JPH11100628A - Heat exchanger made of aluminum alloy - Google Patents

Heat exchanger made of aluminum alloy

Info

Publication number
JPH11100628A
JPH11100628A JP25993697A JP25993697A JPH11100628A JP H11100628 A JPH11100628 A JP H11100628A JP 25993697 A JP25993697 A JP 25993697A JP 25993697 A JP25993697 A JP 25993697A JP H11100628 A JPH11100628 A JP H11100628A
Authority
JP
Japan
Prior art keywords
sacrificial anode
anode material
tubes
heat exchanger
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25993697A
Other languages
Japanese (ja)
Inventor
Tomonori Yamada
知礼 山田
Takenobu Dokou
武宜 土公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP25993697A priority Critical patent/JPH11100628A/en
Publication of JPH11100628A publication Critical patent/JPH11100628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger made of an aluminum alloy which is suitable as a heat exchanger for automobile, etc., and has an excellent fatigue characteristic. SOLUTION: The tubes 2 of the heat exchanger consisting of the plural tubes 2 constituting refrigerant passages, fins disposed between the tubes 2 and a header for feeding and discharging the refrigerant for the tubes 2 as main components consist of aluminum alloy brazing sheets of a three-layered structure formed by joining a sacrificial anode material 7, a core material 8 and a brazing filler metal 9 in this order. The recrystal grain size (d) in the thickness direction of the sacrificial anode material 7 at the cross section of the tubes 2 is below the thickness (t) of the sacrificial anode material. The grain fracture of the sacrificial anode material 7 which is the start point of fatigue fracture is dispersed into the many grain boundaries and the progression thereof is suppressed and the fatigue life is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用熱交換器
などに使用される疲労特性に優れたアルミニウム合金製
熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger made of an aluminum alloy having excellent fatigue characteristics and used for a heat exchanger for an automobile.

【0002】[0002]

【従来の技術】例えば、自動車用熱交換器1は、図1に
示すように、冷媒通路となる複数のチューブ2と、複数
のチューブ2間に配され放熱に寄与するフィン3と、複
数のチューブ2の冷媒の給排管となるヘッダー4とを組
付け、ろう付けして形成したコア5に、樹脂タンク6を
取付けたものである。前記チューブ2およびヘッダー4
は、通常、ブレージングシートを電縫加工などにより偏
平な筒状に形成したものであり、これらチューブ2およ
びヘッダー4は、フィン3と組付けられ、ろう付けされ
てコア5に形成される。このろう付け時の加熱でチュー
ブ2、ヘッダー4、フィン3などは再結晶組織となる。
前記ブレージングシートは、犠牲陽極材、芯材、ろう材
をこの順に接合した3層構造の板材で、前記犠牲陽極材
にはAl−Zn系合金(JIS−7072合金など)、
芯材にはAl−Mn系合金(JIS−3003合金な
ど)、ろう材にはAl−Si系合金(JIS−4045
合金など)が主に使用されている。
2. Description of the Related Art For example, as shown in FIG. 1, an automobile heat exchanger 1 includes a plurality of tubes 2 serving as refrigerant passages, fins 3 arranged between the plurality of tubes 2 and contributing to heat radiation, and a plurality of tubes. A resin tank 6 is attached to a core 5 formed by assembling a header 4 serving as a refrigerant supply / discharge pipe of the tube 2 and brazing. The tube 2 and the header 4
In general, a brazing sheet is formed into a flat cylindrical shape by an electric sewing process or the like. The tube 2 and the header 4 are assembled with the fins 3 and brazed to form the core 5. By this heating at the time of brazing, the tube 2, the header 4, the fins 3 and the like have a recrystallized structure.
The brazing sheet is a plate material having a three-layer structure in which a sacrificial anode material, a core material, and a brazing material are joined in this order, and the sacrificial anode material includes an Al-Zn-based alloy (such as JIS-7072 alloy),
The core material is an Al-Mn alloy (such as JIS-3003 alloy), and the brazing material is an Al-Si alloy (JIS-4045).
Alloys) are mainly used.

【0003】近年、自動車の軽量化やコストダウンを目
的として材料の薄肉化と、それに伴う材料強度の向上が
求められ、チューブやヘッダーでは、その構成材料であ
るブレージングシートの犠牲陽極材にAl-1.5〜3wt%M
g-1〜5wt%Zn合金を用い、ろう付け時に犠牲陽極材中
のMgと芯材中に含まれる0.5wt%程度のSiとを拡
散反応させMg2 Siを析出させて強化する方法などが
採られている。ところで、自動車に搭載されるエンジン
の冷却は、熱交換器で冷却された冷媒をエンジン部分に
ポンプにより循環させて行われ、この際チューブやヘッ
ダー内には通常0.09MPa,最大で0.18MPa
程度の内圧が掛かり、この内圧が繰返し掛かると最終的
にチューブやヘッダーが疲労破壊するという問題があっ
た。
In recent years, there has been a demand for a thinner material and a corresponding increase in material strength in order to reduce the weight and cost of automobiles. For tubes and headers, Al-Al is used as a sacrificial anode material of a brazing sheet, which is a constituent material thereof. 1.5-3wt% M
with g-1-5 wt% Zn alloy, a method of strengthening the Si of 0.5 wt% about contained in Mg and the core material of the sacrificial anode material in during brazing to precipitate Mg 2 Si by diffusion reaction such Is adopted. By the way, the cooling of the engine mounted on the automobile is performed by circulating the refrigerant cooled by the heat exchanger by the pump through the engine portion. At this time, the inside of the tube or the header is usually 0.09 MPa, and the maximum is 0.18 MPa.
There is a problem that the tube and the header will eventually be fatigue-ruptured when the internal pressure is applied to the extent and the internal pressure is repeatedly applied.

【0004】[0004]

【発明が解決しようとする課題】このため、本発明者等
は、チューブやヘッダーの疲労特性を改善する方法につ
いて研究し、その中で、芯材(3000系合金)より高
強度で疲労破壊し難い筈の犠牲陽極材(Al−Mg−Z
n系合金など)が前記疲労破壊の起点となっているこ
と、その原因は、図3に示すように、チューブ2または
ヘッダー4を形成する犠牲陽極材7の再結晶粒径が大き
いためであることを突き止め、さらに研究を進めて本発
明を完成させるに至った。図3で8は芯材、9はろう材
である。本発明は、自動車用熱交換器などに使用される
アルミニウム合金製チューブまたはヘッダーの疲労特性
を改善し、長期にわたり安全に使用できるアルミニウム
合金製熱交換器の提供を目的とする。
For this reason, the present inventors have studied methods for improving the fatigue characteristics of tubes and headers. Sacrificial anode material (Al-Mg-Z)
The origin of the fatigue fracture is caused by the fact that the sacrificial anode material 7 forming the tube 2 or the header 4 has a large recrystallized grain size, as shown in FIG. The inventors of the present invention have conducted further research and have completed the present invention. In FIG. 3, 8 is a core material and 9 is a brazing material. An object of the present invention is to provide an aluminum alloy heat exchanger that improves the fatigue characteristics of aluminum alloy tubes or headers used in automobile heat exchangers and the like and that can be used safely for a long time.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
冷媒通路となる複数のチューブと、前記チューブ間に配
されるフィンと、前記複数のチューブの給排管となるヘ
ッダーとを主要部とする熱交換器において、前記チュー
ブが、犠牲陽極材、芯材、ろう材をこの順に接合した3
層構造のアルミニウム合金ブレージングシートからな
り、前記チューブの横断面における前記犠牲陽極材の厚
さ方向の再結晶粒径が前記犠牲陽極材の厚さ未満である
ことを特徴とする疲労特性に優れたアルミニウム合金製
熱交換器である。
According to the first aspect of the present invention,
In a heat exchanger mainly including a plurality of tubes serving as refrigerant passages, fins arranged between the tubes, and a header serving as a supply / discharge tube for the plurality of tubes, the tubes may include a sacrificial anode material and a core. 3 where the brazing material and brazing material were joined in this order
It is made of an aluminum alloy brazing sheet having a layer structure, and has excellent fatigue characteristics characterized in that the recrystallized grain size in the thickness direction of the sacrificial anode material in the cross section of the tube is less than the thickness of the sacrificial anode material. It is an aluminum alloy heat exchanger.

【0006】請求項2記載の発明は、冷媒通路となる複
数のチューブと、前記チューブ間に配されるフィンと、
前記複数のチューブの給排管となるヘッダーとを主要部
とする熱交換器において、前記ヘッダーが、犠牲陽極
材、芯材、ろう材をこの順に接合した3層構造のアルミ
ニウム合金ブレージングシートからなり、前記ヘッダー
の横断面における前記犠牲陽極材の厚さ方向の再結晶粒
径が前記犠牲陽極材の厚さ未満であることを特徴とする
疲労特性に優れたアルミニウム合金製熱交換器。であ
る。
According to a second aspect of the present invention, a plurality of tubes serving as refrigerant passages and fins arranged between the tubes are provided.
In a heat exchanger mainly including a header serving as a supply / discharge pipe for the plurality of tubes, the header is formed of a three-layer aluminum alloy brazing sheet in which a sacrificial anode material, a core material, and a brazing material are joined in this order. A heat exchanger made of an aluminum alloy having excellent fatigue characteristics, wherein a recrystallized grain size in a thickness direction of the sacrificial anode material in a cross section of the header is smaller than a thickness of the sacrificial anode material. It is.

【0007】[0007]

【発明の実施の形態】請求項1の発明は、自動車などの
熱交換器を構成するチューブ2が、図2に示すように、
犠牲陽極材7、芯材8、ろう材9をこの順に接合した3
層構造のアルミニウム合金ブレージングシート10を、犠
牲陽極材7を内側にして筒状に形成したものであり、チ
ューブ2の犠牲陽極材7の横断面における厚さ方向の再
結晶粒径が犠牲陽極材7の厚さt未満のアルミニウム合
金製熱交換器である。本発明では、犠牲陽極材7の再結
晶粒径は、チューブ2の横断面における犠牲陽極材7の
再結晶粒の厚さ方向の長さdの、n=20以上の平均値
とする。
DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, as shown in FIG.
The sacrificial anode material 7, the core material 8, and the brazing material 9 were joined in this order 3
The aluminum alloy brazing sheet 10 having a layer structure is formed in a cylindrical shape with the sacrificial anode material 7 inside, and the recrystallized grain size in the thickness direction in the cross section of the sacrificial anode material 7 of the tube 2 is 7 is an aluminum alloy heat exchanger having a thickness of less than t. In the present invention, the recrystallized grain size of the sacrificial anode material 7 is an average value of n = 20 or more of the length d in the thickness direction of the recrystallized grains of the sacrificial anode material 7 in the cross section of the tube 2.

【0008】請求項1の発明において、チューブを形成
するブレージングシートの犠牲陽極材の再結晶粒径を、
犠牲陽極材の厚さ未満にする理由は、犠牲陽極材の再結
晶粒径が犠牲陽極材の厚さに達すると、冷媒圧力の繰返
し付与に起因する疲労破壊が急速に進むためである。す
なわち、チューブは、冷媒圧力により膨れてその側面が
外方に湾曲し、チューブの最内層の犠牲陽極材に張力が
掛かる。この張力により疲労破壊の起点が結晶粒界に生
じ、粒界に沿って破壊が進行する。この粒界破壊つまり
疲労破壊は、再結晶粒径が小さいと、多数の結晶粒界に
分散してその進行が抑制されるが、再結晶粒径が大き
く、特に再結晶粒径が犠牲陽極材の厚さに達するような
大きさになると疲労破壊は急速に進行するのである。
According to the first aspect of the present invention, the recrystallized grain size of the sacrificial anode material of the brazing sheet forming the tube is
The reason for making the thickness smaller than the thickness of the sacrificial anode material is that, when the recrystallized grain size of the sacrificial anode material reaches the thickness of the sacrificial anode material, fatigue failure caused by repeated application of the refrigerant pressure rapidly progresses. That is, the tube expands due to the refrigerant pressure, and its side surface curves outward, and tension is applied to the innermost sacrificial anode material of the tube. Due to this tension, a starting point of the fatigue fracture is generated at the crystal grain boundary, and the fracture proceeds along the grain boundary. If the recrystallization grain size is small, the grain boundary fracture or fatigue fracture is dispersed in many crystal grain boundaries and the progress thereof is suppressed. Fatigue failure progresses rapidly when the thickness reaches the thickness.

【0009】本発明において、チューブを構成する犠牲
陽極材の再結晶粒径を小さくする方法としては、M
n、 Cr、 Zrなどの結晶粒径を小さくする元素を添加
する、鋳塊の均質化処理温度を高くする、冷間圧延
率を大きくする、ろう付けを低温短時間で行うなどの
方法が挙げられる。特に前記ろう付け温度を低下させる
には、低温ろう材の使用が有効である(特開平7-8867
8)。この他、犠牲陽極材にSiを添加して、犠牲陽極
材中のMg2 Siの析出量を増やしてろう付け時の再結
晶粒の成長を抑える方法がある。この方法によれば強度
向上の面からも疲労破壊が抑制される。
In the present invention, a method for reducing the recrystallized grain size of the sacrificial anode material constituting the tube is as follows.
Examples of such methods include adding elements that reduce the crystal grain size, such as n, Cr, and Zr, increasing the ingot homogenization treatment temperature, increasing the cold rolling reduction, and performing brazing at a low temperature in a short time. Can be In particular, use of a low-temperature brazing material is effective in lowering the brazing temperature (Japanese Patent Laid-Open No. 7-8867).
8). In addition, there is a method in which Si is added to the sacrificial anode material to increase the amount of Mg 2 Si deposited in the sacrificial anode material to suppress the growth of recrystallized grains during brazing. According to this method, fatigue fracture is suppressed from the viewpoint of improving strength.

【0010】請求項2の発明は、熱交換器を構成するヘ
ッダーについて、その犠牲陽極材の結晶粒径を規定した
もので、規定理由はチューブの場合と同じである。一般
に、ヘッダーはチューブよりサイズが大きく、チューブ
に比べて疲労破壊し難いが、ヘッダーの横断面における
犠牲陽極材の厚さ方向の再結晶粒径が前記犠牲陽極材の
厚さにまで達すると、疲労破壊が急速に進むので、本発
明は、ヘッダーに対しても有用である。
The second aspect of the present invention specifies the crystal grain size of the sacrificial anode material of the header constituting the heat exchanger, for the same reason as in the case of the tube. In general, the header is larger in size than the tube, and is less susceptible to fatigue failure than the tube, but when the recrystallized grain size in the thickness direction of the sacrificial anode material in the cross section of the header reaches the thickness of the sacrificial anode material, The present invention is also useful for headers because of the rapid progress of fatigue failure.

【0011】[0011]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)ろう材用のAl−Si系合金鋳塊、芯材用
のAl−Mn系合金鋳塊、犠牲陽極材用のAl−2wt%
Mg−4wt%Zn合金鋳塊をそれぞれ常法により鋳造
し、前記ろう材用鋳塊と芯材用鋳塊には所定の均質化処
理を施し、犠牲陽極材用鋳塊には再結晶粒径を変化させ
るため均質化処理条件を種々に変化させた。次にこれら
鋳塊を所定厚さ面削したのち、犠牲陽極材は10mm、
芯材は50mm、ろう材は8mmにそれぞれ熱間圧延
し、次いでこれら犠牲陽極材、芯材、ろう材をこの順に
重ね合わせて熱間圧延して接合し、板厚5mmのクラッ
ド材とした。次にこのクラッド材に冷間圧延と中間焼鈍
を施して、板厚0.25mmのブレージングシートを作
製した。ここで犠牲陽極材の厚さは37μmであった。
ろう材には、ろう付け温度が600℃と580℃の2種
類を用いた。ろう付け温度が580℃のろう材は、特開
平7-88678 に開示されている、Cu、Znを添加したろ
う材を用いた。一部の犠牲陽極材には、再結晶粒径を微
細化するため、Zrを微量添加した。
The present invention will be described below in detail with reference to examples. (Example 1) Al-Si alloy ingot for brazing material, Al-Mn alloy ingot for core material, Al-2wt% for sacrificial anode material
An Mg-4wt% Zn alloy ingot is cast by an ordinary method, and the brazing material ingot and the core material ingot are subjected to a predetermined homogenization treatment. The homogenization treatment conditions were variously changed in order to change. Next, after shaving these ingots to a predetermined thickness, the sacrificial anode material was 10 mm,
The core material was hot-rolled to 50 mm, and the brazing material was hot-rolled to 8 mm. Then, the sacrificial anode material, the core material, and the brazing material were stacked in this order and hot-rolled and joined to form a clad material having a thickness of 5 mm. Next, the clad material was subjected to cold rolling and intermediate annealing to produce a brazing sheet having a thickness of 0.25 mm. Here, the thickness of the sacrificial anode material was 37 μm.
Two kinds of brazing materials having a brazing temperature of 600 ° C. and 580 ° C. were used. As the brazing material having a brazing temperature of 580 ° C., a brazing material to which Cu and Zn are added, which is disclosed in JP-A-7-88678, was used. A small amount of Zr was added to some of the sacrificial anode materials in order to reduce the recrystallized grain size.

【0012】得られたブレージングシートをろう付け温
度で所定時間加熱したのち、このブレージングシート
に、犠牲陽極材側に引張応力が掛かるように平面曲げを
繰返し付与して疲労破壊するまでの曲げ回数(疲労寿
命)を測定した。
After heating the obtained brazing sheet at a brazing temperature for a predetermined time, the brazing sheet is repeatedly subjected to plane bending such that tensile stress is applied to the sacrificial anode material side, and the number of bending times until the fracture is caused (fatigue failure). Fatigue life) was measured.

【0013】(実施例2)実施例1で得たブレージング
シートを電縫加工によりチューブに加工し、このチュー
ブを、別途作製したヘッダーとフィン(Al−Mn系合
金)とに組付け、この組付け体をろう付けしてラジエー
ターコアを作製し、このコアに樹脂タンクを取り付けて
ラジエーターを作製した。
(Example 2) The brazing sheet obtained in Example 1 was processed into a tube by electric resistance sewing, and this tube was assembled with a separately prepared header and fins (Al-Mn alloy). The attached body was brazed to produce a radiator core, and a resin tank was attached to the core to produce a radiator.

【0014】得られたラジエーターのチューブ内に冷媒
(水)を0.2MPaの圧力で繰返し圧送して、チュー
ブが破壊するまでの圧送回数(疲労寿命)を測定した。
実施例1と2の疲労試験結果を表1に示す。表1には、
主な製造条件、疲労試験前のブレージングシート(チュ
ーブ)の犠牲陽極材の再結晶粒径を併記した。犠牲陽極
材の再結晶粒径はチューブの横断面における犠牲陽極材
の結晶粒の厚さ方向の長さを20個の結晶粒について測
定し、これを平均したものを用いた。
A refrigerant (water) was repeatedly pumped at a pressure of 0.2 MPa into the tube of the obtained radiator, and the number of times of pumping (fatigue life) until the tube was broken was measured.
Table 1 shows the fatigue test results of Examples 1 and 2. In Table 1,
The main manufacturing conditions and the recrystallized grain size of the sacrificial anode material of the brazing sheet (tube) before the fatigue test are also shown. The recrystallized grain size of the sacrificial anode material was obtained by measuring the length of the crystal grains of the sacrificial anode material in the cross section of the tube in the thickness direction for 20 crystal grains and averaging the measured values.

【0015】[0015]

【表1】 [Table 1]

【0016】表1より明らかなように、本発明例品のN
o.1〜10は、いずれもブレージングシートおよび熱交換
器の疲労寿命が長かった。これは犠牲陽極材の再結晶粒
径が犠牲陽極材の厚さ未満で結晶粒界が多いため、粒界
破壊が多数の結晶粒界に分散して、その進行が抑制され
たことによる。これは疲労寿命が再結晶粒径にほぼ反比
例していることからも明らかである。犠牲陽極材にZr
を添加したものは、同じ条件で製造したものに比べて、
再結晶粒径が小さく、疲労寿命が向上している。これに
対し、比較例品のNo.11 〜15は、いずれも疲労寿命が短
かった。これは再結晶粒径が犠牲陽極材の厚さにまで達
していたためである。なお、前記実施例2では、ヘッダ
ーに、実施例1と同様にして作製した板厚5mmのクラ
ッド材を冷間圧延と中間焼鈍により板厚1.2mmに加
工したブレージングシートをプレス成形して作製したも
のを用いた。このヘッダーの犠牲陽極材の厚さは100
μmであり、結晶粒径はいずれも100μm未満であっ
た。従って、ヘッダーが破壊することは無かった。
As is apparent from Table 1, N of the product of the present invention was
In all of o.1 to 10, the fatigue life of the brazing sheet and the heat exchanger was long. This is because the recrystallized grain size of the sacrificial anode material is smaller than the thickness of the sacrificial anode material and the number of crystal grain boundaries is large, so that grain boundary destruction is dispersed in many crystal grain boundaries, and the progress thereof is suppressed. This is clear from the fact that the fatigue life is almost inversely proportional to the recrystallized grain size. Zr for sacrificial anode material
Is added, compared to those manufactured under the same conditions,
Recrystallized grain size is small and fatigue life is improved. On the other hand, the comparative examples No. 11 to 15 all had a short fatigue life. This is because the recrystallized grain size has reached the thickness of the sacrificial anode material. In the second embodiment, a 5 mm thick clad material produced in the same manner as in the first embodiment was cold-rolled and subjected to intermediate annealing to form a 1.2 mm thick brazing sheet on the header by press molding. What was done was used. The thickness of the sacrificial anode material of this header is 100
μm, and the crystal grain size was less than 100 μm. Therefore, the header did not break.

【0017】以上、自動車用ラジエーターのチューブに
ついて説明したが、本発明は、ラジエーター以外のヒー
ターコアやエバポレーターなどの他の熱交換器に対して
も、またヘッダーに対しても同様の効果が得られるもの
である。
The tube of the radiator for an automobile has been described above. However, the present invention can obtain the same effect on other heat exchangers such as a heater core and an evaporator other than the radiator and also on the header. Things.

【0018】[0018]

【発明の効果】以上に述べたように、本発明の熱交換器
用チューブまたはヘッダーは、ブレージングシートによ
り形成され、前記チューブまたはヘッダーの横断面にお
ける犠牲陽極材の再結晶粒径が犠牲陽極材の厚さ未満な
ので、疲労破壊の起点となる犠牲陽極材の粒界破壊が多
くの粒界に分散されてその進行が抑制され、疲労寿命が
向上する。依って、工業上顕著な効果を奏する。
As described above, the heat exchanger tube or header of the present invention is formed of a brazing sheet, and the recrystallized grain size of the sacrificial anode material in the cross section of the tube or header is smaller than that of the sacrificial anode material. Since the thickness is less than the thickness, the intergranular fracture of the sacrificial anode material, which is the starting point of the fatigue fracture, is dispersed in many grain boundaries and the progress thereof is suppressed, and the fatigue life is improved. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ラジエーターの正面図である。FIG. 1 is a front view of a radiator.

【図2】本発明のチューブの横断面における犠牲陽極材
の再結晶組織の説明図である。
FIG. 2 is an explanatory view of a recrystallized structure of a sacrificial anode material in a cross section of the tube of the present invention.

【図3】従来のチューブの横断面における犠牲陽極材の
再結晶組織の説明図である。
FIG. 3 is an explanatory view of a recrystallized structure of a sacrificial anode material in a cross section of a conventional tube.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 チューブ 3 フィン 4 ヘッダー 5 コア 6 樹脂タンク 7 犠牲陽極材 8 芯材 9 ろう材 10 ブレージングシート t 犠牲陽極材の厚さ d 犠牲陽極材の再結晶粒の厚さ方向の長さ DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Tube 3 Fin 4 Header 5 Core 6 Resin tank 7 Sacrificial anode material 8 Core material 9 Brazing material 10 Brazing sheet t Thickness of sacrificial anode material d Length of sacrificial anode material in the thickness direction of recrystallized grains

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒通路となる複数のチューブと、前記
チューブ間に配されるフィンと、前記複数のチューブの
給排管となるヘッダーとを主要部とする熱交換器におい
て、前記チューブが、犠牲陽極材、芯材、ろう材をこの
順に接合した3層構造のアルミニウム合金ブレージング
シートからなり、前記チューブの横断面における前記犠
牲陽極材の厚さ方向の再結晶粒径が前記犠牲陽極材の厚
さ未満であることを特徴とする疲労特性に優れたアルミ
ニウム合金製熱交換器。
1. A heat exchanger mainly including a plurality of tubes serving as refrigerant passages, fins arranged between the tubes, and a header serving as a supply / discharge tube for the plurality of tubes, wherein the tubes are: A sacrificial anode material, a core material, and a brazing material are joined in this order to form a three-layer aluminum alloy brazing sheet. An aluminum alloy heat exchanger excellent in fatigue characteristics, characterized in that the thickness is less than the thickness.
【請求項2】 冷媒通路となる複数のチューブと、前記
チューブ間に配されるフィンと、前記複数のチューブの
給排管となるヘッダーとを主要部とする熱交換器におい
て、前記ヘッダーが、犠牲陽極材、芯材、ろう材をこの
順に接合した3層構造のアルミニウム合金ブレージング
シートからなり、前記ヘッダーの横断面における前記犠
牲陽極材の厚さ方向の再結晶粒径が前記犠牲陽極材の厚
さ未満であることを特徴とする疲労特性に優れたアルミ
ニウム合金製熱交換器。
2. A heat exchanger mainly comprising a plurality of tubes serving as refrigerant passages, fins arranged between the tubes, and a header serving as a supply / discharge tube for the plurality of tubes, wherein the header is: A sacrificial anode material, a core material, and a brazing material are joined in this order to form a three-layer aluminum alloy brazing sheet, and the recrystallized grain size in the thickness direction of the sacrificial anode material in the cross section of the header is equal to An aluminum alloy heat exchanger excellent in fatigue characteristics, characterized in that the thickness is less than the thickness.
JP25993697A 1997-09-25 1997-09-25 Heat exchanger made of aluminum alloy Pending JPH11100628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25993697A JPH11100628A (en) 1997-09-25 1997-09-25 Heat exchanger made of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25993697A JPH11100628A (en) 1997-09-25 1997-09-25 Heat exchanger made of aluminum alloy

Publications (1)

Publication Number Publication Date
JPH11100628A true JPH11100628A (en) 1999-04-13

Family

ID=17340990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25993697A Pending JPH11100628A (en) 1997-09-25 1997-09-25 Heat exchanger made of aluminum alloy

Country Status (1)

Country Link
JP (1) JPH11100628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273776A (en) * 2004-03-24 2005-10-06 Tokai Rubber Ind Ltd Hose for liquid transportation
WO2009101896A1 (en) 2008-02-12 2009-08-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy laminate
JP2013507258A (en) * 2009-10-13 2013-03-04 エスアーペーアー・ヒート・トランスファー・アーベー High temperature high strength sandwich material for thin sheet in heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273776A (en) * 2004-03-24 2005-10-06 Tokai Rubber Ind Ltd Hose for liquid transportation
WO2009101896A1 (en) 2008-02-12 2009-08-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy laminate
EP2479303A1 (en) 2008-02-12 2012-07-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Multi-layered sheet of aluminum alloys
US8343635B2 (en) 2008-02-12 2013-01-01 Kobe Steel, Ltd. Multi-layered sheet of aluminum alloys
JP2013507258A (en) * 2009-10-13 2013-03-04 エスアーペーアー・ヒート・トランスファー・アーベー High temperature high strength sandwich material for thin sheet in heat exchanger
US9169541B2 (en) 2009-10-13 2015-10-27 Gränges Sweden Ab Sandwich material with high strength at high temperature for thin strips in heat exchangers

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP3276790B2 (en) Method for producing aluminum alloy brazing sheet, heat exchanger using the brazing sheet, and method for producing the heat exchanger
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
CN111065753B (en) Aluminum alloy brazing sheet for heat exchanger
JP5629113B2 (en) Aluminum alloy brazing sheet excellent in brazing and corrosion resistance, and heat exchanger using the same
CN110997958B (en) Aluminum alloy brazing sheet for heat exchanger
JP2003034851A (en) Method for manufacturing aluminum alloy fin material for brazing
EP1156129B1 (en) A fin material for brazing
JPH11100628A (en) Heat exchanger made of aluminum alloy
JPH05263172A (en) Aluminum alloy for fin material of heat exchanger
JP2020180320A (en) Aluminum alloy fin material having excellent strength, moldability, and corrosion resistance and heat exchanger
JPH08143997A (en) Aluminum alloy fin material for low temperature brazing and brazing sheet, and production of heat exchanger made of aluminum alloy, and heat exchanger made of aluminum alloy
JP2004176091A (en) High strength aluminum alloy fin material for automotive heat exchanger having excellent rollability, and its manufacturing method
JPH11264042A (en) Aluminum alloy brazing filler sheet for fluid passage
JP3876505B2 (en) Al alloy fin material for heat exchangers with excellent erosion resistance
JPH09157807A (en) Production of aluminum alloy fin material for brazing
JP3291042B2 (en) Aluminum alloy fin material and method for manufacturing aluminum alloy heat exchanger
JP6970841B2 (en) Aluminum alloy brazing sheet and its manufacturing method
JPH05171324A (en) Aluminum alloy clad fin material
JPH05263173A (en) Aluminum alloy for fin material of heat exchanger
JPH10280076A (en) Aluminum alloy brazing sheet
JP3913333B2 (en) Aluminum alloy fin material for heat exchanger having excellent fatigue strength and thermal conductivity and method for producing the same
JP2813484B2 (en) Aluminum brazing sheet
JPH059671A (en) Manufacture of al alloy brazing sheet strip for flat tube excellent in cuttability
JP2000239774A (en) High strength aluminum alloy fin material for heat exchanger, excellent in thermal conductivity