JPH1099795A - Defect detector and defective removing device - Google Patents

Defect detector and defective removing device

Info

Publication number
JPH1099795A
JPH1099795A JP25834796A JP25834796A JPH1099795A JP H1099795 A JPH1099795 A JP H1099795A JP 25834796 A JP25834796 A JP 25834796A JP 25834796 A JP25834796 A JP 25834796A JP H1099795 A JPH1099795 A JP H1099795A
Authority
JP
Japan
Prior art keywords
light
light receiving
granular material
defective
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25834796A
Other languages
Japanese (ja)
Inventor
Yuichi Yamazaki
祐一 山崎
Shinichi Kitano
紳一 北野
Kazushige Ikeda
一繁 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP25834796A priority Critical patent/JPH1099795A/en
Publication of JPH1099795A publication Critical patent/JPH1099795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sorting Of Articles (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly detect foreign matter and defects whose transmissibility is larger than that of normal objects to be inspected and to surely separate and remove the foreign matter and the like from the normal objects to be inspected. SOLUTION: A group of granules are taken as objects to be inspected. The planned presence place of the objects to be inspected is illuminated and the transmitted light by them is received. When the received quantity thereof is between the upper limit UL and the lower limit LL of a proper light quantity range ΔEt for the granules, the presence e0 of the normal granules is determined. Between the upper limit UL of the proper light quantity range ΔEt and the received light quantity Es when the illuminating light is directly received, a judgment level UL1 on the bright side is set. When the received light quantity is between the upper limit UL of the proper light quantity range ΔEt and the judgment level UL1 on the bright side, the presence e4 of defective granules or foreign matter whose transmissibility is larger than that of normal granules is determined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒状体群を検査対
象物として、その検査対象物の予定存在箇所を照明する
照明手段と、その照明手段からの照明光が前記予定存在
箇所を透過した透過光を受光する受光手段と、その受光
手段の受光情報に基づいて、粒状体群における各粒状体
の良否又は粒状体群内に混入した異物の存否を判別する
判別手段とが設けられた不良検出装置、及び、その不良
検出装置にて検出された不良の粒状体又は異物を除去す
る不良物除去装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to illuminating means for illuminating a predetermined existence position of an inspection object using a group of granular materials as an inspection object, and illuminating light from the illuminating means passing through the predetermined existence position. A defect provided with a light receiving means for receiving the transmitted light, and a discriminating means for discriminating the quality of each granular material in the granular material group or the presence or absence of a foreign substance mixed in the granular material group based on light receiving information of the light receiving device; The present invention relates to a detection device and a defect removal device that removes a defective granular material or foreign matter detected by the defect detection device.

【0002】[0002]

【従来の技術】上記不良検出装置では、図8及び図9に
示すように、例えば米粒kからなる粒状体群が所定経路
に沿って移送されて予定存在箇所つまり検査位置に来る
と、経路横方向から照明手段である光源Lgにて照明さ
れ、その光源Lgからの照明光が米粒群を透過した透過
光をフォトセンサ等の受光手段Psで受光し、その受光
レベルが予め設定した下限値ek以上の適正範囲Δe内
であれば正常な米粒kと判定する一方で、下限値ekを
下回ると、着色した米粒等の不良物k’や、石・プラス
チック等の異物が混入していると判定していた。
2. Description of the Related Art In the above-described defect detecting apparatus, as shown in FIGS. 8 and 9, for example, when a group of granules made of, for example, rice grains k is transported along a predetermined path and arrives at an expected existing point, that is, an inspection position, the path sideways. The light is illuminated from the direction by a light source Lg, which is an illuminating means. The illuminating light from the light source Lg receives the transmitted light transmitted through the rice grain group by a light receiving means Ps such as a photo sensor. If it is within the above appropriate range Δe, it is determined that the rice grain k is normal. On the other hand, if it is below the lower limit value ek, it is determined that defective k ′ such as colored rice grains and foreign matter such as stone and plastic are mixed. Was.

【0003】[0003]

【発明が解決しようとする課題】つまり、上記従来技術
では、米粒等の検査対象物が存在しない場合には、受光
手段Psは光源Lgからの照明光を検査対象物を通過せ
ずに受光して、その受光レベルが高い値になるので、正
常な検査対象物に対する設定適正範囲Δeの上限値を想
定することはできるが、実際にその上限値を設定する
と、検査対象物が存在しない状態で照明光を受光した場
合に、正常な検査対象物よりも透過率が大きい異物等が
存在すると誤って判定し、その結果、正常な検査対象物
よりも透過率が大きい異物等の存在を適切に検出できな
いという不都合があった。具体例としては、「うるち
米」を正常な検査対象物としたときに、「ガラス」が
「うるち米」よりも透過率が大きい異物に相当し、又、
「もち米」を正常な検査対象物としたときに、「うるち
米」や「ガラス」が「もち米」よりも透過率が大きい異
物に相当する。
That is, in the above-mentioned prior art, when there is no inspection object such as rice grains, the light receiving means Ps receives the illumination light from the light source Lg without passing through the inspection object. Since the light receiving level becomes a high value, it is possible to assume an upper limit value of the proper setting range Δe for a normal inspection object. However, if the upper limit value is actually set, the inspection object is not present. When the illumination light is received, it is erroneously determined that there is a foreign substance or the like having a transmittance higher than that of a normal inspection target. As a result, the presence of a foreign substance or the like having a transmittance higher than that of the normal inspection target is appropriately determined. There was a disadvantage that it could not be detected. As a specific example, when “Uruchi Rice” is a normal test object, “Glass” corresponds to a foreign substance having a higher transmittance than “Uruchi Rice”,
When "sticky rice" is used as a normal inspection target, "sticky rice" and "glass" correspond to foreign substances having higher transmittance than "sticky rice".

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、上記従来技術の不具合を解消す
べく、正常な検査対象物よりも透過率が大きい異物や不
良物の存否を適切に判別でき、さらに、その検出結果に
基づいて、検査対象物中に混入した不良物や異物を正常
な検査対象物から確実に分離して除去できるようにする
ことである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to solve the above-mentioned disadvantages of the prior art by detecting the presence or absence of a foreign substance or a defective substance having a transmittance higher than that of a normal inspection object. Is to be properly determined, and based on the detection result, a defective or foreign substance mixed in the inspection target can be reliably separated and removed from the normal inspection target.

【0005】[0005]

【課題を解決するための手段】請求項1によれば、検査
対象物としての粒状体群の予定存在箇所が照明手段にて
照明され、その照明光が上記予定存在箇所を透過した透
過光が受光手段によって受光され、その受光手段の受光
量が粒状体に対する適正光量範囲の上限値と下限値との
間にある場合に正常な粒状体の存在が判定され、その受
光手段の受光量が、適正光量範囲の上限値と照明光を検
査対象物を通過せずに受光したときの受光量との間に設
定した明側の判定レベルと、適正光量範囲の上限値との
間にある場合に、正常な粒状体よりも透過率が大きい不
良の粒状体又は異物の存在が判定される。
According to the first aspect of the present invention, the planned existence position of the group of granular materials as the inspection object is illuminated by the illumination means, and the illuminating light is transmitted light transmitted through the planned existence position. Light is received by the light receiving means, and when the light receiving amount of the light receiving means is between the upper limit value and the lower limit value of the appropriate light amount range for the granular material, the presence of the normal granular material is determined, and the light receiving amount of the light receiving means is When the light-side judgment level set between the upper limit value of the appropriate light amount range and the received light amount when the illumination light is received without passing through the inspection object and the upper limit value of the appropriate light amount range In addition, the presence of a defective granule or a foreign substance having a transmittance higher than that of a normal granule is determined.

【0006】従って、正常な粒状体に対する適正光量範
囲の上限値よりも明るい側に判定レベルを設け、この明
側の判定レベルと上記適正光量範囲の上限値とに対する
受光量の情報を用いることによって、正常な粒状体より
も透過率が大きい不良の粒状体等の混入を適切に検出す
ることができる不良検出装置が得られる。
Accordingly, a determination level is provided on the side brighter than the upper limit of the appropriate light amount range for a normal granular material, and information on the amount of light received for the bright side determination level and the upper limit of the appropriate light amount range is used. In addition, it is possible to obtain a defect detection device that can appropriately detect the incorporation of a defective granular material having a transmittance higher than that of a normal granular material.

【0007】請求項2によれば、請求項1において、受
光手段の受光量が適正光量範囲の下限値よりも小さい場
合に、正常な粒状体よりも透過率が小さい不良の粒状体
又は異物の存在が判定される。
According to the second aspect, in the first aspect, when the light receiving amount of the light receiving means is smaller than the lower limit value of the appropriate light amount range, defective granular material or foreign matter having a transmittance smaller than that of a normal granular material. The presence is determined.

【0008】従って、正常な粒状体よりも透過率が大き
い不良物が検出できることに加えて、例えば、米粒群の
場合の着色米、及び石やプラスチック等のように光を透
過させない物について、正常な粒状体よりも透過率が小
さいことで検出できるので、正常な粒状体に対する適正
光量範囲から外れる各種の不良物の混入を検出すること
ができ、もって、請求項1に係る不良検出装置の好適な
手段が得られる。
[0008] Therefore, in addition to being able to detect a defective substance having a transmittance higher than that of a normal granular material, for example, colored rice in the case of a group of rice grains and a substance that does not transmit light, such as stones and plastics, are normally detected. Since it is possible to detect by detecting that the transmittance is smaller than that of the granular material, it is possible to detect the mixing of various kinds of defectives out of the appropriate light amount range with respect to the normal granular material, so that the defect detecting device according to claim 1 is suitable. Means can be obtained.

【0009】請求項3によれば、請求項1又は2におい
て、検査対象物の予定存在箇所を透過した透過光が、各
別に受光情報が取出し可能であってその予定存在箇所の
全体に亘って備えられた複数個の受光部にて受光され、
その各受光部において、受光量が前記明側の判定レベル
よりも小で且つ適正光量範囲の上限値よりも大である受
光部が求められ、その求めた受光部の隣接する連続個数
が設定個数を超える箇所が、正常な粒状体よりも透過率
が大きい不良の粒状体又は異物の存在箇所と判定され
る。
According to a third aspect of the present invention, in the first or second aspect, the transmitted light transmitted through the scheduled existence position of the inspection object can receive light-receiving information separately, and can be obtained over the entire planned existence position. Light is received by a plurality of light receiving units provided,
In each of the light receiving units, a light receiving unit in which the amount of received light is smaller than the bright side determination level and larger than the upper limit value of the appropriate light amount range is obtained, and the obtained continuous number of the light receiving units is the set number. Is determined to be a defective granular material or a foreign material having a transmittance higher than that of a normal granular material.

【0010】従って、複数個の受光部によって予定存在
箇所を透過した透過光を限られた範囲毎に比較的細かく
受光しながら、粒状体を透過する透過光量が、厚みが大
である中心部から厚みが小になる縁部になるほど大きく
なるような場合に、通常は、明側の判定レベルよりも小
となる受光部の数が適正光量範囲の上限値よりも大とな
る受光部の数よりも多くなって、明側の判定レベルと適
正光量範囲の上限値とで検出される受光部の数が多少異
なる結果、上記検査対象物の縁部に対応して、明側の判
定レベルよりも小で且つ適正光量範囲の上限値よりも大
である受光部が少ない個数ながら隣接して連続しても、
その連続個数は設定個数を超えることはなく、正常な粒
状体よりも透過率が大きい不良の粒状体又は異物の存在
箇所と誤って判定されることが回避でき、もって、請求
項1又は2に係る不良検出装置の好適な手段が得られ
る。
[0010] Therefore, while the transmitted light transmitted through the predetermined existence location by the plurality of light receiving portions is relatively finely received in a limited range, the amount of transmitted light transmitted through the granular material from the central portion where the thickness is large is increased. In the case where the thickness becomes larger as the thickness becomes smaller, the number of light receiving portions smaller than the light-side determination level is usually larger than the number of light receiving portions larger than the upper limit of the appropriate light amount range. The number of light-receiving sections detected at the light-side determination level and the upper limit of the appropriate light amount range is slightly different, and as a result, the light-side determination level is higher than the light-side determination level corresponding to the edge of the inspection object. Even if the number of light receiving sections that are small and larger than the upper limit value of the appropriate light amount range are adjacent to each other in a small number,
The continuous number does not exceed the set number, and it is possible to avoid being erroneously determined to be a defective granular material or a foreign material having a higher transmittance than a normal granular material. Suitable means for such a failure detection device is obtained.

【0011】請求項4によれば、請求項3において、受
光部の受光量が前記明側の判定レベルよりも小である2
値情報と、受光部の受光量が前記適正光量範囲の上限値
よりも大である2値情報とを演算して、前記受光量が前
記明側の判定レベルよりも小で且つ前記適正光量範囲の
上限値よりも大である受光部を求める。
According to a fourth aspect, in the third aspect, the light receiving amount of the light receiving portion is smaller than the bright side determination level.
Value information and binary information in which the amount of light received by the light receiving unit is larger than the upper limit of the appropriate light amount range, and the amount of received light is smaller than the determination level on the bright side and the appropriate light amount range is calculated. The light receiving unit which is larger than the upper limit of is determined.

【0012】従って、このような2値情報ではなく、多
値情報を用いて、受光部の受光量が前記明側の判定レベ
ルよりも小で且つ前記適正光量範囲の上限値よりも大で
ある受光部を求めるようにすると、その判定処理される
情報量が多いために、処理時間が長くなったり、あるい
は、処理の制御構成が複雑になるという不都合を適切に
解消させることができ、もって、請求項3に係る不良検
出装置の好適な手段が得られる。
Therefore, the light receiving amount of the light receiving unit is smaller than the bright side determination level and larger than the upper limit of the appropriate light amount range by using multi-value information instead of such binary information. When the light receiving unit is obtained, the disadvantage that the processing time becomes long or the control configuration of the process becomes complicated can be appropriately eliminated because the amount of information to be subjected to the determination process is large. Preferred means of the defect detection device according to claim 3 is obtained.

【0013】請求項5によれば、請求項1〜4のいずれ
か1項に記載の不良検出装置が備えられ、予定移送経路
に沿って移送される検査対象物である粒状体群が受光手
段の受光位置つまり前記予定存在箇所に移送されると、
予定移送経路を挟んだ一方側からの照明光が予定存在箇
所を透過して予定移送経路を挟んだ他方側にて受光さ
れ、その受光手段の受光情報に基づいて判別された不良
の粒状体及び異物が、粒状体群のうちの正常な粒状体の
経路と異なる経路に分離して移送される。
According to a fifth aspect of the present invention, there is provided the defect detecting device according to any one of the first to fourth aspects, wherein the particle group which is the inspection object transported along the predetermined transport path is light receiving means. When transferred to the light receiving position, that is, the planned existence location,
Illumination light from one side of the planned transfer path is transmitted through the planned existence location and received on the other side of the planned transfer path, and the defective granular material determined based on the light receiving information of the light receiving means; The foreign matter is separated and transferred to a path different from the path of the normal granules in the group of granules.

【0014】従って、例えば検査対象物(粒状体群)を
移送させずにその不良検出及び不良物除去を行うには、
装置側を可動できるように構成する必要があるのに比べ
て、検査対象物(粒状体群)を受光手段の受光位置つま
り不良検出位置から、異なる経路への分離位置つまり不
良物除去位置に順次移送しながら、不良物及び異物を正
常な粒状体から分離して移送させるようにすることで、
装置側を可動させないようにしながら装置各部を合理的
に配置して円滑な動作が実現できる不良物除去装置が得
られる。
Accordingly, for example, in order to detect the defect and remove the defect without transferring the inspection object (granular body group),
In contrast to the necessity of making the apparatus side movable, the inspection object (granular body group) is sequentially moved from the light receiving position of the light receiving means, that is, the defect detection position, to the separation position on a different path, that is, the defective object removing position. By transferring the defective and foreign matter separately from the normal granular material while transferring,
It is possible to obtain a defective object removing device which can realize a smooth operation by arranging each part of the device rationally while keeping the device side from moving.

【0015】請求項6によれば、請求項5において、予
定移送経路に沿って一層状態で且つ複数列並ぶ状態で移
送されている検査対象物が、その並び方向の全幅におい
て照明されるとともに、その並び方向に沿ってその全幅
を受光範囲として受光手段によって受光され、その受光
情報に基づいて、複数列の検査対象物の並び方向の全幅
における粒状体の良否又は混入異物の存否が判別され
る。
According to the sixth aspect, in the fifth aspect, the inspection object being transported in a single layer and a plurality of rows along the predetermined transport path is illuminated in the full width in the arrangement direction, and Light is received by the light receiving means along the arrangement direction with the entire width thereof as a light receiving range, and based on the received light information, the quality of the granular material or the presence or absence of a foreign substance in the entire width in the arrangement direction of the inspection object in a plurality of rows is determined. .

【0016】従って、複数列並ぶ状態ではなく、例えば
一列状態で検査対象物(粒状体群)を移送するものに比
べて、その並び方向の全幅において並列的につまり能率
良く不良を検出することができ、もって、請求項5に係
る不良物除去装置の好適な手段が得られる。
Therefore, it is possible to detect a defect in parallel, that is, with high efficiency, in the entire width in the arrangement direction as compared with, for example, a case in which inspection objects (granular bodies) are transported in a single line state instead of a plurality of lines. Thus, a preferable means of the defect removing apparatus according to claim 5 can be obtained.

【0017】請求項7によれば、請求項5又は6におい
て、検査対象物である粒状体群を自重にて落下させて移
送させながら、その粒状体群内の不良の粒状体又は異物
に対してエアーが吹き付けられ、その不良の粒状体又は
異物が正常な粒状体の移送経路から分離される。
According to the seventh aspect, in the fifth or sixth aspect, the particles to be inspected are dropped under their own weight and transported, and the defective particles or foreign matter in the group of particles are removed. Air is blown, and the defective granular material or foreign matter is separated from the transfer path of the normal granular material.

【0018】従って、正常な粒状体の移送経路から不良
の粒状体又は異物を分離させるのに、エアーの吹き付け
作用によって行うので、例えば、出退動作をする板等の
機械的な手段で直接接触して分離させるのに比べて、速
い応答速度で且つソフトタッチに損傷を与えるおそれも
なく良好に分離でき、もって、請求項5又は6に係る不
良物除去装置の好適な手段が得られる。
Therefore, the separation of the defective granular material or foreign matter from the normal transporting path of the granular material is performed by the blowing action of air. Therefore, for example, direct contact is made by mechanical means such as a plate that moves in and out. As compared with the case where the soft touch is separated, the separation can be performed satisfactorily with a high response speed and without a risk of damaging the soft touch. Therefore, a preferable means of the defective object removing device according to claim 5 or 6 is obtained.

【0019】[0019]

【発明の実施の形態】以下、本発明の不良検出装置及び
不良物除去装置の実施形態を、玄米等の米粒群からなる
粒状体群を検査対象物として所定経路に沿って移送しな
がら、不良検出及び不良物除去を行う場合について図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a defect detecting apparatus and a defective object removing apparatus according to the present invention will be described in detail by transferring a group of rice grains, such as brown rice, as a test object along a predetermined path. A case of performing detection and removal of a defective will be described with reference to the drawings.

【0020】図1及び図2に示すように、所定幅の板状
のシュータ1が、水平面に対して所定角度(例えば60
度)に傾斜されて設置され、このシュータ1の上部側に
設けた貯溜用のホッパー7から供給される米粒群kが一
層状態で横方向に広がった状態で滑って移送されてい
る。シュータ1の下方には、シュータ下端から所定速度
で自然落下する米粒群kのうちの正常な米粒kを回収す
る良米回収箱2と、正常な米粒kの流れから分離した着
色米(焼け米)や胴割れ米等の不良米又は石やガラス片
等の異物を回収する不良物回収箱3とが設置されてい
る。以上より、シュータ1が、検査対象物としての米粒
群kを予定移送経路(つまりシュータ上の米粒群kの流
れ経路及びシュータ下端から飛び出た米粒群kの落下経
路)に沿って一層状態で且つ複数列並ぶ状態で移送する
移送手段Hを構成する。
As shown in FIGS. 1 and 2, a plate-shaped shooter 1 having a predetermined width is formed at a predetermined angle (for example, 60 degrees) with respect to a horizontal plane.
The rice grain group k supplied from the storage hopper 7 provided on the upper side of the chute 1 is slid and transported in a state in which the rice particle group k is further spread in the lateral direction. Below the shooter 1, a good rice collection box 2 for collecting normal rice grains k of a group of rice grains k naturally falling from the lower end of the shooter at a predetermined speed, and a colored rice (burnt rice) separated from the flow of normal rice grains k ) And a defective product recovery box 3 for recovering defective rice such as broken rice or foreign matter such as stone or glass fragments. As described above, the chute 1 further moves the rice grain group k as the inspection target along the scheduled transfer path (that is, the flow path of the rice grain group k on the chute and the falling path of the rice grain group k jumping out from the lower end of the chute) and The transfer means H is configured to transfer a plurality of rows.

【0021】前記ホッパー7は、シュータ1の上部側部
分を利用したシュータ面1aと、このシュータ面1aに
対向して反対側に傾斜した傾斜側面7aと、ホッパー7
の全周を囲むための側壁部7b及び上壁部7cとによっ
て、図2の紙面に垂直な方向視において下端側ほど先細
状の筒体に構成されている。傾斜側面7aには、ホッパ
ー7内の米粒kをシュータ1へ排出するために、図2の
紙面に垂直な方向に沿う直線状の隙間をシュータ面1a
との間に形成する開閉ゲート9Aと、その開閉ゲート9
Aを移動させて上記隙間を変更するためのゲート駆動モ
ータ9B及びその他の機構が設けられている。尚、傾斜
側面7aの上方の側壁部7bには、ホッパー7内の貯溜
量を検出するレベルセンサ12が設置され、上壁部7c
には、外部から供給される米粒の流入口7Aが設けられ
ている。
The hopper 7 includes a shooter surface 1a using an upper portion of the shooter 1, an inclined side surface 7a facing the shooter surface 1a and inclined to the opposite side,
The side wall portion 7b and the upper wall portion 7c for surrounding the entire circumference form a cylindrical body tapering toward the lower end as viewed in a direction perpendicular to the paper surface of FIG. In order to discharge the rice grains k in the hopper 7 to the shooter 1, a linear gap along a direction perpendicular to the paper surface of FIG.
And the opening and closing gate 9A formed between
A gate drive motor 9B and other mechanisms for changing the gap by moving A are provided. A level sensor 12 for detecting a storage amount in the hopper 7 is provided on a side wall 7b above the inclined side surface 7a, and an upper wall 7c is provided.
Is provided with an inlet 7A for rice grains supplied from the outside.

【0022】図2に示すように、前記予定移送経路つま
りシュータ下端からの米粒群kの落下経路の途中に、米
粒群kの予定存在箇所Jが設定されている。すなわち、
前記移送手段Hは、米粒群kを上記予定存在箇所Jつま
り後述の検査用のラインセンサ5A,5Bの受光位置に
移送するように構成されている。
As shown in FIG. 2, an expected location J of the rice grain group k is set in the predetermined transfer route, that is, on the falling route of the rice grain group k from the lower end of the chute. That is,
The transfer means H is configured to transfer the rice grain group k to the expected location J, that is, the light receiving position of the later-described inspection line sensors 5A and 5B.

【0023】そして、上記米粒群kの落下経路を挟ん
で、一方側に、上記予定存在箇所Jに複数列状に並ぶ米
粒群kの並び方向の全幅を照明する蛍光灯等からなるラ
イン状光源4と、そのライン状光源4からの照明光が上
記予定存在箇所Jの米粒群kで反射した反射光を受光す
るラインセンサ5Bとが、一方のケース13B内に格納
された状態で配置され、他方側に、そのライン状光源4
からの照明光が上記予定存在箇所Jを透過した透過光を
受光するラインセンサ5Aと、前記ライン状光源4から
の照明光を受けて反射光用のラインセンサ5Bに向けて
反射させるための反射板8とが、他方のケース13A内
に格納された状態で配置されている。
On one side of the falling path of the rice grain group k, a linear light source such as a fluorescent lamp or the like illuminating the entire width of the rice grain group k arranged in a plurality of rows at the expected location J in a row. 4, and a line sensor 5B for receiving the reflected light of the illumination light from the linear light source 4 on the rice grain group k at the expected location J is disposed in a state stored in one of the cases 13B, On the other side, the linear light source 4
A line sensor 5A that receives the transmitted light transmitted through the planned existence location J, and a reflection for receiving the illumination light from the linear light source 4 and reflecting it toward the line sensor 5B for reflected light. The plate 8 is disposed in a state of being stored in the other case 13A.

【0024】尚、各ケース13A,13Bの前記予定存
在箇所Jに向く側は、入射光を通過させるために、透明
ガラスからなる窓部14A,14Bにて構成されてい
る。上記反射板8は、米粒と同じ反射率の領域8aを上
記ライン状光源4にて照明された米粒群kの全幅に対応
して長手状に形成し、且つその長手状の領域8aの両側
に黒色の領域8bを形成した表面を、窓部14Aの背部
に押し付ける状態で固定されており、その窓部14Aの
固定板に兼用されている。もう一つの窓部14Bは専用
の固定板15で押し付けて固定されている。
The sides of the cases 13A and 13B facing the predetermined location J are constituted by windows 14A and 14B made of transparent glass for allowing incident light to pass therethrough. The reflecting plate 8 forms a region 8a having the same reflectance as the rice grains in a longitudinal shape corresponding to the entire width of the rice grain group k illuminated by the linear light source 4, and on both sides of the longitudinal region 8a. The surface on which the black region 8b is formed is fixed while being pressed against the back of the window 14A, and is also used as a fixing plate for the window 14A. The other window 14B is fixed by pressing with a dedicated fixing plate 15.

【0025】以上より、米粒群kの予定存在箇所Jを照
明する照明手段が、前記ライン状光源4にて構成される
とともに、複数列の米粒群kの並び方向の全幅を照明す
るように構成され、又、前記ライン状光源4からの照明
光が前記予定存在箇所Jを透過した透過光を受光する受
光手段が、透過光用のラインセンサ5Aにて構成される
とともに、複数列の米粒群kの並び方向に沿ってその全
幅を受光範囲とするように構成されることになる。尚、
反射光用のラインセンサ5Bも、前記複数列の米粒群k
の並び方向に沿ってその全幅を受光範囲としている。
As described above, the illuminating means for illuminating the expected location J of the rice grain group k is constituted by the linear light source 4 and is configured to illuminate the entire width of the plurality of rows of the rice grain group k in the arrangement direction. The light receiving means for receiving the transmitted light through which the illuminating light from the linear light source 4 has passed through the predetermined location J is constituted by a line sensor 5A for transmitted light, and a plurality of rows of rice grain groups. The light receiving range is set so that the entire width is set as the light receiving range along the arrangement direction of k. still,
The line sensor 5B for reflected light is also provided with the plurality of rows of rice grain groups k.
The entire width of the light receiving area is set as the light receiving range along the direction in which the light receiving elements are arranged.

【0026】図4に示すように、上記両ラインセンサ5
A,5Bは、米粒kの大きさよりも小さい範囲p(例え
ば米粒kの大きさの10分の1程度)を夫々の受光対象
範囲として、各別に受光情報が取出し可能な複数個の受
光部5aを、米粒群kの予定存在箇所Jの全体に亘って
備えるように構成されている。具体的には、複数個の受
光部5aとしての受光素子が上記複数列の米粒群kの並
び方向に沿ってその全幅に亘って直線状に並置されたモ
ノクロタイプのCCDセンサと、米粒群kの像を上記C
CDセンサの各受光素子上に結像させるための光学系と
から構成されている。これにより、米粒群kの流れ方向
の全幅における透過及び反射画像情報が得られる。
As shown in FIG.
A and 5B are a plurality of light receiving units 5a from which light receiving information can be separately taken out, with a range p (for example, about one-tenth of the size of the rice grain k) smaller than the size of the rice grain k as each light receiving target range. Is provided over the entire planned existence location J of the rice grain group k. Specifically, a monochrome type CCD sensor in which light receiving elements as a plurality of light receiving portions 5a are linearly juxtaposed along the direction of arrangement of the plurality of rows of rice grain groups k over the entire width thereof, and a rice grain group k Image of C
And an optical system for forming an image on each light receiving element of the CD sensor. As a result, transmission and reflection image information over the entire width of the rice grain group k in the flow direction can be obtained.

【0027】上記両ラインセンサ5A,5Bの予定移送
経路における受光位置(予定存在箇所J)から経路方向
の下手側に、不良と判定された米粒kや異物等に対して
エアーを吹き付けて正常な米粒kの流れ方向から分離さ
せて前記不良物回収箱3に回収させるためのエアー吹き
付け装置6が設けられている。このエアー吹き付け装置
6は、米粒kの流れ方向に対して横幅方向に所定幅毎に
分割した各米粒群kに対して各別に吹き付け作動する複
数個のエアーガン6aを備えている。
Air is blown from the light receiving position (planned existence position J) of the line sensors 5A and 5B on the planned transfer path to the downstream side in the direction of the path to the rice grains k and foreign matters determined to be defective, and the air is blown normally. An air blowing device 6 is provided for separating the rice grains k from the flow direction and collecting them in the defective product collection box 3. The air blowing device 6 includes a plurality of air guns 6a that individually perform blowing operations on each of the rice grain groups k divided into predetermined widths in the width direction with respect to the flow direction of the rice grains k.

【0028】制御構成を説明すると、図3に示すよう
に、マイクロコンピュータ利用の制御装置10が設けら
れ、この制御装置10に、前記両ラインセンサ5A,5
Bからの各画像信号と、前記レベルセンサ12の検出信
号とが入力されている。一方、制御装置10からは、前
記エアー吹き付け装置6の各エアーガン6aを夫々各別
に作動させるために、図示しないコンプレッサーから上
記各エアーガン6aへの各エアー供給路のエアー流通を
オンオフする複数個の電磁弁11に対する駆動信号と、
前記レベルセンサ12の検出信号に基づいて、ホッパー
7内の貯溜量を設定状態に維持するための前記ゲート駆
動モータ9Bに対する駆動信号とが出力されている。
To explain the control structure, as shown in FIG. 3, a control device 10 using a microcomputer is provided, and the control device 10 includes the two line sensors 5A and 5A.
Each image signal from B and the detection signal of the level sensor 12 are input. On the other hand, from the control device 10, in order to operate each air gun 6a of the air blowing device 6 separately, a plurality of electromagnetic devices for turning on and off the air flow of each air supply path from a compressor (not shown) to each air gun 6a are provided. A drive signal for the valve 11;
Based on the detection signal of the level sensor 12, a drive signal for the gate drive motor 9B for maintaining the storage amount in the hopper 7 at a set state is output.

【0029】前記制御装置10を利用して、前記透過光
用のラインセンサ5Aの受光情報に基づいて、米粒群k
における各米粒の良否又は米粒群k内に混入した異物の
存否を判別する判別手段100が構成されている。具体
的には、図5の透過光用のラインセンサ5Aの出力波形
に示すように、この判別手段100は、透過光用のライ
ンセンサ5Aの受光量つまり各受光部5aの受光量に対
応する出力電圧が米粒群kに対する適正光量範囲ΔEt
の上限値ULと下限値LLとの間にある場合に正常な米
粒の存在を判定するとともに、設定適正範囲ΔEtの下
限値LLよりも小さい場合に、正常な米粒よりも透過率
が小さい不良の米粒や異物等(例えば、黒色の石粒)の
存在を判定する。
Utilizing the control device 10, based on the light receiving information of the transmitted light line sensor 5A, the rice grain group k
The determination means 100 is configured to determine the quality of each rice grain or the presence or absence of foreign matter mixed in the rice grain group k. Specifically, as shown in the output waveform of the transmitted light line sensor 5A in FIG. 5, the determination means 100 corresponds to the amount of light received by the line sensor 5A for transmitted light, that is, the amount of light received by each light receiving unit 5a. Output voltage is appropriate light amount range ΔEt for rice grain group k
Is determined between the upper limit value UL and the lower limit value LL, the presence of a normal rice grain is determined, and when smaller than the lower limit value LL of the set appropriate range ΔEt, the transmittance of the defective rice grain is smaller than that of the normal rice grain. The presence of rice grains, foreign matter, etc. (for example, black stone grains) is determined.

【0030】ここで、透過光の場合は、米粒kや異物等
が存在しない位置に対応する受光部5aでは、照明光源
4からの照明光を直接受光して設定適正範囲ΔEtの上
限値ULよりも大きい出力値Esになる。そこで、前記
判別手段100は、適正光量範囲ΔEtの上限値UL
と、照明光源4からの照明光を米粒k等を透過せずに受
光したときの受光量Esとの間に、明側の判定レベルU
L1を設定し、ラインセンサ5Aの受光量が、適正光量
範囲ΔEtの上限値ULと前記明側の判定レベルUL1
との間にある場合に、正常な米粒kよりも透過率が大き
い不良の米粒k又は前記異物の存在を判定するように構
成されている。この正常な米粒kよりも透過率が大きい
不良の米粒k又は異物の例としては、正常な米粒kを
「もち米」としたときの「うるち米」が正常な米粒kよ
りも透過率が大きい不良の米粒kになり、薄い色付の透
明なガラス片等が、正常な米粒kよりも透過率が大きい
異物になる。
Here, in the case of transmitted light, the light receiving portion 5a corresponding to a position where there is no rice grain k, foreign matter, etc. directly receives the illumination light from the illumination light source 4 and receives the light from the upper limit UL of the set appropriate range ΔEt. Also becomes a large output value Es. Therefore, the determination means 100 determines the upper limit value UL of the appropriate light amount range ΔEt.
And the light receiving amount Es when the illuminating light from the illuminating light source 4 is received without passing through the rice grains k and the like, the light-side determination level U
L1 is set, and the amount of light received by the line sensor 5A is set to the upper limit value UL of the appropriate light amount range ΔEt and the light-side determination level UL1.
In this case, it is configured to determine the presence of the defective rice grain k having a higher transmittance than the normal rice grain k or the presence of the foreign matter. As an example of a defective rice grain k or a foreign substance having a transmittance higher than that of the normal rice grain k, a defect in which “Uruchi rice” when the normal rice grain k is “glutinous rice” has a transmittance higher than that of the normal rice grain k. , And a thin colored transparent glass piece or the like becomes a foreign substance having a higher transmittance than the normal rice grain k.

【0031】図5には、受光部5aの出力電圧(受光
量)が、米粒kに一部着色部分が存在する位置や、黒色
の石等(e1で示す)、及び、胴割れ部分が存在する位
置(e2で示す)では、上記設定適正範囲ΔEtよりも
下側に位置し、又、正常な米粒よりも透過率が大きい異
物等が存在する場合には、位置e4に示すように設定適
正範囲ΔEtよりも上側で前記明側の判定レベルUL1
よりも下側に位置している状態を例示している。
FIG. 5 shows that the output voltage (light reception amount) of the light receiving portion 5a is different from the position where a part of the rice grain k has a colored portion, a black stone or the like (shown by e1), and the presence of a cracked portion. At a position (indicated by e2), which is located below the appropriate setting range ΔEt, and when there is a foreign substance or the like having a transmittance higher than that of normal rice grains, the appropriate setting is performed as indicated by a position e4. The bright side determination level UL1 above the range ΔEt.
FIG. 3 illustrates a state in which the position is lower than that of FIG.

【0032】そして、ラインセンサ5Aの受光量が、上
記明側の判定レベルUL1と、設定適正範囲ΔEtの上
限値ULとの間にあることを判別するために、前記判別
手段100は、ラインセンサ5Aの各受光部5aにおい
て、その受光量(出力電圧)が明側の判定レベルUL1
よりも小で且つ前記適正光量範囲ΔEtの上限値ULよ
りも大である受光部5aを求め、その求めた受光部5a
の隣接する連続個数が設定個数(例えば、2個)を超え
る箇所を、正常な米粒kよりも透過率が大きい不良の米
粒k又は前記異物の存在箇所と判定するように構成され
ている。
In order to determine that the amount of light received by the line sensor 5A is between the light-side determination level UL1 and the upper limit value UL of the set appropriate range ΔEt, the determination means 100 includes the line sensor 5A. The light receiving amount (output voltage) of each light receiving section 5a of 5A is determined by the light-side determination level UL1.
Is smaller than the upper limit value UL of the appropriate light amount range ΔEt, and the obtained light receiver 5a is determined.
Is determined such that a portion where the adjacent continuous number exceeds a set number (for example, two) is a defective rice grain k having a higher transmittance than a normal rice grain k or a location where the foreign matter is present.

【0033】つまり、判別手段100は、受光部5aの
受光量が明側の判定レベルUL1よりも小である2値情
報と、受光部5aの受光量が前記適正光量範囲ΔEtの
上限値ULよりも大である2値情報とを演算して、前記
受光量が前記明側の判定レベルUL1よりも小で且つ前
記適正光量範囲ΔEtの上限値ULよりも大である受光
部5aを求める。
That is, the discriminating means 100 determines whether the light receiving amount of the light receiving portion 5a is smaller than the bright side determination level UL1 and the binary information that the light receiving amount of the light receiving portion 5a is smaller than the upper limit UL of the appropriate light amount range ΔEt. The light receiving unit 5a is calculated by calculating the binary information which is also large, and the light receiving amount is smaller than the bright side determination level UL1 and larger than the upper limit UL of the appropriate light amount range ΔEt.

【0034】具体的な処理を、図6によって説明する。
(イ)は、受光部5aの受光量が明側の判定レベルUL
1よりも小のときを1とした出力波形であり、前述の4
つの位置e0,e1,e2,e4の夫々に対応する箇所
で1になっている。(ロ)は、設定適正範囲ΔEtの上
限値ULよりも大のときを1とした出力波形(上限値U
Lよりも小のときを1とした出力波形の反転波形)であ
り、前述の4つの位置e0,e1,e2,e4のうちで
e4だけが出力されていない。そして、(イ)の波形と
(ロ)の波形との論理積(AND処理)を演算すると、
(ハ)に示すように、e4だけに対応する信号波形が得
られる。但し、UL1にて検出される波形とULにて検
出される波形の幅が異なる(UL1の方がULに比べて
広い)ので、e4以外の位置e0,e1,e2において
も、前後に細いパルス状の波形が出るが、これは、前述
の設定個数(例えば、2個)以下の波形をカットするフ
イルター処理にて除去することができる。そして、
(ニ)に示すように、設定適正範囲ΔEtの下限値LL
よりも下側の位置e1,e2と、上記位置e4とが、不
良物の位置として判定される。
Specific processing will be described with reference to FIG.
(A) is a light-side determination level UL in which the amount of light received by the light receiving unit 5a is on the bright side.
The output waveform is defined as 1 when the value is smaller than 1.
It is 1 at locations corresponding to the three positions e0, e1, e2, and e4. (B) is an output waveform (upper limit value U) which is set to 1 when the value is larger than the upper limit value UL of the set appropriate range ΔEt.
(An inverted waveform of the output waveform when the value smaller than L is 1), and only e4 is not output among the above four positions e0, e1, e2, and e4. Then, when the logical product (AND processing) of the waveform (a) and the waveform (b) is calculated,
As shown in (c), a signal waveform corresponding to only e4 is obtained. However, since the width of the waveform detected at UL1 is different from the width of the waveform detected at UL (UL1 is wider than UL), even at positions e0, e1, and e2 other than e4, a narrow pulse before and after. A wave shape appears, which can be removed by a filtering process that cuts the number of waveforms equal to or less than the set number (for example, two). And
As shown in (d), the lower limit value LL of the setting appropriate range ΔEt
The positions e1 and e2 below the position e4 and the position e4 are determined as defective positions.

【0035】一方、反射光の場合には、図7の反射光用
のラインセンサ5Bの出力波形に示すように、ラインセ
ンサ5Aの複数個の受光部5aの受光情報に基づいて、
その各受光部5aの受光量に対応する出力電圧が設定適
正範囲ΔEhを外れた場合に前記米粒の不良又は前記異
物の存在を判定する。ここで、反射光用の設定適正範囲
ΔEhは、正常米粒からの標準的な反射光に対する出力
電圧レベルe0’を挟んで上下所定幅の範囲に設定され
る。
On the other hand, in the case of reflected light, as shown in the output waveform of the reflected light line sensor 5B in FIG. 7, based on the received light information of the plurality of light receiving sections 5a of the line sensor 5A.
When the output voltage corresponding to the amount of light received by each of the light receiving units 5a is out of the proper setting range ΔEh, it is determined whether the rice grains are defective or the foreign matter is present. Here, the setting appropriate range ΔEh for the reflected light is set to a range of a predetermined width above and below the output voltage level e0 ′ for the standard reflected light from the normal rice grain.

【0036】図7には、米粒kに一部着色部分が存在す
る位置(e1’で示す)や胴割れ部分が存在する位置
(e2’で示す)では、上記設定適正範囲ΔEhから下
側に外れている状態を例示し、又、ガラス片等の異物が
存在する場合には、異物からの強い直接反射光によって
位置e3’に示すように設定適正範囲ΔEhから上側に
外れている状態を例示している。又、図示しないが、黒
色の石等では、反射率が非常に小さいので、波形におい
て設定適正範囲ΔEhから下側に大きく外れることにな
る。
FIG. 7 shows that, at a position where a part of the rice grain k has a colored portion (indicated by e1 ') and a position where a cracked portion exists (indicated by e2'), the rice grain k is below the appropriate setting range ΔEh. Illustrates a state where it is off, and when foreign matter such as a glass piece is present, it is a state where it deviates upward from the proper setting range ΔEh as shown at a position e3 ′ due to strong direct reflection light from the foreign matter. doing. Although not shown, the reflectance of a black stone or the like is very small, so that the waveform greatly deviates from the proper setting range ΔEh downward.

【0037】そして、前記移送手段Hは、前記制御装置
10及び前記エアー吹き付け装置6をも利用して、前記
判別手段100の判別情報に基づいて、前記予定存在箇
所Jに移送した米粒群kのうちの正常な米粒kと不良の
米粒及び前記異物とを異なる経路に分離して移送するよ
うに構成されている。具体的には、判別手段100にて
前記米粒の不良又は前記異物の存在が判別された場合に
は、前記予定存在箇所Jから前記予定移送経路における
前記不良の米粒又は前記異物に対する異なる経路への分
離箇所(前記エアーガン6aの設置箇所)までの移送時
間が経過するに伴って、前記不良の米粒又は前記異物を
正常な米粒の経路と異なる経路に分離させるように構成
されている。つまり、米粒群kを自重にて落下させて移
送させるとともに、不良の米粒又は異物に対して、その
位置に対応する各エアーガン6aからエアーを吹き付け
て正常な米粒の経路から分離させる。
The transfer means H also uses the control device 10 and the air blowing device 6 based on the discriminating information of the discriminating means 100 to transfer the rice grain group k transferred to the expected location J. The normal rice grain k, the defective rice grain, and the foreign matter are separated and transferred to different routes. Specifically, when the discrimination means 100 discriminates the defective rice grain or the presence of the foreign matter, the discrimination from the planned existence location J to a different path for the defective rice grain or the foreign matter in the planned transfer path is performed. As the transfer time to the separation location (the location where the air gun 6a is installed) elapses, the defective rice grain or the foreign matter is separated into a path different from the path of the normal rice grain. That is, the rice grain group k is dropped and transported by its own weight, and the defective rice grains or foreign matter is blown from each air gun 6a corresponding to the position to separate the defective rice grains or foreign matter from the path of the normal rice grains.

【0038】〔別実施形態〕上記実施例では、受光手段
5Aが複数個の受光部5aを備えるように構成したが、
例えばフォトセンサー等の単一のセンサーで構成し、こ
のセンサーの出力について、適正光量範囲の上限値と下
限値、及び、明側の判定レベルを設定して、前述の判別
手段100による不良検出処理を行うようにしてもよ
い。
[Alternative Embodiment] In the above embodiment, the light receiving means 5A is configured to include a plurality of light receiving portions 5a.
For example, a single sensor such as a photo sensor is used, and the upper limit and the lower limit of the appropriate light amount range and the light-side determination level are set for the output of this sensor. May be performed.

【0039】又、上記実施例では、受光部5aの受光量
が明側の判定レベルUL1よりも小である2値情報と、
適正光量範囲の上限値ULよりも大である2値情報とを
演算して、受光量が明側の判定レベルよりも小で且つ適
正光量範囲の上限値よりも大である受光部を求めたが、
これに限るものではない。例えば、多値情報で表した受
光部5aの受光量を、多値情報で表した明側の判定レベ
ルUL1及び適正光量範囲の上限値ULと直接比較し
て、明側の判定レベルよりも小で且つ適正光量範囲の上
限値よりも大であるか否かを判定するようにしてもよ
い。
In the above embodiment, the binary information indicating that the amount of light received by the light receiving section 5a is smaller than the bright-side determination level UL1;
By calculating binary information that is larger than the upper limit value UL of the appropriate light amount range, a light receiving unit whose received light amount is smaller than the bright-side determination level and larger than the upper limit value of the appropriate light amount range is obtained. But,
It is not limited to this. For example, the light receiving amount of the light receiving unit 5a represented by the multi-value information is directly compared with the bright-side determination level UL1 and the upper limit value UL of the appropriate light amount range represented by the multi-value information, and is smaller than the bright-side determination level. Alternatively, it may be determined whether the value is larger than the upper limit value of the appropriate light amount range.

【0040】又、上記実施例のように、2値情報を演算
する場合においても、受光部の受光量が明側の判定レベ
ルよりも小であるときに1とし、適正光量範囲の上限値
よりも大であるときに1とする2値情報を得て、この2
値情報を論理積演算するものに限らない。
Also, in the case of calculating binary information as in the above embodiment, when the amount of light received by the light receiving section is smaller than the bright side determination level, it is set to 1 and the upper limit of the appropriate light amount range is set. Is large, binary information of 1 is obtained.
It is not limited to the one that performs logical AND operation on the value information.

【0041】上記実施例では、検査対象物としての粒状
体群が米粒群kである場合について例示したが、これに
限るものではなく、例えば、プラスチック粒等における
不良物や異物の存否を検査する場合にも適用できる。
In the above embodiment, the case where the granular material group as the inspection object is the rice particle group k has been described as an example. However, the present invention is not limited to this. For example, the presence or absence of defective or foreign matter in plastic particles or the like is inspected. Also applicable to cases.

【0042】上記実施例では、照明手段4を、複数列状
の検査対象物(米粒群k)の全幅を照明するようにライ
ン状の蛍光灯にて構成したが、検査対象物(米粒群k)
の予定存在箇所その他の条件に応じて、照明手段の具体
構成は適宜変更できる。又、上記実施例では、照明手段
4を、単一の照明手段にて構成したが、これ以外に、透
過光用と反射光用とに各別の照明手段を設けるようにし
てもよい。又、照明光量の均一性を良くする等の目的の
ために、透過光用の照明手段(例えば蛍光灯)から発光
した光をそのまま照明光とせず、拡散反射する反射板で
反射させた光を照明光とすることもできる。
In the above embodiment, the illuminating means 4 is constituted by a line-shaped fluorescent lamp so as to illuminate the entire width of a plurality of rows of inspection objects (rice grain group k). )
The specific configuration of the illuminating means can be changed as appropriate according to the expected location and other conditions. Further, in the above embodiment, the lighting means 4 is constituted by a single lighting means. However, separate lighting means may be provided for transmitted light and reflected light. Also, for the purpose of improving the uniformity of the illumination light amount, the light emitted from the illumination means for transmitted light (for example, a fluorescent lamp) is not used as it is as illumination light, but the light reflected by a diffusely reflecting reflector is not used. It can be illumination light.

【0043】上記実施例では、受光手段5Aを、モノク
ロタイプのCCDセンサを利用して構成したが、撮像管
式のテレビカメラを利用して構成してもよい。又、モノ
クロタイプではなく、カラータイプのCCDセンサにて
構成して、例えば、色情報R,G,B毎の受光量から不
良米や異物の存否をさらに精度良く判別するようにして
もよい。
In the above embodiment, the light receiving means 5A is constituted by using a monochrome type CCD sensor, but may be constituted by using an image pickup tube type television camera. Instead of a monochrome type CCD sensor, a color type CCD sensor may be used, and the presence or absence of defective rice or foreign matter may be more accurately determined from the amount of light received for each of the color information R, G, and B.

【0044】上記実施例では、移送手段Hにて検査対象
物としての粒状体群(米粒群k)を予定移送経路に沿っ
て複数列並ぶ状態で(つまり横方向に広がった状態で)
移送するようにしたが、これ以外に、例えば、予定移送
経路に沿って一列状態で(つまり直線状に)移送させる
ようにしてもよい。
In the above-described embodiment, the transfer means H arranges a plurality of rows of granular materials (rice grain groups k) as inspection objects along a predetermined transport path (that is, in a state where they are spread in the horizontal direction).
Although the transfer is performed, the transfer may be performed, for example, in a line (that is, in a straight line) along a predetermined transfer path.

【0045】上記実施例では、検査対象物としての粒状
体群(米粒群k)を予定移送経路に沿って一層状態で複
数列並ぶ状態で移送する移送手段Hを構成するために、
傾斜させたシュータ1を設けてその面上を粒状体群を滑
らせるようにしたが、これ以外に、例えば、粒状体群を
一層状態で載置して搬送する搬送装置等を設けてもよ
い。又、自重にて落下している粒状体群(米粒群k)中
の不良物に向けてエアーを吹き付けて、正常な粒状体の
経路から不良物を分離して移送するように、移送手段H
を構成したが、これに限るものではなく、例えば、不良
物をエアーで吸引するようにしてもよい。
In the above embodiment, the transfer means H for transferring a group of granular materials (rice particle group k) as an object to be inspected in a state of being arranged in a plurality of rows along a predetermined transfer path is constituted.
Although the inclined shooter 1 is provided to slide the granular material group on the surface thereof, in addition to this, for example, a transport device or the like for mounting and transporting the granular material group in a single layer state may be provided. . Air is blown toward defective particles in the group of granular materials (rice particle group k) that are falling under their own weight, so that the defective means is separated from the normal path of the granular material and transported.
However, the present invention is not limited to this. For example, a defective product may be sucked by air.

【図面の簡単な説明】[Brief description of the drawings]

【図1】不良検出・除去装置の概略斜視図FIG. 1 is a schematic perspective view of a defect detection / removal device.

【図2】同概略側面図FIG. 2 is a schematic side view of the same.

【図3】制御構成のブロック図FIG. 3 is a block diagram of a control configuration.

【図4】受光検出範囲の説明図FIG. 4 is an explanatory diagram of a light reception detection range.

【図5】透過光受光手段の出力波形図FIG. 5 is an output waveform diagram of transmitted light receiving means.

【図6】透過光の場合の不良検出処理を説明する波形図FIG. 6 is a waveform diagram illustrating a defect detection process in the case of transmitted light.

【図7】反射光受光手段の出力波形図FIG. 7 is an output waveform diagram of reflected light receiving means.

【図8】従来例における受光検出部を示す側面図FIG. 8 is a side view showing a light receiving detection unit in a conventional example.

【図9】従来例における不良検出処理を説明する波形図FIG. 9 is a waveform diagram illustrating a defect detection process in a conventional example.

【符号の説明】[Explanation of symbols]

4 照明手段 5A 受光手段 5a 受光部 100 判別手段 H 移送手段 Reference Signs List 4 illuminating means 5A light receiving means 5a light receiving unit 100 discriminating means H transport means

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 粒状体群を検査対象物として、その検査
対象物の予定存在箇所を照明する照明手段と、その照明
手段からの照明光が前記予定存在箇所を透過した透過光
を受光する受光手段と、その受光手段の受光情報に基づ
いて、粒状体群における各粒状体の良否又は粒状体群内
に混入した異物の存否を判別する判別手段とが設けられ
た不良検出装置であって、 前記判別手段は、前記受光手段の受光量が前記粒状体に
対する適正光量範囲の上限値と下限値との間にある場合
に正常な粒状体の存在を判定するとともに、 前記適正光量範囲の上限値と、前記照明手段からの照明
光を検査対象物を透過せずに受光したときの受光量との
間に、明側の判定レベルを設定し、前記受光手段の受光
量が、前記適正光量範囲の上限値と前記明側の判定レベ
ルとの間にある場合に、正常な粒状体よりも透過率が大
きい不良の粒状体又は前記異物の存在を判定するように
構成されている不良検出装置。
An illumination means for illuminating a predetermined existence position of an inspection object with a group of granular materials as an inspection object, and a light receiving means for receiving illumination light from the illumination means transmitted through the expected existence position Means, based on the light receiving information of the light receiving means, a defect detection device provided with a determination means for determining the quality of each granular body in the granular body group or the presence of foreign matter mixed in the granular body group, The determining means determines the presence of a normal granular material when the amount of light received by the light receiving means is between the upper limit value and the lower limit value of the appropriate light amount range for the granular material, and determines the upper limit value of the appropriate light amount range. A light-side determination level is set between the amount of light received when the illumination light from the illuminating unit is received without passing through the inspection object, and the amount of light received by the light-receiving unit falls within the appropriate light amount range. Upper limit and the light side judgment level Configured failure detecting apparatus as in some cases, to determine the presence of the granules or the foreign substance transmittance is larger defect than normal granules during.
【請求項2】 前記判別手段は、前記受光手段の受光量
が前記適正光量範囲の下限値よりも小さい場合に、正常
な粒状体よりも透過率が小さい不良の粒状体又は前記異
物の存在を判定するように構成されている請求項1記載
の不良検出装置。
2. The method according to claim 1, wherein when the light receiving amount of the light receiving unit is smaller than a lower limit value of the appropriate light amount range, the determining unit determines whether there is a defective granular material or a foreign material having a transmittance smaller than a normal granular material. The failure detection device according to claim 1, wherein the failure detection device is configured to determine.
【請求項3】 前記受光手段は、各別に受光情報が取出
し可能な複数個の受光部を前記予定存在箇所の全体に亘
って備えるように構成され、 前記判別手段は、前記各受光部において、その受光量が
前記明側の判定レベルよりも小で且つ前記適正光量範囲
の上限値よりも大である受光部を求め、その求めた受光
部の隣接する連続個数が設定個数を超える箇所を、正常
な粒状体よりも透過率が大きい不良の粒状体又は前記異
物の存在箇所と判定するように構成されている請求項1
又は2記載の不良検出装置。
3. The light receiving unit is configured to include a plurality of light receiving units from which light receiving information can be separately taken out over the entirety of the planned existence location, and the determining unit includes: A light receiving portion whose light receiving amount is smaller than the light-side determination level and larger than the upper limit of the appropriate light amount range is determined. 2. The apparatus according to claim 1, wherein the defect is determined to be a defective granular material having a transmittance higher than that of a normal granular material or a location of the foreign matter.
Or the defect detection device according to 2.
【請求項4】 前記判別手段は、前記受光部の受光量が
前記明側の判定レベルよりも小である2値情報と、前記
受光部の受光量が前記適正光量範囲の上限値よりも大で
ある2値情報とを演算して、前記受光量が前記明側の判
定レベルよりも小で且つ前記適正光量範囲の上限値より
も大である受光部を求めるように構成されている請求項
3記載の不良検出装置。
4. The binary information that the light receiving amount of the light receiving unit is smaller than the light side determination level, and the light receiving amount of the light receiving unit is larger than an upper limit value of the appropriate light amount range. And calculating the binary information to obtain a light receiving unit in which the received light amount is smaller than the bright side determination level and larger than the upper limit value of the appropriate light amount range. 3. The defect detection device according to 3.
【請求項5】 請求項1〜4のいずれか1項に記載の不
良検出装置を備えた不良物除去装置であって、 前記検査対象物を予定移送経路に沿って移送する移送手
段が設けられ、 前記予定移送経路を挟んで、一方側に前記照明手段が配
置され、他方側に前記受光手段が配置され、 前記移送手段は、前記検査対象物を前記受光手段の受光
位置に移送するとともに、前記判別手段の判別情報に基
づいて、前記受光手段の受光位置に移送した前記検査対
象物のうちの正常な粒状体と不良の粒状体及び前記異物
とを異なる経路に分離して移送するように構成されてい
る不良物除去装置。
5. A defect removing device comprising the defect detection device according to claim 1, further comprising a transfer unit that transfers the inspection object along a predetermined transfer path. The lighting means is arranged on one side, and the light receiving means is arranged on the other side, with the scheduled transfer path interposed therebetween, and the transferring means transfers the inspection object to a light receiving position of the light receiving means, On the basis of the discrimination information of the discriminating means, the normal granular material, the defective granular material, and the foreign matter among the inspection objects transferred to the light receiving position of the light receiving means are separated and transferred to different paths. The configured defect removal device.
【請求項6】 前記移送手段は、前記検査対象物を一層
状態で且つ複数列並ぶ状態で移送するように構成され、 前記照明手段は、前記複数列の検査対象物の並び方向の
全幅を照明するように構成され、 前記受光手段は、前記複数列の検査対象物の並び方向に
沿ってその全幅を受光範囲とするように構成されている
請求項5記載の不良物除去装置。
6. The transfer means is configured to transfer the inspection objects in a single-layer state and in a plurality of rows, and the illumination means illuminates the entire width of the plurality of rows of the inspection objects in the arrangement direction. 6. The defective object removing device according to claim 5, wherein the light receiving unit is configured to have a full width as a light receiving range along a direction in which the plurality of rows of inspection objects are arranged.
【請求項7】 前記移送手段は、前記検査対象物を自重
にて落下させて移送させるとともに、前記不良の粒状体
又は前記異物に対してエアーを吹き付けて正常な粒状体
の経路から分離させるように構成されている請求項5又
は6記載の不良物除去装置。
7. The transfer means drops the test object by its own weight and transfers the test object, and blows air on the defective granular material or the foreign matter so as to separate the defective granular material or the foreign substance from a path of a normal granular material. The defective object removing device according to claim 5 or 6, wherein
JP25834796A 1996-09-30 1996-09-30 Defect detector and defective removing device Pending JPH1099795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25834796A JPH1099795A (en) 1996-09-30 1996-09-30 Defect detector and defective removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25834796A JPH1099795A (en) 1996-09-30 1996-09-30 Defect detector and defective removing device

Publications (1)

Publication Number Publication Date
JPH1099795A true JPH1099795A (en) 1998-04-21

Family

ID=17318987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25834796A Pending JPH1099795A (en) 1996-09-30 1996-09-30 Defect detector and defective removing device

Country Status (1)

Country Link
JP (1) JPH1099795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005370A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Mining Co Ltd Imaging apparatus and identification apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005370A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Mining Co Ltd Imaging apparatus and identification apparatus using the same

Similar Documents

Publication Publication Date Title
JP3079932B2 (en) Grain color sorter
US5538142A (en) Sorting apparatus
WO1995004612A1 (en) Plastic container sorting system and method
JP2010042326A (en) Optical cereal grain sorting apparatus
JP4675120B2 (en) Granule sorter
JP3505027B2 (en) Defective device
JP4076414B2 (en) Defective object detection device and separation device using the same
JPH1190345A (en) Inspection apparatus of granular bodies
JPH11267596A (en) Grainy material inspection device
JP3318223B2 (en) Defect detection device and defect removal device
JP2001264256A (en) Powder and grain inspecting device
JP3288613B2 (en) Defect detection device and defect removal device
JP4707511B2 (en) Foreign matter inspection device in liquid filled in light transmissive container
JP3146165B2 (en) Defect detection device and defect removal device
JP4338284B2 (en) Powder inspection equipment
JPH10174938A (en) Granular material inspection apparatus
JPH1157628A (en) Device and system for granular material inspection
JP2002263585A (en) Granular material classifying apparatus and granular material treating apparatus
JPH1099795A (en) Defect detector and defective removing device
JPH1099797A (en) Inspection device for granules
JP3146149B2 (en) Defect detection device and defect removal device
JPH10174939A (en) Granular material inspection apparatus
JPH1190346A (en) Defect detector and defective article remover
JPH10109071A (en) Defective detector and defective article remover
JPH10174940A (en) Granular material inspection apparatus