JPH1096808A - Formation of fine pattern - Google Patents

Formation of fine pattern

Info

Publication number
JPH1096808A
JPH1096808A JP25125296A JP25125296A JPH1096808A JP H1096808 A JPH1096808 A JP H1096808A JP 25125296 A JP25125296 A JP 25125296A JP 25125296 A JP25125296 A JP 25125296A JP H1096808 A JPH1096808 A JP H1096808A
Authority
JP
Japan
Prior art keywords
mold
metal
pattern
fine
ruggedness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25125296A
Other languages
Japanese (ja)
Inventor
Toshiaki Tamamura
敏昭 玉村
Masashi Nakao
正史 中尾
Hideki Masuda
秀樹 益田
Akira Ozawa
章 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25125296A priority Critical patent/JPH1096808A/en
Publication of JPH1096808A publication Critical patent/JPH1096808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily form metallic patterns including fine patterns with a printing technique of pressing a mold with good reproducibility by directly pressing and pressurizing this mold to a metallic layer. SOLUTION: An object 21 having patterned ruggedness including the fine patterns of <=1μm is brought into tight contact directly with a working object having the metallic layer on the surface and is pressurized thereto in order to form the patterned ruggedness including the fine patterns of <=1μm on the metal surface. Namely, the object 21 to be formed as the mold,i is first subjected to fine processing by electron beam lithography and dry etching, by which the patterned ruggedness is formed on the surface and the mold 22 is obtd. This mold is then brought into tight contact with the surface of the metal having the smoothed surface and is pressurized thereto, by which the relatively soft metallic is deformed and the ruggedness reverse from the ruggedness of the mold 22 is formed on the surface. The rugged patterns 24 of the metal are completed by removing the mold 22 thereafter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回折格子、偏光子
等の光学素子等のデバイス作製に適用できる微細パタン
を形成する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a fine pattern which can be applied to manufacturing devices such as optical elements such as a diffraction grating and a polarizer.

【0002】[0002]

【従来の技術】物体表面にパタン状の凹凸を作る方法
は、金型を用いたモールド成形やプレス技術、印刷技術
等が汎用的に使われている。しかし、これらの技術の解
像度は、金型の製造精度や耐久性等の要因から、数μm
程度に限界があり、光学素子や半導体素子で要求されて
いる1μm以下のいわゆるサブミクロン領域のパタンを
形成するには、リソグラフィ技術が用いられている。こ
れは、紫外線・X線・電子線等の短波長の露光源を被加
工面上に塗布したレジストと呼ばれる感光材にパタン状
に照射して、レジスト中に潜像を作り、これを現像して
パタンとなし、このパタン状レジストをマスクとして、
被加工面の加工を行うものである。このようなリソグラ
フィ工程は、大規模集積回路等の半導体素子の製造に汎
用的に使用されているものの、製造工程が複雑で、多大
な設備投資が必要である。更に、0.1μm以下のナノ
メータサイズの凹凸を形成するには、高解像度電子ビー
ム露光装置が必要になり、更に、これを用いて高密度の
ナノメータパタンを大面積に描画しようとすると、長時
間の露光が必要となる。
2. Description of the Related Art As a method of forming pattern-like irregularities on the surface of an object, molding using a mold, a pressing technique, a printing technique, and the like are widely used. However, the resolution of these technologies is several μm due to factors such as mold manufacturing accuracy and durability.
Lithography technology is used to form a so-called submicron region pattern of 1 μm or less required for optical elements and semiconductor elements. This involves irradiating a photosensitive material called a resist, which is a resist coated on the surface to be processed, with a short-wavelength exposure source such as ultraviolet rays, X-rays, or an electron beam in a pattern to form a latent image in the resist and developing it. Using this pattern-like resist as a mask,
This is for processing the surface to be processed. Although such a lithography process is generally used for manufacturing a semiconductor device such as a large-scale integrated circuit, the manufacturing process is complicated and requires a large capital investment. In addition, a high-resolution electron beam exposure apparatus is required to form nanometer-sized irregularities of 0.1 μm or less, and furthermore, if a high-density nanometer pattern is to be drawn on a large area using this apparatus, it takes a long time. Exposure is required.

【0003】このような問題点を克服する手段として、
最近、ナノメータサイズの凹凸を有する型を被加工面上
のレジストに押しつけて、レジスト上にこの凹凸を転写
する方法が提案されている(Stephen Y.Chou,Pete
r R.Krauss and PrestonJ.Renstrom;“Imprint
of sub 25nm vias and trenches in polymers”,A
pplied Physics Letters,Vol.67(21),20
November 1995pp3114−3116)。
[0003] As a means of overcoming such problems,
Recently, a method has been proposed in which a mold having nanometer-sized unevenness is pressed against a resist on a surface to be processed, and the unevenness is transferred onto the resist (Stephen Y. Chou, Pete).
r R. Krauss and Preston J. Renstrom; "Imprint
of sub 25nm vias and trenches in polymers ”, A
pplied Physics Letters, Vol. 67 (21), 20
November 1995 pp 3114-3116).

【0004】上記の技術を図3および図4に基づいて説
明する。なお、図3と図4は連続して工程を示してお
り、図3の(1−4)から図4の(1−5)へと続いて
いる。先ず、型の基板となるシリコン基板11を熱酸化
して、表面に酸化シリコン層12を形成する(1−
1)。この基板に高解像度の電子ビームリソグラフィで
最小25nmのパタンを形成し、深さ250nmの酸化シ
リコン13をエッチングし、レジストを除去して型を完
成させる(1−2)。次に、被加工基板として同様にシ
リコン基板14を用い、これに55nmの膜厚のPMM
A(ポリメチルメタクリレート)のレジスト15をスピ
ンコートし、この上に型(11+13)を密着させる
(1−3)。そしてPMMAのガラス転移温度の105
℃を上回る200℃に昇温した後、型に13.1MPa
の圧力をかける(1−4)。その後、室温まで冷却させ
て、注意深く型をはずすと、PMMA16に凹凸が形成
される(1−5)。その後の加工を行うには、金属の例
をとると、凹部に残存するPMMAを酸素プラズマで除
去する(1−6)。ついで、金属18をこの上に蒸着し
(1−7)、溶剤中で残存するPMMAをその上の金属
と共に除去して、金属パターン19を得る(1−8)。
The above technique will be described with reference to FIGS. 3 and 4. Note that FIGS. 3 and 4 show steps in succession, and continue from (1-4) in FIG. 3 to (1-5) in FIG. First, a silicon substrate 11 serving as a mold substrate is thermally oxidized to form a silicon oxide layer 12 on the surface.
1). A pattern of a minimum of 25 nm is formed on this substrate by high-resolution electron beam lithography, the silicon oxide 13 having a depth of 250 nm is etched, and the resist is removed to complete a mold (1-2). Next, a silicon substrate 14 was similarly used as a substrate to be processed, and a PMM having a thickness of 55 nm was formed thereon.
A (polymethyl methacrylate) resist 15 is spin-coated, and a mold (11 + 13) is adhered thereon (1-3). And the glass transition temperature of PMMA of 105
After raising the temperature to 200 ° C, which is higher than
(1-4). Thereafter, the mold is cooled down to room temperature, and the mold is carefully removed, so that irregularities are formed on the PMMA 16 (1-5). To perform the subsequent processing, in the case of a metal, PMMA remaining in the concave portion is removed by oxygen plasma (1-6). Next, a metal 18 is vapor-deposited thereon (1-7), and PMMA remaining in the solvent is removed together with the metal thereon to obtain a metal pattern 19 (1-8).

【0005】この方法では、高解像度の電子ビームリソ
グラフィを用いて、型を形成すれば、その後は(1−
3)〜(1−8)の工程を繰り返すことにより、電子ビ
ームリソグラフィを行うことなく、ナノメータのサイズ
の金属パタンが得られる利点があると、報告されてい
る。しかし、この方法では、電子ビームリソグラフィの
工程を除いても、まだ、工程が複雑で、昇温・冷却等に
かなり時間を要する。また、最も問題であるのは、加圧
や除去の際に、微細な凹凸構造になっている酸化シリコ
ンが破壊されやすく、繰り返しの使用が困難な点であ
る。
In this method, if a mold is formed by using high-resolution electron beam lithography, then (1-
It has been reported that there is an advantage that a metal pattern of a nanometer size can be obtained without repeating electron beam lithography by repeating the steps 3) to (1-8). However, in this method, even if the step of electron beam lithography is omitted, the steps are still complicated, and considerable time is required for temperature rise and cooling. Also, the most problematic point is that silicon oxide having a fine uneven structure is easily broken at the time of pressurization or removal, and it is difficult to use repeatedly.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、型を押しつけるプリント技術で、1μm以下
の金属パタンを簡便に、かつ、再現性良く形成できる技
術を提供することを目的としている。
SUMMARY OF THE INVENTION In view of the above prior art, an object of the present invention is to provide a technique capable of easily and reproducibly forming a metal pattern of 1 μm or less by a printing technique of pressing a mold. I have.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に記載
の微細パタン形成法では、簡便な工程で1μm以下の微
細パタンを含むパタン状の凹凸を金属表面に形成するた
めに、型を金属層に直接押しつけて加圧することを特徴
とする。
In the method for forming a fine pattern according to the first aspect of the present invention, in order to form a pattern-like unevenness including a fine pattern of 1 μm or less on a metal surface by a simple process, a mold is formed. It is characterized by directly pressing against the metal layer and pressing.

【0008】更に、本発明の請求項2に記載の微細パタ
ン形成法では、金属層に型を直接押しつけても、型に形
成した微細な凹凸が破壊されないように、型を硬度・強
度共に優れたダイヤモンド板、あるいは、シリコンカー
バイド板で形成することを特徴としている。
Furthermore, in the method for forming a fine pattern according to the second aspect of the present invention, the mold is excellent in both hardness and strength so that even if the mold is pressed directly against the metal layer, the fine irregularities formed in the mold are not destroyed. It is characterized by being formed from a diamond plate or a silicon carbide plate.

【0009】また、本発明の請求項3に記載の微細パタ
ン形成法では、種々の応用分野に対応するため、上記の
型の少なくともその表面がダイヤモンドあるいはダイヤ
モンド状カーボン、あるいはシリコンカーバイドで形成
することを特徴としている。
In the fine pattern forming method according to the third aspect of the present invention, at least the surface of the mold is formed of diamond, diamond-like carbon, or silicon carbide in order to cope with various application fields. It is characterized by.

【0010】[0010]

【発明の実施の形態】本発明では、1μm以下の微細な
パタンを含むパタン状の凹凸を金属表面に形成するため
に、1μm以下の微細なパタンを含むパタン状の凹凸を
有する物体を、金属層を表面にもつ被加工物体に、直接
密着させて加圧することを特徴としている。この方法を
図1に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in order to form a pattern-like unevenness including a fine pattern of 1 μm or less on a metal surface, an object having a pattern-like unevenness including a fine pattern of 1 μm or less is formed on a metal surface. It is characterized in that it is brought into direct contact with a workpiece having a layer on the surface and is pressed. This method will be described with reference to FIG.

【0011】図1は本発明の第1の実施の形態の工程を
示す断面図である。先ず、型となる物体21に電子ビー
ムリソグラフィとドライエッチングで微細加工を施し、
表面にパタン状の凹凸をつけ、型22とする(2−
1)。次いで、これを表面を平滑にした金属23の表面
に密着し(2−2)、加圧すると、比較的柔らかな金属
は変形して、その表面に型と逆の凹凸が形成される(2
−3)。その後、型を取り外すことにより金属の凹凸パ
タン24が完成する(2−4)。
FIG. 1 is a sectional view showing the steps of the first embodiment of the present invention. First, the object 21 serving as a mold is subjected to fine processing by electron beam lithography and dry etching,
A pattern 22 is formed on the surface to form a mold 22 (2-
1). Next, this is brought into close contact with the surface of the metal 23 whose surface has been smoothed (2-2), and when pressurized, the relatively soft metal is deformed and irregularities opposite to the mold are formed on the surface (2).
-3). Thereafter, the metal pattern 24 is completed by removing the mold (2-4).

【0012】この方法では、従来のレジストに型を押し
つけて、このレジストの凹凸を基に金属パタンを形成す
る方法に比べて、大幅に工程を簡略化できる。この際、
問題になるのは、軟化させた高分子に型を転写する場合
より、加える圧力を高くする必要があることで、金や、
アルミニウムのように比較的柔らかい金属においても、
約30MPa以上の高い圧力が必要である。これは、高
分子の場合の2倍以上で、シリコンや酸化シリコンで凹
凸を構成すると、微細な凹凸が破壊されたり、型の基板
自体が損傷しやすい。一方、金属で微細な凹凸を有する
型を構成すると、破壊には非常に強くなる反面、加圧に
より型が変形しやすいという問題点があることがわかっ
た。
In this method, the process can be greatly simplified as compared with a conventional method in which a mold is pressed against a resist and a metal pattern is formed based on the unevenness of the resist. On this occasion,
The problem is that the applied pressure needs to be higher than when transferring the mold to the softened polymer.
Even in relatively soft metals such as aluminum,
A high pressure of about 30 MPa or more is required. This is more than twice as large as that of the polymer, and when the unevenness is made of silicon or silicon oxide, the minute unevenness is easily broken or the mold substrate itself is easily damaged. On the other hand, it has been found that when a mold having fine irregularities is made of metal, the mold is extremely resistant to destruction, but has a problem that the mold is easily deformed by pressure.

【0013】以上の知見を基に本発明者等は、型を、強
度・硬度とも優れ、表面平滑性も良く、微細な凹凸の形
成が容易な、ダイヤモンド板、あるいは、シリコンカー
バイド板で構成すると、上記の問題点を全て克服できる
ことを見出し、本発明の完成に至った。ダイヤモンド基
板の場合は、微細凹凸、基板共に、60MPaの圧力に
も損傷や破壊が見られず、シリコンカーバイド板でも、
50MPaの圧力に耐久性があり、金属層を表面に持つ
物体に型の微細凹凸をプリントできることが明らかにな
った。
Based on the above findings, the inventors of the present invention have proposed that the mold be made of a diamond plate or a silicon carbide plate having excellent strength and hardness, good surface smoothness, and easy formation of fine irregularities. The inventors have found that all of the above problems can be overcome, and have completed the present invention. In the case of a diamond substrate, no damage or destruction was observed even at a pressure of 60 MPa for the fine irregularities and the substrate, and even for a silicon carbide plate,
It was found that the pressure of 50 MPa is durable, and that a fine unevenness of a mold can be printed on an object having a metal layer on the surface.

【0014】また、微細なパタン状凹凸を有する物体
が、ダイヤモンド板、あるいはシリコンカーバイド板そ
のものである必要はなく、適切な強度を有する物体の表
面がダイヤモンドあるいはダイヤモンド状カーボン、あ
るいはシリコンカーバイドであれば、金属層への転写が
可能である。即ち、ステンレス等の物体の表面に、ダイ
ヤモンド膜、ダイヤモンド状カーボン膜、シリコンカー
バイド膜を堆積・張り付け等の手段で形成し、これを微
細加工して、型を構成する。更には、凹凸を形成したダ
イヤモンド、ダイヤモンド状カーボン、シリコンカーバ
イドを張り付ける方法も可能である。
It is not necessary that the object having fine pattern irregularities is a diamond plate or a silicon carbide plate itself. If the surface of the object having appropriate strength is diamond or diamond-like carbon or silicon carbide, And transfer to a metal layer is possible. That is, a diamond film, a diamond-like carbon film, and a silicon carbide film are formed on the surface of an object such as stainless steel by means such as deposition and attachment, and are finely processed to form a mold. Furthermore, a method of attaching diamond, diamond-like carbon, or silicon carbide having irregularities is also possible.

【0015】型となる物体の平滑な表面に1μm以下の
微細な凹凸を作るには、ホトリソグラフィ、紫外線二光
束干渉法、電子ビームリソグラフィ、X線リソグラフ
ィ、イオンビームリソグラフィ等を目的やパタン形状に
応じて、使い分けることが可能である。本発明では、殆
どのパタンに対応できる電子ビームリソグラフィを使用
したが、当然のことながら、この手段にのみ限られるも
のではない。
In order to form fine irregularities of 1 μm or less on a smooth surface of a mold object, photolithography, ultraviolet two-beam interferometry, electron beam lithography, X-ray lithography, ion beam lithography, etc. are used to form a pattern or a pattern. They can be used properly depending on the situation. In the present invention, electron beam lithography which can handle most patterns is used, but it is needless to say that the present invention is not limited to this means.

【0016】また、ダイヤモンドやダイヤモンド状カー
ボンの表面に高解像度で凹凸を付与する加工は、酸素プ
ラズマ耐性の優れた、シリコン含有レジストや、酸化シ
リコン、窒化シリコンや金属をマスクとして、酸素をエ
ッチングガスとして用いる、反応性イオンエッチングで
容易に行うことができる。一方、シリコンカーバイド表
面の加工は、レジストや金属をマスクとした、フルオロ
カーボン系のエッチングガスを用いたドライエッチング
が使用できる。
[0016] In addition, the process of imparting irregularities with high resolution to the surface of diamond or diamond-like carbon is performed by using a silicon-containing resist, silicon oxide, silicon nitride or metal having excellent oxygen plasma resistance as a mask to remove oxygen as an etching gas. Can be easily performed by reactive ion etching. On the other hand, the silicon carbide surface can be processed by dry etching using a resist or metal as a mask and using a fluorocarbon-based etching gas.

【0017】一方、金属層を表面にもつ物体としては、
鏡面研磨した金属板等の金属そのもの、あるいは、鏡面
を有する適当な基板上に、蒸着やスパッタリング、電気
メッキ等で金属薄膜を堆積したもの等、応用目的に応じ
た基板構成を用いる。但し、数十MPaの高い圧力で、
型を押しつけても、破損しない程度の基板強度を確保す
る必要はある。加工する金属の種類としては、押しつけ
る圧力を低くできるという観点から、柔らかいアルミニ
ウム、金、銀、鉛、錫、黄銅が適する。加圧手段として
は、油圧プレス等の通常のプレス装置が使用できる。
On the other hand, as an object having a metal layer on the surface,
A substrate configuration suitable for the application purpose is used, such as a metal itself such as a mirror-polished metal plate, or a metal thin film deposited on a suitable substrate having a mirror surface by vapor deposition, sputtering, electroplating, or the like. However, at a high pressure of several tens MPa,
It is necessary to ensure the strength of the substrate such that it does not break even when the mold is pressed. As the type of metal to be processed, soft aluminum, gold, silver, lead, tin, and brass are suitable from the viewpoint that the pressing pressure can be reduced. As the pressurizing means, a normal press device such as a hydraulic press can be used.

【0018】また、反射型回折格子のように、金属表面
に単に凹凸があれば良いものについては、型を密着して
加圧する工程のみであるが、金属配線や偏光子のように
金属がパタン状に分離している必要があるものについて
は、図2のような工程でパタン化が可能である。
In the case of a diffraction grating having only a metal surface having only irregularities, such as a reflection type diffraction grating, only the step of pressing the mold in close contact is performed. Those that need to be separated in a shape can be patterned by a process as shown in FIG.

【0019】図2は本発明の第2の実施の形態の工程を
示す断面図である。図2において、先ず、配線パタンや
偏光子に用いる格子上のパタンに相当する凹凸をダイヤ
モンドあるいはシリコンカーバイドの基板31の表面に
電子ビームリソグラフィと反応性イオンエッチングで形
成する(3−1)。この型32を数100〜数10nmの
膜厚の金あるいはアルミニウムあるいは銀34を蒸着し
た基板33に密着させ(3−2)、プレス装置を用い
て、40〜50MPa程度の圧力をかけると、金属薄膜
に凹凸35が形成される(3−3)。型をはずした後
(3−4)、アルゴンガスを用いたイオンビームスパッ
タリングで、凹部に残存する膜厚分の金属を除去して、
金属パタン36とする(3−5)。
FIG. 2 is a sectional view showing the steps of the second embodiment of the present invention. In FIG. 2, first, unevenness corresponding to a wiring pattern or a pattern on a grid used for a polarizer is formed on the surface of a substrate 31 of diamond or silicon carbide by electron beam lithography and reactive ion etching (3-1). This mold 32 is brought into close contact with a substrate 33 on which gold, aluminum or silver 34 having a thickness of several hundreds to several tens nm is deposited (3-2), and when a pressure of about 40 to 50 MPa is applied using a press device, the metal becomes Asperities 35 are formed on the thin film (3-3). After removing the mold (3-4), the metal corresponding to the thickness remaining in the concave portion is removed by ion beam sputtering using argon gas.
This is a metal pattern 36 (3-5).

【0020】以上のように、本発明の微細パタン形成法
では、従来のレジストにプリントして、これを金属パタ
ンに加工する図3、図4に示した工程に比較して、大幅
に工程を簡略化できる利点がある。本発明で作製する微
細金属パタンは、回折格子、偏光子等の光学素子、半導
体デバイス用微細金属配線に利用可能である。また、本
発明の構造の型は、当然のことながら、工程の大幅簡略
化は出来ないものの、図3、図4に示した工程でレジス
トに型をプリントする技術にも適用可能であり、型の繰
り返し使用に対する耐久性を大幅に向上できることは明
らかである。
As described above, in the fine pattern forming method of the present invention, compared with the steps shown in FIGS. 3 and 4 in which a conventional resist is printed and processed into a metal pattern, the steps are greatly reduced. There is an advantage that can be simplified. The fine metal pattern produced by the present invention can be used for optical elements such as diffraction gratings and polarizers, and fine metal wiring for semiconductor devices. Further, although the mold of the structure of the present invention cannot of course greatly simplify the process, it is also applicable to a technique of printing a mold on a resist in the process shown in FIGS. It is clear that the durability against repeated use can be greatly improved.

【0021】[0021]

【実施例】次に実施例により本発明を更に具体的に説明
する。 (実施例1)ダイヤモンド基板上に、電子ビームネガ型
レジストSNR−M5(東ソー製)を厚さ0.1μmス
ピンコートし、電子ビーム露光で、200nm周期で線
幅50nmの回折格子パタンを50mmの面積で描画
し、キシレンを用いて現像後、酸素ガスを用いた反応性
イオンエッチングでダイヤモンドを200nmの深さエ
ッチングした。そして緩衝弗酸を用いて、SNRレジス
トの残差を除去して、回折格子用の型とした。
Next, the present invention will be described more specifically with reference to examples. Example 1 An electron beam negative resist SNR-M5 (manufactured by Tosoh Corporation) was spin-coated on a diamond substrate at a thickness of 0.1 μm, and a diffraction grating pattern having a line width of 50 nm and a line width of 50 nm was formed by electron beam exposure in an area of 50 mm. After developing with xylene, the diamond was etched to a depth of 200 nm by reactive ion etching using oxygen gas. Then, the residual of the SNR resist was removed using buffered hydrofluoric acid to obtain a mold for a diffraction grating.

【0022】一方、純度99.99%のアルミニウム板
を過塩素酸およびエタノールを1対4混合浴中で電解研
磨して、鏡面を有するアルミニウム板を得た。この上
に、先のダイヤモンド板からなる型を密着させ、油圧プ
レス機を用いて50MPaの圧力を加えた後、型を除去
したところ、アルミニウム板表面に深さ160nmの窪
みが200nmの周期の回折格子状に形成されていた。
この同一の型を用いて、上記のプリント工程を繰り返し
たところ、数十回のプリント工程を経ても、型の微細凹
凸に変化はなかった。
On the other hand, an aluminum plate having a purity of 99.99% was electropolished in a 1: 4 mixed bath of perchloric acid and ethanol to obtain an aluminum plate having a mirror surface. The mold made of the diamond plate was brought into close contact with this, and after applying a pressure of 50 MPa using a hydraulic press machine, the mold was removed. As a result, a 160 nm deep depression was formed on the aluminum plate surface with a period of 200 nm. It was formed in a lattice.
When the above printing step was repeated using this same mold, the fine irregularities of the mold did not change even after several tens of printing steps.

【0023】(実施例2)シリコンカーバイド基板上
に、ポジ型電子ビームレジストZEP−520を厚さ
0.1μmスピンコートし、電子ビーム露光装置で、金
属−半導体−金属(MSM)光検出器用の櫛形電極パタ
ンを0.1μm周期、40nm幅で露光し、現像した。こ
の上に、電子ビーム蒸着装置で50nmの厚さのクロム
を蒸着し、溶剤であるジグライム中に浸漬して、超音波
を印加してレジスト上のクロムをレジストと共に除去
し、40nm幅0.1μm周期の格子状のクロムパタンを
形成する。このクロムをマスクとして、CF4ガスを用
いた反応性ドライエッチングで、シリコンカーバイド基
板を160nmの深さにエッチングした。この後、酸素
プラズマでクロムを除去して、約50nm幅、周期0.1
μm、高さ160nmの格子状パタンを持つ型を作製し
た。
Example 2 A positive electron beam resist, ZEP-520, was spin-coated on a silicon carbide substrate at a thickness of 0.1 μm, and an electron beam exposure apparatus was used for a metal-semiconductor-metal (MSM) photodetector. The comb-shaped electrode pattern was exposed at a period of 0.1 μm at a width of 40 nm and developed. On this, chromium having a thickness of 50 nm was vapor-deposited by an electron beam vapor deposition apparatus, immersed in diglyme as a solvent, and ultrasonic waves were applied to remove chromium on the resist together with the resist. A periodic lattice-like chromium pattern is formed. Using this chromium as a mask, the silicon carbide substrate was etched to a depth of 160 nm by reactive dry etching using CF 4 gas. Thereafter, chromium is removed by oxygen plasma, and the width is about 50 nm and the period is 0.1.
A mold having a lattice pattern of μm and a height of 160 nm was prepared.

【0024】一方、厚さ2mmのシリコン基板に金を厚
さ100nm電子ビーム蒸着装置で堆積し、この上に、
シリコンカーバイド基板の型を密着させ、油圧プレスで
40MPaの圧力を加える。その後、型を除去すると、
金の厚さが凹部では45nm、凸部では195nmとな
り、150nmの段差が生じた。次いで、アルゴンイオ
ンミリング装置で、55nmの厚さ分の金をエッチング
除去して、凹部の金を完全に除去し、幅約50nm、周
期100nm、高さ90nmの金の櫛形電極パタンを得
た。その後、通常のホトリソグラフィ工程で、パッド電
極等を形成して、MSM光検出器を完成させた。このプ
リント工程も、繰り返し使用しても、電極パタンの断線
等は観測されず、十分な耐性があることがわかった。
On the other hand, gold is deposited on a silicon substrate having a thickness of 2 mm by an electron beam evaporation apparatus having a thickness of 100 nm.
The mold of the silicon carbide substrate is brought into close contact, and a pressure of 40 MPa is applied by a hydraulic press. After removing the mold,
The thickness of the gold was 45 nm in the concave portion and 195 nm in the convex portion, and a step of 150 nm was generated. Next, the gold of 55 nm in thickness was removed by etching with an argon ion milling device to completely remove the gold in the concave portion, thereby obtaining a gold comb-shaped electrode pattern having a width of about 50 nm, a period of 100 nm, and a height of 90 nm. Thereafter, a pad electrode and the like were formed by a normal photolithography process to complete the MSM photodetector. Even in this printing process, even if the printing process was repeatedly used, no disconnection or the like of the electrode pattern was observed, and it was found that there was sufficient resistance.

【0025】(実施例3)厚さ400μmのシリコンカ
ーバイド基板上に、メタン80%、水素20%の混合ガ
スを用いたECR型CVD装置で、ダイヤモンドライク
カーボン薄膜を厚さ0.5μm堆積した。この上に、ポ
ジ型電子ビームレジストZEP−520を厚さ0.1μ
mスピンコートし、電子ビーム露光装置で、0.1μm
周期、50nm幅の格子パタンを20mm角の面積に露
光し、現像した。この上に、電子ビーム蒸着装置で40
nmの厚さのチタンを蒸着し、溶剤であるジグライム中
に浸漬して、超音波を印加してレジスト上のチタンをレ
ジストと共に除去して、60nm幅0.1μm周期の格子
状のチタンパタンを形成する。このチタンをマスクとし
て、酸素ガスを用いた反応性ドライエッチングで、シリ
コンカーバイド基板を200nmの深さにエッチングし
た。この後、酸素プラズマでクロムを除去して、約60
nm幅、周期0.1μm、高さ200nmの格子状パタン
を持つシリコンカーバイド基板を作製した。この基板
を、接着剤を用いて、直径50mm、長さ50mmのス
テンレス円柱に張り付け、これを型とした。
Example 3 A diamond-like carbon thin film having a thickness of 0.5 μm was deposited on a silicon carbide substrate having a thickness of 400 μm by using an ECR type CVD apparatus using a mixed gas of 80% methane and 20% hydrogen. On top of this, a positive type electron beam resist ZEP-520 is coated with a thickness of 0.1 μm.
m spin-coated and 0.1 μm
A grid pattern having a cycle of 50 nm width was exposed to an area of 20 mm square and developed. On top of this, 40
The titanium on the resist is removed together with the resist by applying ultrasonic waves, and a titanium-like titanium pattern having a width of 60 nm and a period of 0.1 μm is formed. Form. Using this titanium as a mask, the silicon carbide substrate was etched to a depth of 200 nm by reactive dry etching using oxygen gas. Thereafter, the chromium is removed by oxygen plasma, and the
A silicon carbide substrate having a lattice pattern having an nm width, a period of 0.1 μm, and a height of 200 nm was manufactured. This substrate was attached to a stainless steel cylinder having a diameter of 50 mm and a length of 50 mm using an adhesive, and this was used as a mold.

【0026】一方、厚さ3mmのポリカーボネート基板
に銀を厚さ120nm電子ビーム蒸着装置で堆積し、こ
の上に、ステンレス+シリコンカーバイドの型を密着さ
せ、油圧プレスで40MPaの圧力を加える。その後、
型を除去すると、銀の厚さが凹部では40nm、凸部で
は200nmとなり、160nmの段差が生じた。次い
で、アルゴンイオンミリング装置で、40nmの厚さの
銀をエッチング除去して、幅約55nm、周期100n
m、高さ100nmの銀の周期パタンを得た。本試料の
偏光透過特性を測定したところ、格子パタンに垂直な方
向は透過率95%、格子パタンと平行な方向は透過率3
0%となり、偏光子として作用することがわかった。こ
のプリント工程を100回以上繰り返しても、型に破損
や変形はみられなかった。
On the other hand, silver is deposited on a 3 mm-thick polycarbonate substrate by an electron beam evaporation apparatus having a thickness of 120 nm, and a stainless steel + silicon carbide mold is brought into close contact therewith, and a pressure of 40 MPa is applied by a hydraulic press. afterwards,
When the mold was removed, the silver thickness was 40 nm in the concave portions and 200 nm in the convex portions, and a step of 160 nm was generated. Next, the silver having a thickness of 40 nm was removed by etching with an argon ion milling apparatus to obtain a width of about 55 nm and a period of 100 nm.
m, a silver periodic pattern having a height of 100 nm was obtained. When the polarization transmission characteristics of this sample were measured, the transmittance was 95% in the direction perpendicular to the lattice pattern, and was 3 in the direction parallel to the lattice pattern.
It turned out to be 0%, and it turned out that it acts as a polarizer. Even if this printing process was repeated 100 times or more, the mold was not damaged or deformed.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
電子ビームリソグラフィ等の高解像度の装置を用いて超
微細な凹凸を持つ型を作れば、その後は、プリント工程
によりサブミクロン〜ナノメータ領域の超微細な金属パ
タンを簡便に、繰り返し作製できるため、回折格子や偏
光子等の光学部品、光検出器等の半導体素子の微細電極
パタン製造における経済性を高める上での効果が非常に
大である。
As described above, according to the present invention,
If a mold with ultra-fine irregularities is made using a high-resolution device such as electron beam lithography, then the ultra-fine metal pattern in the sub-micron to nanometer range can be easily and repeatedly produced by a printing process. The effect of increasing the economical efficiency in the production of fine electrode patterns for semiconductor devices such as optical components such as gratings and polarizers and photodetectors is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による微細金属凹凸
パタン形成工程を示す断面図。
FIG. 1 is a sectional view showing a step of forming a fine metal uneven pattern according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態による微細金属凹凸
パタン形成工程を示す断面図。
FIG. 2 is a sectional view showing a step of forming a fine metal uneven pattern according to a second embodiment of the present invention.

【図3】従来の微細パタン形成法の工程の一部を示す断
面図。
FIG. 3 is a cross-sectional view showing a part of the steps of a conventional fine pattern forming method.

【図4】従来の微細パタン形成法の工程の他の一部を示
す断面図。
FIG. 4 is a sectional view showing another part of the process of the conventional fine pattern forming method.

【符号の説明】[Explanation of symbols]

11…シリコン基板 12…熱酸化シリコン 13…凹凸が形成された熱酸化シリコン 14…シリコン基板 15…PMMAレジスト 16…凹凸がプリントされたPMMAレジスト 17…パタン化されたPMMAレジスト 18…蒸着金属 19…金属パタン 21…型となる物体 22…凹凸が形成された型 23…金属基板 24…凹凸がプリントされた金属基板 31…型となるダイヤモンドあるいはシリコンカーバイ
ド基板 32…凹凸が形成された型 33…基板 34…金属層 35…凹凸がプリントされた金属層 36…金属パタン
DESCRIPTION OF SYMBOLS 11 ... Silicon substrate 12 ... Thermal silicon oxide 13 ... Thermal silicon oxide with unevenness 14 ... Silicon substrate 15 ... PMMA resist 16 ... PMMA resist on which unevenness is printed 17 ... PMMA resist which is patterned 18 ... Evaporated metal 19 ... Metal pattern 21: Object to be a mold 22: Mold with irregularities 23: Metal substrate 24: Metal substrate with irregularities printed 31: Diamond or silicon carbide substrate to be a mold 32 ... Mold with irregularities 33: Substrate 34: metal layer 35: metal layer with unevenness printed 36: metal pattern

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小澤 章 東京都武蔵野市御殿山一丁目1番3号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Akira Ozawa, 1-3-1 Gotenyama, Musashino City, Tokyo NTT Advanced Technology Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面が金属からなる物体に、表面に1μm
以下の微細なパタンを含むパタン状の凹凸を有する物体
を密着させて加圧することにより、前記金属表面に該パ
タン状凹凸を形成することを特徴とする微細パタン形成
法。
1. An object made of metal having a surface of 1 μm
A fine pattern forming method, characterized in that the object having pattern-shaped irregularities including the following fine pattern is brought into close contact with and pressurized to form the pattern-shaped irregularities on the metal surface.
【請求項2】請求項1の微細なパタン状凹凸を有する物
体が、ダイヤモンド板、あるいはシリコンカーバイド板
であることを特徴とする微細パタン形成法。
2. The method for forming a fine pattern according to claim 1, wherein the object having fine pattern-like irregularities is a diamond plate or a silicon carbide plate.
【請求項3】請求項1の微細なパタン状凹凸を有する物
体が、少なくともその表面がダイヤモンドあるいはダイ
ヤモンド状カーボン、あるいはシリコンカーバイドであ
ることを特徴とする微細パタン形成法。
3. The method for forming a fine pattern according to claim 1, wherein at least the surface of the object having fine pattern irregularities is diamond, diamond-like carbon, or silicon carbide.
JP25125296A 1996-09-24 1996-09-24 Formation of fine pattern Pending JPH1096808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25125296A JPH1096808A (en) 1996-09-24 1996-09-24 Formation of fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25125296A JPH1096808A (en) 1996-09-24 1996-09-24 Formation of fine pattern

Publications (1)

Publication Number Publication Date
JPH1096808A true JPH1096808A (en) 1998-04-14

Family

ID=17220010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25125296A Pending JPH1096808A (en) 1996-09-24 1996-09-24 Formation of fine pattern

Country Status (1)

Country Link
JP (1) JPH1096808A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296442A (en) * 2000-04-11 2001-10-26 Canon Inc Method for manufacturing structure with refractive index period having photonic structure, and optical functional element using it
US6375870B1 (en) 1998-11-17 2002-04-23 Corning Incorporated Replicating a nanoscale pattern
JP2002236200A (en) * 2001-02-09 2002-08-23 Sumitomo Electric Ind Ltd X-ray optical element, and method of manufacturing the same
JP2002539604A (en) * 1999-03-11 2002-11-19 ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Stepped cast stamping lithography
JP2004513504A (en) * 2000-04-18 2004-04-30 オブドゥカト アクティエボラーグ Substrate related to structure and method of manufacturing the same
JP2005008909A (en) * 2003-06-16 2005-01-13 Canon Inc Structure manufacturing method
KR100502857B1 (en) * 2002-09-26 2005-07-21 주식회사 미뉴타텍 Method for fabricating semiconductor devices by using pattern with three-dimensional
JP2006010778A (en) * 2004-06-22 2006-01-12 National Institute Of Advanced Industrial & Technology Method for manufacturing diffraction grating
US6989114B1 (en) 1999-07-13 2006-01-24 Matsushita Electric Industrial Co., Ltd. Micro-shape transcription method, micro-shape transcription apparatus, and optical-component manufacture method
JP2006142772A (en) * 2004-11-24 2006-06-08 Sony Corp Mold and its manufacturing method, and method for forming pattern
JP2007088374A (en) * 2005-09-26 2007-04-05 Dainippon Screen Mfg Co Ltd Manufacturing method of semiconductor device
JP2007116163A (en) * 2005-10-18 2007-05-10 Korea Inst Of Machinery & Materials Stamp for fine imprint lithography and method for manufacturing the same
JP2007157962A (en) * 2005-12-05 2007-06-21 Sumitomo Electric Ind Ltd Die forming tool
JP2007253410A (en) * 2006-03-22 2007-10-04 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2008503873A (en) * 2004-06-16 2008-02-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Imprint lithography using the liquid / solid transition of metals and their alloys
JP2008507114A (en) * 2004-04-27 2008-03-06 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Composite patterning device for soft lithography
JP2008068475A (en) * 2006-09-13 2008-03-27 Toppan Printing Co Ltd Mold for imprint, method for manufacturing mold for imprint and pattern forming method
JP2009149097A (en) * 2009-02-04 2009-07-09 Toshiba Corp Stamper for imprint working, and method for producing the same
JP2010044420A (en) * 2002-12-16 2010-02-25 E Ink Corp Backplane for electro-optic display
JP2010162796A (en) * 2009-01-16 2010-07-29 Tomei Diamond Co Ltd Surface material for stamper
JP2010186164A (en) * 2009-01-13 2010-08-26 Canon Inc Optical element
JP2010240864A (en) * 2009-04-01 2010-10-28 Tocalo Co Ltd Method for producing imprinting member and imprinting member
JP4841841B2 (en) * 2002-10-02 2011-12-21 レオナード クルツ シュティフトゥング ウント コンパニー カーゲー Film with organic semiconductor
CN109270620A (en) * 2018-11-16 2019-01-25 京东方科技集团股份有限公司 The production method and display panel of wire grating polarizing film

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375870B1 (en) 1998-11-17 2002-04-23 Corning Incorporated Replicating a nanoscale pattern
JP2002539604A (en) * 1999-03-11 2002-11-19 ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Stepped cast stamping lithography
US6989114B1 (en) 1999-07-13 2006-01-24 Matsushita Electric Industrial Co., Ltd. Micro-shape transcription method, micro-shape transcription apparatus, and optical-component manufacture method
JP2001296442A (en) * 2000-04-11 2001-10-26 Canon Inc Method for manufacturing structure with refractive index period having photonic structure, and optical functional element using it
JP4573942B2 (en) * 2000-04-11 2010-11-04 キヤノン株式会社 Manufacturing method of refractive index periodic structure having photonic structure, and optical functional device using the same
JP2004513504A (en) * 2000-04-18 2004-04-30 オブドゥカト アクティエボラーグ Substrate related to structure and method of manufacturing the same
JP2002236200A (en) * 2001-02-09 2002-08-23 Sumitomo Electric Ind Ltd X-ray optical element, and method of manufacturing the same
KR100502857B1 (en) * 2002-09-26 2005-07-21 주식회사 미뉴타텍 Method for fabricating semiconductor devices by using pattern with three-dimensional
JP4841841B2 (en) * 2002-10-02 2011-12-21 レオナード クルツ シュティフトゥング ウント コンパニー カーゲー Film with organic semiconductor
JP2010044420A (en) * 2002-12-16 2010-02-25 E Ink Corp Backplane for electro-optic display
JP2005008909A (en) * 2003-06-16 2005-01-13 Canon Inc Structure manufacturing method
JP2008507114A (en) * 2004-04-27 2008-03-06 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Composite patterning device for soft lithography
JP2008503873A (en) * 2004-06-16 2008-02-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Imprint lithography using the liquid / solid transition of metals and their alloys
JP2006010778A (en) * 2004-06-22 2006-01-12 National Institute Of Advanced Industrial & Technology Method for manufacturing diffraction grating
JP2006142772A (en) * 2004-11-24 2006-06-08 Sony Corp Mold and its manufacturing method, and method for forming pattern
JP4595505B2 (en) * 2004-11-24 2010-12-08 ソニー株式会社 Mold, manufacturing method thereof, and pattern forming method
JP2007088374A (en) * 2005-09-26 2007-04-05 Dainippon Screen Mfg Co Ltd Manufacturing method of semiconductor device
JP2007116163A (en) * 2005-10-18 2007-05-10 Korea Inst Of Machinery & Materials Stamp for fine imprint lithography and method for manufacturing the same
US7914693B2 (en) 2005-10-18 2011-03-29 Korea Institute Of Machinery & Materials Stamp for micro/nano imprint lithography using diamond-like carbon and method of fabricating the same
JP2007157962A (en) * 2005-12-05 2007-06-21 Sumitomo Electric Ind Ltd Die forming tool
JP2007253410A (en) * 2006-03-22 2007-10-04 Toppan Printing Co Ltd Imprinting mold and its manufacturing method
JP2008068475A (en) * 2006-09-13 2008-03-27 Toppan Printing Co Ltd Mold for imprint, method for manufacturing mold for imprint and pattern forming method
JP2010186164A (en) * 2009-01-13 2010-08-26 Canon Inc Optical element
JP2010162796A (en) * 2009-01-16 2010-07-29 Tomei Diamond Co Ltd Surface material for stamper
JP2009149097A (en) * 2009-02-04 2009-07-09 Toshiba Corp Stamper for imprint working, and method for producing the same
JP2010240864A (en) * 2009-04-01 2010-10-28 Tocalo Co Ltd Method for producing imprinting member and imprinting member
CN109270620A (en) * 2018-11-16 2019-01-25 京东方科技集团股份有限公司 The production method and display panel of wire grating polarizing film
WO2020098464A1 (en) * 2018-11-16 2020-05-22 京东方科技集团股份有限公司 Manufacturing method of metal wire grid polarizer and display panel
US11307341B2 (en) 2018-11-16 2022-04-19 Boe Technology Group Co., Ltd. Method for manufacturing metal wire grid polarizer and display panel

Similar Documents

Publication Publication Date Title
JPH1096808A (en) Formation of fine pattern
McClelland et al. Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold
US20050084804A1 (en) Low surface energy templates
US6814898B1 (en) Imprint lithography utilizing room temperature embossing
US7041228B2 (en) Substrate for and a process in connection with the product of structures
JP3821069B2 (en) Method for forming structure by transfer pattern
TW200822185A (en) Etching of nano-imprint templates using an etch reactor
US20060145398A1 (en) Release layer comprising diamond-like carbon (DLC) or doped DLC with tunable composition for imprint lithography templates and contact masks
JP2001068411A (en) Lithography process for fabrication of device
JP4925651B2 (en) Optical imprint stamper and light emitting device manufacturing method using the same
JP4262267B2 (en) MOLD, IMPRINT APPARATUS AND DEVICE MANUFACTURING METHOD
JP2008126450A (en) Mold, manufacturing method therefor and magnetic recording medium
JP2007266384A (en) Mold for imprinting and manufacturing method thereof
KR101691157B1 (en) Method of manufacturing stamp for nanoimprint
TW200523666A (en) Imprint lithography templates having alignment marks
JP4853706B2 (en) Imprint mold and manufacturing method thereof
CN101692151B (en) Method for manufacturing silicon nano-wire based on soft template nano-imprinting technique
CN111606300A (en) Method for manufacturing high aspect ratio nano grating
JP2010284814A (en) Method of manufacturing stamper
JP4867423B2 (en) Imprint mold member, imprint mold member manufacturing method, and imprint method
CN112723305B (en) Super-surface manufacturing method
JP4802799B2 (en) Imprint method, resist pattern, and manufacturing method thereof
KR20080082116A (en) Method for fabricating wire grid polarizer
JP4889316B2 (en) A manufacturing method of a three-dimensional structure, a three-dimensional structure, an optical element, a stencil mask, a manufacturing method of a finely processed product, and a manufacturing method of a fine pattern molded product.
US8512585B2 (en) Template pillar formation