JPH1094112A - Ddm drive system bogie for railway car - Google Patents

Ddm drive system bogie for railway car

Info

Publication number
JPH1094112A
JPH1094112A JP8247528A JP24752896A JPH1094112A JP H1094112 A JPH1094112 A JP H1094112A JP 8247528 A JP8247528 A JP 8247528A JP 24752896 A JP24752896 A JP 24752896A JP H1094112 A JPH1094112 A JP H1094112A
Authority
JP
Japan
Prior art keywords
ddm
wheel
bogie
shaft
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8247528A
Other languages
Japanese (ja)
Inventor
Motomi Shimada
嶋田  基巳
Shoji Kasai
省司 河西
Koji Kishimoto
康治 岸本
Motosane Hiraishi
元実 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8247528A priority Critical patent/JPH1094112A/en
Publication of JPH1094112A publication Critical patent/JPH1094112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To facilitate the return to a neutral position of a DDM drive system bogie for railway cars having DDM drive shafts for wheel units at the time of straight run, and to enhance the curve run performance by steering control which reduces the attack angles of the wheel shafts. SOLUTION: Concerning a bogie for railway cars having two wheel shafts, the wheel shafts 3, 4 arranged before and behind the frame 2 of the bogie are fixed ones with their rotation locked respectively, and left and right wheels 5a, 5b, 5c, 5d have structure rotatable around the wheel shafts independently. The left an right wheels 5a, 5b, 5c, 5d are connected to DDMs (direct drive motors). Here, one wheel shaft 3 of the is equipped with wheel units (DDMs) 8a, 8b, and the other wheel shaft 4 is equipped with a shaft unit (DDM) 9, and are connected to the left ahd wheels 5a, 5b, 5c, 5d respectively through couplers 6a, 6b, 6c, 6d.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道車両用台車の
駆動方式に係り、特に減速器を介さず車輪をモータで直
接駆動する方式(以下、DDM駆動方式と称する)にお
いて高い曲線走行性能を実現する鉄道車両用DDM駆動
方式台車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving system for a bogie for a railway vehicle, and particularly to a system in which wheels are directly driven by a motor without a reduction gear (hereinafter, referred to as a DDM driving system). The present invention relates to a DDM drive bogie for railway vehicles to be realized.

【0002】[0002]

【従来の技術】DDM駆動方式は、減速器を介さずに輪
軸をモータで直接駆動し、台車構造の簡略化と低騒音化
に有効とされ現在開発が進められている。DDM駆動方
式には、左右の車輪を1つのモータで駆動する軸単位の
DDM駆動方式と、左右の車輪を別々のモータで駆動す
る車輪単位のDDM駆動方式の2つの方式がある。
2. Description of the Related Art The DDM drive system, in which a wheel set is directly driven by a motor without a reduction gear, is effective for simplifying a bogie structure and reducing noise, and is currently being developed. There are two types of DDM driving methods: a DDM driving method in which the left and right wheels are driven by a single motor, and a DDM driving method in which the left and right wheels are driven by different motors.

【0003】左右独立に回転・駆動する車輪を有する車
両の走行制御という観点から見て、特開昭55−153204号
公報において、曲線通過時の外軌側車輪と内軌側車輪の
回転数に差が生じても、台車中心の速度は変わらないよ
うに左右の車輪の電動機を別個に制御する方法が提案さ
れている。同じく、特開昭56−153904号公報において、
左右の独立車輪をそれぞれ独立して駆動する誘導電動機
をそれぞれ別個のインバータで駆動し、各誘導電動機の
回転数に対応した回転周波数よりもインバータの出力周
波数を高くすることにより左右車輪に生ずるトルク差を
防止する方法が提案されている。
From the viewpoint of running control of a vehicle having wheels that rotate and drive independently on the left and right, Japanese Patent Application Laid-Open No. 55-153204 discloses that the number of rotations of the outer and inner rail wheels at the time of passing a curve is described. There has been proposed a method of separately controlling the motors of the left and right wheels so that the speed at the center of the bogie does not change even if a difference occurs. Similarly, in JP-A-56-153904,
The induction motor that drives the left and right independent wheels independently is driven by separate inverters, respectively, and the output difference between the inverters is made higher than the rotation frequency corresponding to the rotation speed of each induction motor. There have been proposed methods to prevent this.

【0004】[0004]

【発明が解決しようとする課題】従来の一般的な鉄道車
両用台車は、車輪と車輪軸を一体化した一体輪軸を減速
器を介してモータ等の駆動力源で駆動するため、複雑な
構造を有する。また減速器自体から発生する騒音も問題
点の一つである。
A conventional general bogie for a railway vehicle has a complicated structure because an integrated wheel axle in which wheels and a wheel axle are integrated is driven by a driving force source such as a motor via a speed reducer. Having. Also, noise generated from the speed reducer itself is one of the problems.

【0005】これに対し、DDM駆動方式の台車は、減
速器を介さず車輪をモータで直接駆動するため、台車構
造の簡略化と低騒音化が実現できる。特に車輪単位のD
DM駆動方式は、曲線走行時のきしみ音の低減,軌道狂
いの影響が少ない等の効果が期待できる。しかし車輪単
位のDDM駆動方式の場合、一体輪軸や軸単位のDDM駆
動方式に比べ、車輪軸の自己操舵性が極端に小さいた
め、直進性に乏しい上、曲線走行時は曲線の外軌側の横
圧が増加するという問題点がある。これらの問題点に対
して、特開昭55−153204号公報,特開昭56−153904号公
報は、根本的解決策を示すものではない。
[0005] On the other hand, the truck of the DDM drive system drives wheels directly by a motor without passing through a speed reducer, so that the truck structure can be simplified and noise can be reduced. Especially D for each wheel
The DM drive system can be expected to have effects such as a reduction in squeak noise when traveling on a curve and a small influence of a track deviation. However, in the case of the wheel-based DDM drive system, the self-steering of the wheel axle is extremely small as compared with the integrated wheel axle or shaft-based DDM drive system, so that the straightness is poor. There is a problem that the lateral pressure increases. To solve these problems, JP-A-55-153204 and JP-A-56-153904 do not show a fundamental solution.

【0006】本発明は、鉄道車両用DDM駆動方式台車
に対して、自己操舵性を確保と、車輪単位のDDM駆動
方式車両の特徴を両立する鉄道車両用DDM駆動方式台
車の軸構成を提供し、さらに高い曲線走行性能の実現方
法を提供することである。
The present invention provides an axle configuration of a railway vehicle DDM drive type bogie that ensures self-steering performance and achieves the characteristics of a wheel unit DDM drive type vehicle for a railway vehicle DDM drive type bogie. And a method for realizing even higher curve running performance.

【0007】[0007]

【課題を解決するための手段】本発明の鉄道車両用DD
M方式台車は、一方の軸を車輪単位のDDM駆動方式、
他方の軸を軸単位のDDM駆動方式で構成している。
DISCLOSURE OF THE INVENTION The DD for railway vehicles of the present invention
The M system bogie has a DDM drive system in which one axis is a wheel unit,
The other axis is constituted by a DDM drive system for each axis.

【0008】また、本発明の鉄道車両用DDM方式台車
は一車両の各台車の一方の軸を車輪単位のDDM駆動方
式,他方の軸を軸単位のDDM駆動方式で構成し、車輪
単位のDDM駆動方式の左右の車輪を駆動するモータに
曲線走行性能が向上するようにトルク差を設ける。
The DDM bogie for a railway vehicle according to the present invention is constructed such that one axle of each bogie of one vehicle is a DDM drive system for each wheel, and the other axle is a DDM drive system for each shaft. A torque difference is provided to the motors that drive the left and right wheels of the driving method so that the curve running performance is improved.

【0009】さらに、各台車の軸構成を車両の走行方向
に対して各台車の前軸は車輪単位のDDM駆動方式とし
て曲線走行性能が向上するようなトルク差を与え、後軸
は軸単位のDDM駆動方式とする車輪軸構成により理想
的な曲線走行性能を実現する。
Further, the front shaft of each bogie is provided with a torque difference such that the curve running performance is improved by the DDM drive system in wheel units with respect to the running direction of the vehicle. An ideal curve running performance is realized by the wheel shaft configuration of the DDM drive system.

【0010】本発明によれば、自己操舵性の小さい車輪
単位のDDM駆動方式と、自己操舵性の大きい軸単位の
DDM駆動方式を組み合わせることで、台車の直進性を
確保することができる。車輪軸の操舵は、例えば各車両
の両端の2軸を車輪単位のDDM駆動方式、中心側の2
軸を軸単位のDDM駆動方式というような構成において
実施した。この場合、車輪単位のDDM駆動方式は曲線
形状に応じて外軌側のモータ駆動トルクを増加、内軌側
のモータ駆動トルクを減少させることで、左右車輪・レ
ール間に縦クリープ力に差が生じ、車輪軸に回転モーメ
ントが発生する。この回転モーメントで車輪軸のアタッ
ク角が減少することで横圧が低減され、曲線走行性能の
向上が図れる。
According to the present invention, by combining the DDM driving method for each wheel unit having a small self-steering property and the DDM driving method for each axle having a large self-steering property, it is possible to secure the straight traveling property of the bogie. The steering of the wheel axle is performed, for example, by using a two-axis DDM drive system for each wheel,
The implementation was carried out in a configuration such as a DDM drive system for each axis. In this case, the wheel-based DDM drive system increases the motor drive torque on the outer rail side and decreases the motor drive torque on the inner rail side according to the curved shape, so that there is a difference in the vertical creep force between the left and right wheels and rails. As a result, a rotational moment is generated on the wheel shaft. By reducing the attack angle of the wheel axle with this rotational moment, the lateral pressure is reduced, and the curve running performance can be improved.

【0011】[0011]

【発明の実施の形態】以下、本発明の鉄道車両用DDM
駆動方式台車の一実施例を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A DDM for a railway vehicle according to the present invention will be described below.
An embodiment of a drive type cart will be described with reference to the drawings.

【0012】図1に示すように、2本の車軸を備えた鉄
道車両用台車について、台車枠2の前後に配置する車輪
軸3,4は、それぞれ回転を拘束した固定軸であり、左
右車輪5a,5b,5c,5dは軸受101a,101
b,101c,101dを介して車輪軸に装架し、車輪
軸回りに独立した回転が可能な構造である。左右車輪5
a,5b,5c,5dは、DDM(ダイレクト・ドライ
ブ・モータ)と結合している。ここで、台車の一方の車
輪軸3では車輪単位DDM8a,8bを装架し、他方の
車輪軸4では軸単位DDM9を装架し、それぞれ左右車
輪5a,5b,5c,5dに継手6a,6b,6c,6
dを介して結合されている。車輪単位DDM8aの回転
子103aは、一方の端部を車輪軸3に軸受102aを
介して装架し、他方の端部を車輪5aに継手6aを介し
て装架している。車輪単位DDM8aもこれと同様の構造
である。車輪単位DDM8aで車輪5aを、車輪単位D
DM8bで車輪5bをそれぞれ独立に駆動する。一方、
軸単位DDM9の回転子104は、継手6c,6dを介
して車輪5c,5dに装架している。すなわち軸単位D
DM9により左右車輪5c,5dを駆動し、さらに左右
車輪5c,5dを継手6c,6dと回転子104で結合
しているので、一体車輪と同様に車輪軸の自己操舵性を
有する。
As shown in FIG. 1, in a bogie for a railway vehicle having two axles, wheel shafts 3 and 4 disposed before and after a bogie frame 2 are fixed shafts whose rotation is restricted, respectively. 5a, 5b, 5c, 5d are bearings 101a, 101
It is mounted on a wheel axle via b, 101c, and 101d, and can rotate independently around the wheel axle. Left and right wheels 5
a, 5b, 5c and 5d are connected to a DDM (Direct Drive Motor). Here, one wheel axle 3 of the truck mounts wheel units DDM 8a, 8b, and the other wheel axle 4 mounts a shaft unit DDM 9, and joints 6a, 6b are attached to left and right wheels 5a, 5b, 5c, 5d, respectively. , 6c, 6
and d. The rotor 103a of the wheel unit DDM 8a has one end mounted on the wheel shaft 3 via a bearing 102a and the other end mounted on the wheel 5a via a joint 6a. The wheel unit DDM 8a has a similar structure. The wheel 5a is set in the wheel unit DDM8a, and the wheel unit D
The wheels 5b are independently driven by the DM 8b. on the other hand,
The rotor 104 of the shaft unit DDM 9 is mounted on wheels 5c and 5d via joints 6c and 6d. That is, axis unit D
Since the left and right wheels 5c and 5d are driven by the DM 9, and the left and right wheels 5c and 5d are connected to the joints 6c and 6d and the rotor 104, the self-steering property of the wheel shaft is obtained as in the case of the integrated wheel.

【0013】このように一台車を車輪単位DDM駆動軸
3と軸単位DDM駆動軸4とで構成することで直線走行
時において中立位置に容易に復帰することができる。ま
た、車輪軸3,4の両端部は、軸ばね(図示なし)によ
り上下・左右方向に対しては従来の台車と同様に適切な
支持剛性で台車枠2と接続し、前後方向に対しては従来
よりも柔らかい支持剛性で台車枠2と接続し、台車枠2
に対する前後方向の移動量を大きくとれる構成とする。
As described above, by configuring the single vehicle with the wheel-based DDM drive shaft 3 and the shaft-based DDM drive shaft 4, it is possible to easily return to the neutral position during straight running. Both ends of the wheel shafts 3 and 4 are connected to the bogie frame 2 with appropriate support rigidity in the vertical and horizontal directions by shaft springs (not shown) as in the case of the conventional bogie. Is connected to the bogie frame 2 with a softer supporting rigidity than before,
And a large amount of movement in the front-rear direction with respect to.

【0014】図2に図1における鉄道車両用台車の一車
両での構成の実施例を示す。
FIG. 2 shows an embodiment of the configuration of the railcar bogie shown in FIG. 1 with one vehicle.

【0015】車両1の前台車2aでは、前軸に車輪単位
DDM駆動軸3aを、後軸に軸単位DDM駆動軸4aを
配置する。一方、後台車2bでは、前軸に軸単位DDM
駆動軸4bを、後軸に車輪単位DDM駆動軸3bを配置
する。即ち、一車両で見た場合、前後方向に関して外側
に車輪単位DDM駆動軸3a,3bを、内側に軸単位D
DM駆動軸4a,4bを配置することになる。一般に曲
線通過時は、各台車の前軸の外軌側車輪で横圧が大きく
なり、特に前台車の前軸の外軌側車輪で最大となる。し
たがって、前台車の前軸の外軌側車輪の横圧を低減する
ことが、曲線走行性能向上の必要条件となる。前記車輪
軸配置においては、進行方向に対して先頭軸が車輪単位
DDM駆動軸3a,3bとなり、この先頭軸を後述する
操舵制御することで、曲線走行性能が向上する。
In the front bogie 2a of the vehicle 1, a wheel unit DDM drive shaft 3a is arranged on the front shaft, and a shaft unit DDM drive shaft 4a is arranged on the rear shaft. On the other hand, in the rear bogie 2b, the axis unit DDM is
The drive shaft 4b is arranged on the rear shaft, and the wheel unit DDM drive shaft 3b is arranged on the rear shaft. That is, when viewed from a single vehicle, the wheel unit DDM drive shafts 3a and 3b are arranged outward in the front-rear direction, and the shaft unit D
The DM drive shafts 4a and 4b are arranged. In general, when passing through a curve, the lateral pressure increases at the outer rail wheels on the front axle of each bogie, and the maximum is particularly at the outer rail wheels on the front axle of the front bogie. Therefore, reducing the lateral pressure of the outer rail wheels of the front axle of the front bogie is a necessary condition for improving the curve running performance. In the wheel axle arrangement, the leading axis becomes the wheel unit DDM drive shafts 3a and 3b in the traveling direction, and by controlling the leading axis to be described later, the curve running performance is improved.

【0016】図3に操舵制御の実施例を示す。図は進行
方向に対して右カーブにおける走行状態を表している。
FIG. 3 shows an embodiment of the steering control. The figure shows a traveling state in a right curve with respect to the traveling direction.

【0017】一車両の先頭軸に配置された車輪単位DD
M駆動軸3において、左右車輪5a,5bを駆動するモ
ータのトルク値Tに関し、外軌側の車輪単位DDM8a
に対してΔTのトルク増分を与え、内軌側の車輪単位D
DM8bに対して−ΔTのトルク増分を与える。ここ
で、車輪とレール間に発生する縦クリープ力17a,1
7bにより、車輪軸に回転モーメント18が作用する。
この回転モーメント18を利用して、曲線のラジアル方
向と車輪軸がなす角であるアタック角α(図示なし)を
理想的な状態すなわちα=0に近づけることが操舵制御
の目的となる。
A wheel unit DD arranged on the leading axis of one vehicle
Regarding the torque value T of the motor driving the left and right wheels 5a, 5b on the M drive shaft 3, the wheel unit DDM 8a
, A torque increment of ΔT is given to the wheel unit D on the inner rail side.
A torque increment of -ΔT is given to DM8b. Here, the longitudinal creep force 17a, 1 generated between the wheel and the rail
By 7b, a rotational moment 18 acts on the wheel shaft.
The purpose of the steering control is to use the rotational moment 18 to bring the attack angle α (not shown), which is the angle between the radial direction of the curve and the wheel axis, closer to the ideal state, that is, α = 0.

【0018】受信器10は、線路に設置されたATS
(自動列車制御装置)地上子(図示なし)からの信号を
受信し、軌道上を車両が通過したことを検知し、この検
知信号を走行距離演算装置12に出力する。走行距離演
算装置12は、受信器10からの信号を入力したときに
地上子の設置地点を車両の走行距離の起算点とし、車両
側に設置された速度計11から得られた車両速度信号に
基づいて走行距離を算出し、算出結果を操舵トルク演算
手段13に出力する。操舵トルク演算手段13,走行距
離演算装置12により得られた算出値に従って曲線情報
記憶手段14に蓄えられている曲線位置までの距離を表
す曲線位置データと曲線軌道の曲線データを検索する。
また、操舵トルク演算手段13には、曲線形状に応じて
最適な操舵が行われる駆動トルク増分ΔTの算出式を読
み込ませておき、曲線位置データ,曲線データ、および
速度計11から得られた車両速度信号を参照して、駆動
トルク増分ΔTを決定し、指令信号を駆動制御装置15
a,15bに送る。さらに、駆動制御装置15a,15
bは、前記駆動トルク増分指令信号と駆動トルク指令信
号16を合成し、外軌側の車輪単位DDM8aにはT+
ΔT、内軌側の車輪単位DDM8bにはT−ΔTのトル
クが発生するように駆動トルクの制御を行う。前記の操
舵制御の実施例の他に、次のような方法が考えられる。
The receiver 10 has an ATS installed on the track.
(Automatic train control device) Receives a signal from a ground member (not shown), detects that the vehicle has passed on the track, and outputs this detection signal to the mileage calculation device 12. When the signal from the receiver 10 is input, the mileage calculation device 12 uses the installation point of the ground child as the starting point of the mileage of the vehicle, and calculates the vehicle speed signal obtained from the speedometer 11 installed on the vehicle side. The running distance is calculated based on the calculated distance, and the calculation result is output to the steering torque calculating means 13. According to the calculated values obtained by the steering torque calculating means 13 and the travel distance calculating device 12, curve position data representing the distance to the curve position stored in the curve information storage means 14 and curve data of the curve trajectory are searched.
In addition, the steering torque calculating means 13 is loaded with a calculation formula of a drive torque increment ΔT at which optimum steering is performed according to the curve shape, and the vehicle position data, the curve data, and the vehicle obtained from the speedometer 11 are obtained. With reference to the speed signal, the drive torque increment ΔT is determined, and the command signal is transmitted to the drive control device 15.
a, 15b. Further, the drive control devices 15a, 15
b synthesizes the drive torque increment command signal and the drive torque command signal 16, and T + is added to the wheel unit DDM8a on the outer rail side.
The drive torque is controlled so that a torque of T−ΔT is generated in the wheel unit DDM8b on the inner rail side on ΔT. In addition to the above-described steering control embodiment, the following method is conceivable.

【0019】(1)遠心力,ボギー角等の曲線走行状態の
情報をリアルタイムあるいはプレビュー方式等で計測
し、操舵制御に必要な駆動トルク増分ΔTを演算する。
(1) Information on a curve running state such as a centrifugal force and a bogie angle is measured in real time or in a preview system to calculate a drive torque increment ΔT required for steering control.

【0020】(2)曲線軌道の状態を車両の前方映像の画
像処理等で判断して操舵制御に必要な操舵トルク増分Δ
Tを演算する。
(2) The steering torque increment Δ required for steering control by judging the state of the curved trajectory by image processing of a forward image of the vehicle or the like.
Calculate T.

【0021】図4に図1における台車2の一車両におけ
る他の構成方法を示す。
FIG. 4 shows another construction method of the vehicle 2 in FIG.

【0022】車両1の前台車2aでは、前軸に車輪単位
DDM駆動軸3aを、後軸に軸単位DDM駆動軸4aを
配置する。一方、後台車2bにおいても、前軸に車輪単
位DDM駆動軸3bを、後軸に軸単位DDM駆動軸4b
を配置する。即ち、一車両で見た場合、前後台車とも前
軸に車輪単位DDM駆動軸3a,3bを、後軸に軸単位
DDM駆動軸4a,4bを配置することになる。一般に
曲線通過時は、各台車の前軸の外軌側車輪で横圧が大き
くなり、特に前台車の前軸の外軌側車輪で最大となるこ
とは前述したが、この2軸の外軌側車輪の横圧を低減す
ることで、理想的な曲線通過が可能となる。この場合、
車輪単位DDM駆動軸3a,3bである各台車の前軸
を、前記操舵制御することで、曲線走行性能向上が実現
する。しかしながら、この車輪軸配置では、車両の進行
方向が反転した場合、前後台車とも前軸に軸単位DDM
駆動軸4a,4bを、後軸に車輪単位DDM駆動軸3
a,3bを配置することになり、操舵制御による、曲線
走行性能向上が不可能となる。
In the front bogie 2a of the vehicle 1, a wheel unit DDM drive shaft 3a is arranged on a front shaft, and a shaft unit DDM drive shaft 4a is arranged on a rear shaft. On the other hand, also in the rear bogie 2b, the wheel unit DDM drive shaft 3b is provided on the front shaft, and the shaft unit DDM drive shaft 4b is provided on the rear shaft.
Place. That is, when viewed from one vehicle, both the front and rear bogies have the wheel unit DDM drive shafts 3a and 3b on the front shaft and the shaft unit DDM drive shafts 4a and 4b on the rear shaft. Generally, when passing through a curve, as described above, the lateral pressure increases at the outer track side wheel of the front axle of each bogie, and especially the maximum is at the outer track side wheel of the front axle of the front bogie. By reducing the lateral pressure of the side wheels, an ideal curve can be passed. in this case,
By performing the steering control on the front axle of each bogie, which is the wheel unit DDM drive shafts 3a and 3b, the curved running performance is improved. However, in this wheel axle arrangement, when the traveling direction of the vehicle is reversed, both the front and rear bogies have the axis unit DDM
The drive shafts 4a and 4b are mounted on the rear shaft, and the wheel unit DDM drive shaft 3
Since a and 3b are arranged, it becomes impossible to improve the curve running performance by the steering control.

【0023】図5に前記台車構成を可能にする構造の鉄
道車両用台車の実施例を示す。
FIG. 5 shows an embodiment of a bogie for a railway vehicle having a structure enabling the bogie configuration.

【0024】図1と同様に、前後の車輪軸3a,3bは
それぞれ回転を拘束した固定軸とし、左右車輪5a,5
b,5c,5dの車輪軸回りに独立した回転が可能な構
造であり、左右車輪5a,5b,5c,5dはDDMと
結合している。また、車輪軸3a,3bの両端部は、軸
ばね(図示なし)により上下・左右方向に対しては従来
の台車と同様に適切な支持剛性で台車枠2と接続し、前
後方向に対しては従来よりも柔らかい支持剛性で台車枠
2と接続するので、台車枠2に対する前後方向の移動量
を大きくとれる構成とする。ここで、台車の2本の車輪
軸3a,3bを装架し、左右車輪5a,5b,5c,5
dに継手6a,6b,6c,6dを介して結合されてい
る。ただし、各車輪軸に2個装架される車輪単位DDM
8a,8b,8c,8dは、回転運動拘束手段17a,
17bによって相対回転運動を拘束し、一体となって回
転する状態を作り出すことができる。回転運動拘束手段
17a,17bとしては、磁気カップリング,クラッチ
等の接離自在の装置で構成する。この機構によって、車
両の走行方向に対し、各台車の前軸は回転運動拘束手段
17a,17bを解放して通常の車輪単位DDM駆動軸
と同じ状態とし、後軸は回転運動拘束手段17a,17
bによって軸単位DDM駆動軸と同じ状態とすることが
できる。即ち図4に示した車輪軸配置と同一となり、操
舵制御による曲線走行性能向上が実現する。
As in FIG. 1, the front and rear wheel shafts 3a, 3b are fixed shafts whose rotation is restricted, respectively.
It has a structure capable of independent rotation around the wheel axes of b, 5c and 5d, and the left and right wheels 5a, 5b, 5c and 5d are connected to the DDM. Both ends of the wheel axles 3a and 3b are connected to the bogie frame 2 by a shaft spring (not shown) with appropriate support rigidity in the vertical and horizontal directions similarly to the conventional bogie, and in the longitudinal direction. Is connected to the bogie frame 2 with a softer supporting rigidity than in the prior art, so that the amount of movement in the front-rear direction with respect to the bogie frame 2 can be increased. Here, two wheel shafts 3a, 3b of the bogie are mounted, and left and right wheels 5a, 5b, 5c, 5
d is connected via joints 6a, 6b, 6c, 6d. However, two wheel units DDM mounted on each wheel shaft
8a, 8b, 8c, 8d are rotational movement restraining means 17a,
17b restricts the relative rotational movement and can create a state of rotating integrally. The rotation motion restricting means 17a and 17b are configured by devices that can be freely contacted and separated, such as a magnetic coupling and a clutch. With this mechanism, the front shafts of the bogies release the rotational motion restraining means 17a and 17b in the same direction as the normal wheel unit DDM drive shaft in the traveling direction of the vehicle, and the rear shafts rotate the rotary motion restraining means 17a and 17b.
By b, the same state as the axis unit DDM drive axis can be obtained. That is, the arrangement becomes the same as that of the wheel shaft arrangement shown in FIG. 4, and the curve running performance is improved by the steering control.

【0025】図4の台車構成にする手段の、他の実施例
として次の方法が考えられる。
The following method can be considered as another embodiment of the means for forming the cart shown in FIG.

【0026】(1)図1の構造の台車で、前後台車の車輪
軸配置が同一となるように、走行方向に応じて台車自体
を回転させ前後の車輪軸配置を変える。
(1) In the bogie having the structure shown in FIG. 1, the bogie itself is rotated according to the traveling direction to change the front and rear wheel axle arrangements so that the front and rear bogies have the same wheel axle arrangement.

【0027】(2)台車の前後軸とも車輪単位のDDM駆
動方式として、走行方向に対して前軸は操舵制御を行
い、後軸は左右の車輪の回転数を同一にする制御を行
う。
(2) Both the front and rear axes of the bogie are wheel-based DDM drive systems. The front axis performs steering control in the running direction, and the rear axis performs control for equalizing the rotational speeds of the left and right wheels.

【0028】図6に各車輪軸配置の違いによる台車の中
立位置への復帰の様子についてのシミュレーション結果
を示す。シミュレーション条件は、曲線半径600m,
入口・出口緩和曲線長および曲線長70m,カント0.
105m の曲線を75km/hで通過し、直線区間に入
るものとする。また、車輪踏面は在来線基本踏面(円錐
踏面)、レールは50Nレールとする。比較する車輪軸
配置は以下の通りである。
FIG. 6 shows a simulation result of the manner in which the bogie returns to the neutral position due to the difference in the arrangement of the wheel axles. The simulation conditions were as follows: curve radius 600 m,
Inlet / outlet relaxation curve length and curve length 70m, cant 0.
It is assumed that the vehicle passes a curve of 105 m 2 at a speed of 75 km / h and enters a straight section. The wheel tread is a conventional basic tread (conical tread), and the rail is a 50N rail. The wheel axle arrangement to be compared is as follows.

【0029】(1)4軸を軸単位DDM駆動軸のみで構成 (2)各台車を車輪単位DDM駆動軸と軸単位DDM駆動
軸で構成(図2の台車構成) (3)4軸とも車輪単位DDM駆動軸のみで構成 各場合について、走行方向に対して先頭台車の前軸及び
後軸の外軌側車輪・レール間相対変位を図示する。
(1) Four axes are constituted only by the axis unit DDM drive shaft. (2) Each carriage is constituted by the wheel unit DDM drive axis and the axis unit DDM drive axis (the carriage construction of FIG. 2). In each case, the relative displacement between the front rail and the rear axle of the front bogie and the rear axle between the outer track side wheel and the rail with respect to the traveling direction is illustrated in each case.

【0030】(1)の場合は、曲線通過後直線区間に入る
と直ちに中立位置に復帰し、一体車輪と同様に車輪軸の
自己操舵性を有している。また、(3)の場合は自己操舵
性がほとんどなく、曲線通過後直線区間に入っても中立
位置になかなか復帰しない。それに対して(2)の場合は
(1)に比べ多少の時間は要するが、問題なく中立位置に
復帰する。
In the case of (1), the vehicle returns to the neutral position as soon as the vehicle enters the straight section after passing through the curve, and has the self-steering property of the wheel shaft similarly to the integrated wheel. In the case of (3), there is almost no self-steering property, and it is difficult to return to the neutral position even if the vehicle enters a straight section after passing through a curve. In the case of (2)
It takes some time compared to (1), but returns to the neutral position without any problem.

【0031】[0031]

【発明の効果】以上より本発明では、次のような効果が
期待できる。
According to the present invention, the following effects can be expected.

【0032】(1)一台車を軸単位DDM駆動軸と車輪単
位DDM駆動軸を一組として構成することで台車の直線
走行時の中立位置へ容易に復帰する。
(1) By configuring a single truck as a set of a shaft-based DDM drive shaft and a wheel-based DDM drive shaft, the truck can easily return to a neutral position during straight running of the truck.

【0033】(2)台車前軸に配される車輪単位DDM駆
動軸の左右トルクを曲線状態に応じて増減し車輪軸のア
タック角を減少させる操舵制御により、曲線通過中にお
ける車輪・レール間の横圧値が最大となる先頭軸外軌側
に対して、横圧低減が低減し、曲線走行性能が向上す
る。
(2) The steering control to decrease or increase the left-right torque of the wheel unit DDM drive shaft arranged on the bogie front axle according to the curved state and reduce the attack angle of the wheel axle allows the wheel-rail between the wheel and the rail during the curved passage. The lateral pressure reduction is reduced and the curve running performance is improved with respect to the top outer rail on which the lateral pressure value is maximum.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の台車構造を示す平面図。FIG. 1 is a plan view showing a truck structure according to the present invention.

【図2】本発明の台車の一車両における構成の一実施例
を示す平面図。
FIG. 2 is a plan view showing one embodiment of a configuration of the bogie according to the present invention.

【図3】本発明の台車における操舵制御の一実施例を示
す平面図。
FIG. 3 is a plan view showing an embodiment of steering control in the bogie according to the present invention.

【図4】本発明の台車の一車両における構成の第2実施
例を示す平面図。
FIG. 4 is a plan view showing a second embodiment of the configuration of the truck of the present invention in one vehicle.

【図5】一車両における構成の第2実施例を実現する台
車構造を示す平面図。
FIG. 5 is a plan view showing a bogie structure for implementing a second embodiment of the configuration in one vehicle.

【図6】台車の中立位置への復帰の様子を示すシミュレ
ーション結果。
FIG. 6 is a simulation result showing a state of the carriage returning to a neutral position.

【符号の説明】[Explanation of symbols]

1…車両、2…台車枠、3,4…車輪軸、5…車輪、6
…継手、7…軸箱、8…車輪単位DDM、9…軸単位D
DM、10…受信器、11…速度計、12…走行距離演
算装置、13…操舵トルク演算手段、14…曲線情報記
憶手段、15…駆動制御装置、16…駆動トルク指令信
号、17…車輪・レール間縦クリープ力、18…車輪軸
の回転モーメント、101,102…軸受、103…車
軸単位DDM回転子、104…軸単位DDM回転子。
DESCRIPTION OF SYMBOLS 1 ... Vehicle, 2 ... Bogie frame, 3, 4 ... Wheel axis, 5 ... Wheel, 6
... Joint, 7 ... Shaft box, 8 ... Wheel unit DDM, 9 ... Shaft unit D
DM, 10: receiver, 11: speedometer, 12: travel distance calculation device, 13: steering torque calculation means, 14: curve information storage means, 15: drive control device, 16: drive torque command signal, 17: wheels Vertical creep force between rails, 18: rotational moment of wheel shaft, 101, 102: bearing, 103: DDM rotor for axle, 104: DDM rotor for shaft.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平石 元実 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Motomi Hiraishi 794, Higashi-Toyoi, Kazamatsu-shi, Yamaguchi Prefecture Inside the Kasado Plant of Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】車輪軸をDDM駆動方式(減速器を介さず
車輪をモータで直接駆動する方式)の機構とした鉄道車
両用台車において、一方の車輪軸は車輪単位のDDM駆
動方式とし、他方の車輪軸は軸単位のDDM駆動方式と
することを特徴とする、鉄道車両用DDM駆動方式台
車。
In a truck for a railway vehicle in which a wheel axle has a mechanism of a DDM drive system (a system in which wheels are directly driven by a motor without passing through a speed reducer), one wheel axle is a DDM drive system for each wheel, and the other is a DDM drive system. A DDM drive bogie for a railway vehicle, wherein the wheel shaft of (1) is a DDM drive system for each shaft.
【請求項2】請求項1において、前記車輪単位のDDM
駆動方式である左右の車輪を駆動するモータに、曲線走
行性能が向上する方向にトルク差を生じさせることを特
徴とする鉄道車両用DDM駆動方式台車。
2. The DDM according to claim 1, wherein:
A DDM drive bogie for a railway vehicle, wherein a torque difference is generated in a motor that drives left and right wheels, which is a drive system, in a direction in which curved running performance is improved.
【請求項3】請求項1において、車両の走行方向に対し
て各台車の前軸は車輪単位のDDM駆動方式とし、後軸
は軸単位のDDM駆動方式とすることを特徴とする鉄道
車両用DDM駆動方式台車。
3. The railway vehicle according to claim 1, wherein the front axle of each bogie has a wheel-based DDM drive system, and the rear axle has a shaft-based DDM drive system with respect to the traveling direction of the vehicle. DDM drive cart.
JP8247528A 1996-09-19 1996-09-19 Ddm drive system bogie for railway car Pending JPH1094112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8247528A JPH1094112A (en) 1996-09-19 1996-09-19 Ddm drive system bogie for railway car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247528A JPH1094112A (en) 1996-09-19 1996-09-19 Ddm drive system bogie for railway car

Publications (1)

Publication Number Publication Date
JPH1094112A true JPH1094112A (en) 1998-04-10

Family

ID=17164844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247528A Pending JPH1094112A (en) 1996-09-19 1996-09-19 Ddm drive system bogie for railway car

Country Status (1)

Country Link
JP (1) JPH1094112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536993B2 (en) 1998-05-16 2003-03-25 Liberty Offshore, Ltd. Pile and method for installing same
JP2012071703A (en) * 2010-09-29 2012-04-12 Kinki Sharyo Co Ltd Low floor truck of railway vehicle
JP2017043313A (en) * 2015-08-28 2017-03-02 幸徳 川本 Truck device for railway vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536993B2 (en) 1998-05-16 2003-03-25 Liberty Offshore, Ltd. Pile and method for installing same
JP2012071703A (en) * 2010-09-29 2012-04-12 Kinki Sharyo Co Ltd Low floor truck of railway vehicle
JP2017043313A (en) * 2015-08-28 2017-03-02 幸徳 川本 Truck device for railway vehicle

Similar Documents

Publication Publication Date Title
US10647348B2 (en) Vehicle, single-wheelset/double-wheelset trackless train, and tracking and steering control method therefor
KR100916594B1 (en) The steering bogie for railway vehicle with leverage
WO2014136449A1 (en) Parallel cardan drive-type steering bogie
US4911081A (en) Guided vehicle with steered axles
EP0143540B1 (en) Powered railroad truck
KR100921550B1 (en) The steering bogie for railway vehicle
KR101659872B1 (en) Each wheel control system and a control method of the independently rotating wheel bogie for railway vehicle in the curved
JPH1094112A (en) Ddm drive system bogie for railway car
HU225653B1 (en) Method for coordinating the drive of track-guided vehicles with independently driven wheels
JP3181896B2 (en) Guide track type vehicle trolley and guide wheel arrangement setting method used therefor
EP1063143A1 (en) Single axle and independent wheels bogie for a railway vehicle
KR101040376B1 (en) Steering Bogie for Railway Vehicles using Yaw Motion of the Center Pivot
JP4490890B2 (en) Vehicle track
JPH03258656A (en) Rolling stock four wheel truck
JP5013634B2 (en) Independent wheel bogie for railway vehicles and its control method
JP3176247B2 (en) Independent wheel powered bogie for railway vehicles
JPS604460A (en) Truck for railway rolling stock
KR102518019B1 (en) Travelling system for mountain railways
JP4397519B2 (en) Rail vehicle
JPH08104233A (en) Steering device for railway rolling stock bogie
JP2003327117A (en) Driving device for rolling stock and bogie
WO2021210578A1 (en) Carriage and vehicle
JPH10234108A (en) Railway vehicle and driving force control method therefor
JPH092263A (en) Truck for rolling stock
JPS59230859A (en) Truck for railway rolling stock