquid feeding device described.
[24] 前記送液手段は、 1又は 2以上の前記通気部の一部において選択的に前記 流路系からガスを吸引可能に吸引源に接続される吸引部を前記流路系に対し て相対移動可能に備え、 前記送液制御手段は、 前記吸引部の位置制御を行う ことで前記液体の到達位置を制御する手段である、 請求項 2 2又は 2 3に記 載の送液装置。 [24] The liquid feeding means may include a suction unit connected to a suction source for selectively sucking gas from the flow channel system in a part of the one or two or more ventilation units with respect to the flow channel system. The liquid feeding device according to claim 22 or 23, wherein the liquid feeding control means is a means for controlling the position where the liquid reaches by controlling the position of the suction part.
[25] 前記流路内のガスが吸引された 1又は 2以上の前記通気部における吸引圧 の低下を検出可能な吸引圧低下検出手段を備え、  [25] A suction pressure decrease detection means capable of detecting a decrease in suction pressure in one or more of the vents where the gas in the flow path is sucked,
前記送液制御手段は、 吸引圧低下検出手段によリ前記通気部の遮断を検出 したとき、 前記送液手段による前記通気部からの前記流路系内のガス吸引を 停止するよう制御する手段である、 請求項 2 2〜 2 4のいずれかに記載の送 液装置。  The liquid feeding control means is a means for controlling to stop the gas suction in the flow path system from the vent by the liquid feeding means when the suction pressure drop detecting means detects the blocking of the vent. The liquid delivery device according to any one of claims 2 to 24.
[26] 前記送液制御手段は、 前記吸引圧低下検出手段により前記通気部の遮断を 検出したとき、 前記反応装置における反応の次段側にある前記通気部から前 記流路系内のガスを吸引開始するよう制御する手段である、 請求項 2 5に記 載の送液装置。  [26] The liquid feeding control means detects gas in the flow path system from the ventilation section on the next stage side of the reaction in the reaction device when the suction pressure drop detection means detects the blocking of the ventilation section. The liquid feeding device according to claim 25, which is means for controlling to start suction.
[27] 液体を媒体とする反応のための請求項 1〜 1 9のいずれかに記載の反応装 置用反応モジュールの製造方法であって、  [27] The method for producing a reaction module for a reaction device according to any one of claims 1 to 19 for reaction using a liquid as a medium,
前記液体の流路系を構成する凹状部と該凹状部と外部とを連通する開口部 とを備える平板状体を準備する工程と、  Preparing a flat body including a concave portion constituting the liquid flow path system and an opening communicating the concave portion and the outside;
前記液体に対して撥液性を有する通気性材料を、 前記平板状体の前記凹部 の前記開口部を閉鎖するように付与する工程と、  Applying a breathable material having liquid repellency to the liquid so as to close the opening of the concave portion of the flat plate-like body;
を備える、 製造方法。  A manufacturing method.
[28] 液体を媒体とする反応による分析方法であって、 [28] An analysis method by reaction using a liquid as a medium,
請求項 1〜 1 9のいずれかに記載の反応装置を用いて分析のための反応を 実施する工程を備える、 分析方法。  An analysis method comprising a step of performing a reaction for analysis using the reaction apparatus according to claim 1.
[29] 前記送液手段を用いて、 前記流路系内のガスを吸引することにより、 前記 流路系内の液体を蒸発又は濃縮する、 請求項 1〜 1 9のいずれかに記載の反 応装置。 [30] 液体を蒸発又は濃縮するための装置であって、 [29] The reaction according to any one of claims 1 to 19, wherein the liquid in the flow path system is evaporated or concentrated by sucking the gas in the flow path system using the liquid feeding means. Applicable equipment. [30] A device for evaporating or concentrating a liquid,
前記液体の流路系と、  The liquid channel system;
前記液体の流路系内に露出され前記液体に対する撥液性を有する通気性材 料を介して前記流路系内外のガスを流通可能な 1又は 2以上の通気部と、  One or two or more ventilation portions that are exposed in the liquid flow path system and are capable of circulating gas inside and outside the flow path system through a breathable material having liquid repellency to the liquid;
1又は 2以上の前記通気部の一部から少なくとも前記流路系内のガスを吸 引して流路系内に差圧を形成する吸引手段と、  A suction means for sucking at least a gas in the flow path system from a part of the one or more vent portions to form a differential pressure in the flow path system;
を備える、 装置。  Comprising an apparatus.
PCT/JP2007/000253 2006-04-18 2007-03-19 Reaction apparatus, reaction module therefor and liquid feeder for the reaction apparatus WO2007122785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008511948A JPWO2007122785A1 (en) 2006-04-18 2007-03-19 Reaction apparatus, reaction module for reaction apparatus, and liquid feeding apparatus for reaction apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US79261806P 2006-04-18 2006-04-18
US60/792,618 2006-04-18
JP2006269217 2006-09-29
JP2006-269217 2006-09-29

Publications (1)

Publication Number Publication Date
WO2007122785A1 true WO2007122785A1 (en) 2007-11-01

Family

ID=38624707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000253 WO2007122785A1 (en) 2006-04-18 2007-03-19 Reaction apparatus, reaction module therefor and liquid feeder for the reaction apparatus

Country Status (1)

Country Link
WO (1) WO2007122785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004541A (en) * 2013-06-19 2015-01-08 日本電信電話株式会社 Liquid feeding device, liquid feeding chip and liquid feeding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110147A (en) * 1997-06-24 1999-01-19 Mitsui Eng & Shipbuild Co Ltd Distilling apparatus
WO2001013127A1 (en) * 1999-08-11 2001-02-22 Asahi Kasei Kabushiki Kaisha Analyzing cartridge and liquid feed control device
JP2003500674A (en) * 1999-05-28 2003-01-07 シーフィード Cartridge for controlling chemical reactions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110147A (en) * 1997-06-24 1999-01-19 Mitsui Eng & Shipbuild Co Ltd Distilling apparatus
JP2003500674A (en) * 1999-05-28 2003-01-07 シーフィード Cartridge for controlling chemical reactions
WO2001013127A1 (en) * 1999-08-11 2001-02-22 Asahi Kasei Kabushiki Kaisha Analyzing cartridge and liquid feed control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004541A (en) * 2013-06-19 2015-01-08 日本電信電話株式会社 Liquid feeding device, liquid feeding chip and liquid feeding method

Similar Documents

Publication Publication Date Title
JP6931434B2 (en) Perfusion manifold assembly
KR102376573B1 (en) Centrifugal microfluidic chip control
Xu et al. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS)
US6923907B2 (en) Separation column devices and fabrication methods
JP4888394B2 (en) Microreactor and liquid feeding method using the same
US20110130310A1 (en) Microbioreactor and microtiter plate comprising a plurality of microbioreactors
WO2006083598A2 (en) Method and apparatus for pumping liquids using directional growth and elimination of bubbles
JP6501866B2 (en) Fluid circulation system incorporating fluid leveling device
JP2007136379A (en) Micro-reactor and its manufacturing method
CN113234583A (en) Cell reaction module integrated with gas circuit control and method for carrying out cell reaction by adopting cell reaction module
WO2007122785A1 (en) Reaction apparatus, reaction module therefor and liquid feeder for the reaction apparatus
WO2007122819A1 (en) Device for reactions with liquid media
JPWO2007122785A1 (en) Reaction apparatus, reaction module for reaction apparatus, and liquid feeding apparatus for reaction apparatus
US20090311778A1 (en) Supply system for cell culture module
JP2009250961A (en) Micro inspection chip and liquid-feeding system
US20210380920A1 (en) Microfluidic gas exchange devices and methods for making same
JP7192859B2 (en) Fluidic device, valve device and detection device
WO2022210476A1 (en) Device and method for producing micro-droplets
Levine et al. Combining Additive and Subtractive Techniques in the Design and Fabrication of Microfluidic Devices
Skelley et al. An active, integrated bubble trap and debubbler for microfluidic applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07736910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008511948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07736910

Country of ref document: EP

Kind code of ref document: A1