JPH1093150A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device

Info

Publication number
JPH1093150A
JPH1093150A JP9234286A JP23428697A JPH1093150A JP H1093150 A JPH1093150 A JP H1093150A JP 9234286 A JP9234286 A JP 9234286A JP 23428697 A JP23428697 A JP 23428697A JP H1093150 A JPH1093150 A JP H1093150A
Authority
JP
Japan
Prior art keywords
heat
water
side substrate
substrate
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9234286A
Other languages
Japanese (ja)
Inventor
Hideo Watanabe
日出男 渡辺
Hirofusa Tezuka
弘房 手塚
Mitsutoshi Ogasawara
光敏 小笠原
Nobuhiko Suzuki
伸彦 鈴木
Kazuya Sato
一也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technova Inc
Original Assignee
Technova Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technova Inc filed Critical Technova Inc
Priority to JP9234286A priority Critical patent/JPH1093150A/en
Publication of JPH1093150A publication Critical patent/JPH1093150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve thermoelectric conversion performance by providing multiple jet nozzles for jetting a liquid heat moving medium on the opposite surface of a semiconductor supporting face, and providing escape recessed parts close to the velocity of the jet nozzles for allowing the jetted liquid heat moving medium to escape. SOLUTION: A thermoelectric conversion element group 3 is arranged between a heat absorbing side substrate 2 and a radiation side substrate 4. The lower end of the peripheral wall 10 of a cover member 6 is adhered to the periphery of the radiation side substrate 4 through an O ring 14, and a distribution member 7 is provided on the inner side of the cover member 6. An outer peripheral part 13 is erected on the dispersion member 7, and the multiple jet nozzles 17 having jet holes 16 are provided for a base part 15. The recessed parts 18 for escaping are formed around the respective jet nozzles 17, and they communicate one another and they are connected to a discharge port 19. When water 22 is supplied from a feed pipe 8, water 22 simultaneously extends at a first space 20, and it is jetted from the respective nozzles 17 to the radiation side substrate 4. Water 22 depriving heat of the radiation side substrate 4 moves to the recessed part 18 for escaping, is collected to a discharge port 19 and is discharged from the discharge port 19.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子冷却装置あるいは
熱発電装置などの熱電変換装置に係り、特にそれの熱移
動媒体として水や不凍液などの流体を使用した熱電変換
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric converter such as an electronic cooling device or a thermoelectric generator, and more particularly to a thermoelectric converter using a fluid such as water or antifreeze as a heat transfer medium.

【0002】[0002]

【従来の技術】図7ならびに図8は従来の熱電変換装置
を説明するための図で、図7は熱電変換装置の断面図、
図8は図7のX−X線上の断面図である。
2. Description of the Related Art FIGS. 7 and 8 are views for explaining a conventional thermoelectric converter. FIG. 7 is a sectional view of the thermoelectric converter.
FIG. 8 is a cross-sectional view taken along line XX of FIG.

【0003】図7に示すようにアルミナなどのセラミッ
クからなる吸熱側絶縁基板100と放熱側絶縁基板10
1との間に、電極ならびにP形,N形半導体層からなる
熱電変換素子群102が介在されている。
As shown in FIG. 7, a heat absorbing side insulating substrate 100 and a heat radiating side insulating substrate 10 made of ceramics such as alumina are used.
1, a thermoelectric conversion element group 102 composed of electrodes and P-type and N-type semiconductor layers is interposed.

【0004】前記吸熱側絶縁基板100の外表面には、
吸熱フィンなどが付設された吸熱部材103が取りつけ
られている。前記放熱側絶縁基板101の外表面には、
その基板101側に向けて開口した流路形成部材104
が取り付けられている。この流路形成部材104の内側
には、熱移動媒体である水105を放熱側絶縁基板10
1の外表面に沿って一方の端部から他方の端部に向けて
蛇行状に流すための仕切板からなる流路形成部材104
が設けられている。また、流路形成部材104の一方の
端部近くには供給管107が、他方の端部近くには排出
管108が、それぞれ取り付けられている。
[0004] On the outer surface of the heat absorbing side insulating substrate 100,
A heat absorbing member 103 provided with heat absorbing fins or the like is attached. On the outer surface of the heat radiation side insulating substrate 101,
The flow path forming member 104 opened toward the substrate 101 side
Is attached. Inside the flow path forming member 104, water 105, which is a heat transfer medium, is placed on the heat radiation side insulating substrate 10.
A flow path forming member 104 composed of a partition plate for flowing in a meandering manner from one end to the other end along the outer surface of
Is provided. A supply pipe 107 is mounted near one end of the flow path forming member 104, and a discharge pipe 108 is mounted near the other end.

【0005】前記熱電変換素子群102に所定の電流を
流すとともに、前記供給管107から水105を流路形
成部材104に流入せしめる。そして吸熱部材103に
よって吸収した熱は吸熱側絶縁基板100ならびに熱電
変換素子群102を介して放熱側絶縁基板101に伝達
され、前述の水105をその放熱側絶縁基板101の外
表面に沿って蛇行状に流すことにより基板101の熱を
吸収し、その水105を排出管108から系外へ排出さ
せることにより、吸熱部材103側が冷却される。
A predetermined current is supplied to the thermoelectric conversion element group 102, and water 105 is caused to flow from the supply pipe 107 into the flow path forming member 104. The heat absorbed by the heat absorbing member 103 is transmitted to the heat radiating side insulating substrate 101 via the heat absorbing side insulating substrate 100 and the thermoelectric conversion element group 102, and the water 105 meanders along the outer surface of the heat radiating side insulating substrate 101. The heat of the substrate 101 is absorbed by flowing the water, and the water 105 is discharged from the discharge pipe 108 to the outside of the system, whereby the heat absorbing member 103 side is cooled.

【0006】この関連技術として、例えば特表平6−5
04361号公報、特開平5−322366号公報、特
開平5−343750号公報などが挙げられる。
As a related technique, for example, Japanese Patent Application Laid-Open No.
04361, JP-A-5-322366, JP-A-5-343750 and the like.

【0007】[0007]

【発明が解決しようとする課題】ところで、この従来の
熱電変換装置ではまだ十分に高い熱電変換能力を得るこ
とができないという欠点を有している。
However, this conventional thermoelectric converter has a disadvantage that a sufficiently high thermoelectric conversion capability cannot be obtained yet.

【0008】本発明者らはこの欠点について鋭意検討し
た結果、熱電変換装置の特に熱移動媒体の流し方に問題
があることを解明した。すなわち従来の熱電変換装置で
は、熱移動媒体が絶縁基板の表面に沿って単に蛇行状に
流れるだけであるから、熱移動媒体と絶縁基板との間の
熱コンダクタンスが低く、そのために十分な熱電変換能
力を得ることができないことを見出した。
The inventors of the present invention have conducted intensive studies on this drawback, and as a result, have found out that there is a problem in the method of flowing the heat transfer medium, particularly in the thermoelectric converter. That is, in the conventional thermoelectric conversion device, since the heat transfer medium simply flows in a meandering shape along the surface of the insulating substrate, the thermal conductance between the heat transfer medium and the insulating substrate is low, and therefore, sufficient thermoelectric conversion I found that I could not get the ability.

【0009】本発明の目的は、このような従来技術の欠
点を解消し、十分に高い熱電変換能力を有する性能的に
優れた熱電変換装置を提供することにある。
An object of the present invention is to solve the above disadvantages of the prior art and to provide a thermoelectric conversion device having a sufficiently high thermoelectric conversion capability and excellent performance.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、N型半導体層ならびにP型半導体層を支
持する基体と、その基体の半導体層支持面と反対側の面
に対して液状熱移動媒体を噴射する噴射孔を形成した噴
射ノズルを多数設けた分散部材とを所定の隙間を介して
対向し、その分散部材の噴射ノズルの近傍に、前記基体
の半導体層支持面と反対側の面に噴射した液状熱移動媒
体を前記反対側の面から逃がすための逃げ用凹部を設け
たことを特徴とするものである。
In order to achieve the above object, the present invention relates to a substrate for supporting an N-type semiconductor layer and a P-type semiconductor layer, and a substrate opposite to the semiconductor layer supporting surface of the substrate. A dispersion member provided with a large number of injection nozzles formed with injection holes for injecting the liquid heat transfer medium is opposed via a predetermined gap, and in the vicinity of the injection nozzle of the dispersion member, opposite to the semiconductor layer supporting surface of the base. An escape recess for allowing the liquid heat transfer medium injected to the side surface to escape from the opposite side surface is provided.

【0011】[0011]

【発明の実施の形態】従来の熱電変換装置は基体(基
板)の表面に沿って液状熱移動媒体を流して、基体と液
状熱移動媒体の間で熱の移動を行っていた。これに対し
て本発明は、基体の面に対して液状熱移動媒体を衝突さ
せるもので、液状熱移動媒体の基体と接す状態が確実に
乱流となっているから、熱の移動が効率的になされる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional thermoelectric conversion device, a liquid heat transfer medium flows along the surface of a substrate (substrate) to transfer heat between the substrate and the liquid heat transfer medium. On the other hand, in the present invention, the liquid heat transfer medium is caused to collide with the surface of the substrate, and the state in which the liquid heat transfer medium is in contact with the substrate is turbulent. Done.

【0012】また液状熱移動媒体を基体に対して噴射せ
しめる分散部材の各噴射孔の近傍に逃げ用凹部を形成す
ることにより、使用済みの熱移動媒体を基体表面から一
早く逃がすことができるため、熱の移動が効率的になさ
れ、その結果、装置全体としての熱交換能力が高めら
れ、性能的に優れている。
Further, by forming escape recesses in the vicinity of each injection hole of the dispersing member for injecting the liquid heat transfer medium onto the substrate, the used heat transfer medium can be quickly released from the surface of the substrate. As a result, heat is efficiently transferred, and as a result, the heat exchange capacity of the entire apparatus is enhanced, and the apparatus is excellent in performance.

【0013】次に本発明の第1の実施の形態を図ととも
に説明する。図1は熱電変換装置の断面図、図2はその
熱電変換装置に用いる分散部材の底面図である。図1に
示すように、熱電変換装置は被冷却側に接する吸熱部材
1と、吸熱側基板2と、熱電変換素子群3と、放熱側基
板4と、支持枠体5と、カバー部材6と、分散部材7と
から主に構成されている。
Next, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a thermoelectric converter, and FIG. 2 is a bottom view of a dispersion member used in the thermoelectric converter. As shown in FIG. 1, the thermoelectric conversion device includes a heat absorbing member 1 in contact with a side to be cooled, a heat absorbing side substrate 2, a thermoelectric conversion element group 3, a heat dissipation side substrate 4, a support frame 5, a cover member 6, , And a dispersion member 7.

【0014】吸熱部材1は例えば容器状をしており、必
要に応じて内部に多数の吸熱フィンを設け、ファンを付
設することができる。
The heat absorbing member 1 is, for example, in the shape of a container, and can have a number of heat absorbing fins therein if necessary, and can be provided with a fan.

【0015】吸熱側基板2と放熱側基板4は共に例えば
アルミニウムなどの金属からなり、熱電変換素子群3と
接する側の表面に例えばアルマイトなどの電気絶縁薄膜
が形成されている。陽極酸化法によってアルマイトの絶
縁膜を形成する場合、その絶縁薄膜に封孔処理しない方
が、熱電変換素子群3との接合性が良好である。
The heat absorbing side substrate 2 and the heat radiating side substrate 4 are both made of a metal such as aluminum, and an electrically insulating thin film such as alumite is formed on the surface in contact with the thermoelectric conversion element group 3. In the case where an alumite insulating film is formed by an anodizing method, the sealing property with the thermoelectric conversion element group 3 is better if the insulating thin film is not sealed.

【0016】熱電変換素子群3は、図示していないが周
知のように吸熱側電極と、放熱側電極と、両電極の間に
多数配置されたP型半導体層とN型半導体層とから構成
され、P型半導体層とN型半導体層は構造的ならびに熱
的に並列に配置されているが、電気的には前記電極を介
して直列に接続されている。この熱電変換素子群3は、
1段であっても複数段(カスケード構造)であってもよ
い。
The thermoelectric conversion element group 3 includes a heat-absorbing electrode, a heat-dissipating electrode, and a large number of P-type semiconductor layers and N-type semiconductor layers disposed between the two electrodes, which are not shown but are well known. The P-type semiconductor layer and the N-type semiconductor layer are arranged structurally and thermally in parallel, but are electrically connected in series via the electrodes. This thermoelectric conversion element group 3 includes:
One stage or a plurality of stages (cascade structure) may be used.

【0017】支持枠体5は合成樹脂で成形され、放熱側
基板4を支持するとともに、下部はピン11により吸熱
側基板2に位置決めされ、接着剤12で固着されてい
る。
The support frame 5 is formed of a synthetic resin, supports the heat dissipation side substrate 4, and is positioned at the lower portion of the heat absorption side substrate 2 by pins 11, and is fixed by an adhesive 12.

【0018】カバー部材6は合成樹脂で成形され、給水
管部8と排水管部9が設けられ、給水管部8はカバー部
材6のほぼ中央に、排水管部9はカバー部材6の周縁近
くに、それぞれ配置されている。カバー部材6には下方
に向けて開口した周壁10が設けられ、その内側に前記
分散部材7が設置され、周壁10の下端はOリング14
を介して放熱側基板4の周辺と液密に接着されている。
The cover member 6 is formed of a synthetic resin, and is provided with a water supply pipe 8 and a drain pipe 9. The water supply pipe 8 is located substantially at the center of the cover 6, and the drain pipe 9 is located near the periphery of the cover 6. , Respectively. The cover member 6 is provided with a peripheral wall 10 opened downward, the dispersion member 7 is installed inside the peripheral wall 10, and a lower end of the peripheral wall 10 is an O-ring 14.
Is bonded to the periphery of the heat radiation side substrate 4 in a liquid-tight manner.

【0019】分散部材7も合成樹脂で成形されて、外周
に壁部13が立設され、底面部15には噴射孔16を有
する噴射ノズル17が多数等間隔に下方を向いて突出
し、各噴射ノズル17の周囲には逃げ用凹部18が形成
され、この逃げ用凹部18は互いに連通して排出口19
に繋がっている。噴射ノズル17の下端は放熱側基板4
の表面近くまで延びており、噴射ノズル17と放熱側基
板4の隙間は約1〜3mm程度である。なお、図2では
図面が繁雑になるため、噴射孔16,噴射ノズル17の
大部分を省略している。
The dispersing member 7 is also made of synthetic resin, and has a wall 13 provided on the outer periphery, and a plurality of injection nozzles 17 having injection holes 16 projecting downward at equal intervals from the bottom surface portion 15 so as to protrude downward. An escape recess 18 is formed around the nozzle 17, and the escape recess 18 communicates with each other and has a discharge port 19.
Is connected to. The lower end of the injection nozzle 17 is the heat radiation side substrate 4
And the gap between the injection nozzle 17 and the heat radiation side substrate 4 is about 1 to 3 mm. In FIG. 2, most of the injection holes 16 and the injection nozzles 17 are omitted because the drawing is complicated.

【0020】分散部材7をカバー部材6内に装着するこ
とにより、カバー部材6と分散部材7の間に扁平状の第
1空間20が、分散部材7と放熱側基板4の間に扁平状
の第2空間21が、それぞれ形成される。
By mounting the dispersion member 7 in the cover member 6, a flat first space 20 is formed between the cover member 6 and the dispersion member 7, and a flat first space 20 is formed between the dispersion member 7 and the radiation side substrate 4. Second spaces 21 are respectively formed.

【0021】熱移動媒体である水22を中央の給水管部
8から供給すると第1空間20で一斉に拡がり、各噴射
ノズル17から放熱側基板4の平面に向けて勢いよくほ
ぼ垂直方向に噴射する。放熱側基板4に衝突してそれの
熱を奪った水22は、その衝突の反発力により直ちに逃
げ用凹部18側に移行して放熱側基板4の表面から離
れ、また次の新しい低温の水22が放熱側基板4に衝突
するという動作が連続して繰り返される。熱を奪った水
22は逃げ用凹部18を通って排水口19に集められ、
排水管部9から系外へ排出される。排出された水22は
図示しないラジエタ−により強制的に冷却され、循環系
統を通って再利用される。
When water 22 as a heat transfer medium is supplied from the central water supply pipe section 8, it is simultaneously spread in the first space 20, and is jetted from each jet nozzle 17 toward the plane of the heat radiation side substrate 4 in a substantially vertical direction. I do. The water 22 colliding with the heat radiation side substrate 4 and removing the heat thereof immediately shifts to the escape recess 18 side by the repulsive force of the collision and separates from the surface of the heat radiation side substrate 4, and the next new low-temperature water The operation in which the substrate 22 collides with the heat radiation side substrate 4 is continuously repeated. The heat-deprived water 22 is collected at the drain 19 through the escape recess 18,
It is discharged out of the system from the drain pipe section 9. The discharged water 22 is forcibly cooled by a radiator (not shown) and reused through a circulation system.

【0022】なお図中の36は支持枠体5に一体に設け
られた補強リブ、37は断熱層、38は吸熱側基板2と
熱電変換素子群3の間に介在された熱伝導率が大きくし
かも弾性を有する薄膜である。
In the figure, reference numeral 36 denotes a reinforcing rib provided integrally with the support frame 5, 37 denotes a heat insulating layer, and 38 denotes a large thermal conductivity interposed between the heat absorbing side substrate 2 and the thermoelectric conversion element group 3. Moreover, it is a thin film having elasticity.

【0023】図3と図4は第2の実施の形態を示す図
で、図3は熱電変換装置の断面図、図4は放熱側基板4
の平面図である。この例で前記第1の実施の形態と相違
する点は、放熱側基板4の表面に多数の凹凸部39を一
体に形成し、分散部材7の噴射ノズル17が各凹凸部3
9と対向している点である。この例に係る凹凸部39は
個別に独立した凹部を多数有しているが、溝状の凹部を
設け、1つの溝状凹部に対して複数の噴射ノズル17の
先端部を挿入させることもできる。いずれにしても噴射
ノズル17から噴射された水22はこの凹凸部39に衝
突して砕かれながら、放熱側基板4の熱を効果的に奪い
取り、逃げ凹部18を通って放熱側基板4の表面から離
れる。
FIGS. 3 and 4 show a second embodiment. FIG. 3 is a sectional view of a thermoelectric converter, and FIG.
FIG. This embodiment is different from the first embodiment in that a large number of concave and convex portions 39 are integrally formed on the surface of the heat radiation side substrate 4 and the injection nozzle 17 of the dispersing member 7 has
9. Although the concavo-convex portion 39 according to this example has a large number of individually independent concave portions, a groove-shaped concave portion may be provided, and the tip portions of the plurality of injection nozzles 17 may be inserted into one groove-shaped concave portion. . In any case, the water 22 jetted from the jet nozzle 17 collides with the concave-convex portion 39 and is crushed, effectively removing the heat of the heat-radiating substrate 4, passing through the escape concave portion 18, and removing the surface of the heat-radiating substrate 4. Move away from

【0024】図1に示すように表面が平坦な吸熱側基板
4を使用した熱電変換装置(点線)と、図3に示すよう
に表面に多数の凹凸部39を有する吸熱側基板4を使用
した熱電変換装置(実線)との、水22の流速と熱コン
ダクタンスとの関係を図5に示す。
As shown in FIG. 1, a thermoelectric converter (dotted line) using a heat-absorbing substrate 4 having a flat surface, and a heat-absorbing substrate 4 having a large number of uneven portions 39 on its surface as shown in FIG. FIG. 5 shows the relationship between the flow rate of the water 22 and the thermal conductance with the thermoelectric converter (solid line).

【0025】なお両装置の噴射孔16の孔径は1.2m
m、孔の数は24個、噴射ノズル17と吸熱側基板4の
隙間は2mmとした。また熱コンダクタンスhAは、下
式によって求めた。
The diameter of the injection hole 16 of both devices is 1.2 m.
m, the number of holes was 24, and the gap between the injection nozzle 17 and the heat-absorbing substrate 4 was 2 mm. Further, the thermal conductance hA was obtained by the following equation.

【0026】 hA=Q/{Tj−(Tin+Tout)/2} 〔W/℃〕 ただし Q:発熱量(投入電気量) Tj:基板温度 Tin:水入口温度 Tout:水出口温度 この図から明らかなように、両装置とも吸熱側基板4に
衝突せしめる水22の流速を上げれば熱コンダクタンス
は高くなるが、特に表面に多数の凹凸部39を有する吸
熱側基板4を使用した熱電変換装置(実線)の方が高い
熱コンダクタンスを有し、性能的に優れていることが分
かる。
HA = Q / {Tj− (Tin + Tout) / 2} [W / ° C.] where Q: heat generation amount (input electric amount) Tj: substrate temperature Tin: water inlet temperature Tout: water outlet temperature As described above, in both devices, the thermal conductance is increased by increasing the flow rate of the water 22 that collides with the heat-absorbing substrate 4, but in particular, a thermoelectric conversion device using the heat-absorbing substrate 4 having a large number of uneven portions 39 on the surface (solid line) It can be seen that has higher thermal conductance and is superior in performance.

【0027】前記実施例では熱移動媒体として水を使用
したが、本発明はこれに限られるものではなく、水以外
に例えば不凍液など他の液体を使用することもできる。
In the above embodiment, water was used as the heat transfer medium. However, the present invention is not limited to this, and other liquids such as antifreeze may be used in addition to water.

【0028】前記実施例では電子冷却装置の場合につい
て説明したが、本発明は熱発電装置にも適用可能であ
る。
In the above embodiment, the case of the electronic cooling device has been described, but the present invention is also applicable to a thermoelectric generator.

【0029】[0029]

【発明の効果】図6は熱コンダクタンス特性図で、横軸
に給水ポンプへの一定量の投入電力で熱電変換装置に流
れる水の流量(圧力損失ΔP×流速Gw)を、縦軸に熱
コンダクタンスを、それぞれとっている。図中の曲線A
は図3に示す本発明の第2の実施の形態に係る熱電変換
装置、曲線Bは逃げ用凹部を設けない分散部材、すなわ
ち底面部に噴射孔だけを設けたを分散部材を放熱側基板
に接近して配置した熱電変換装置、曲線Cは図7、図8
に示す従来の熱電変換装置の特性曲線である。
FIG. 6 is a thermal conductance characteristic diagram. The horizontal axis indicates the flow rate (pressure loss ΔP × flow rate Gw) of water flowing through the thermoelectric converter with a fixed amount of input power to the water supply pump, and the vertical axis indicates the thermal conductance. Are taken individually. Curve A in the figure
Is a thermoelectric conversion device according to a second embodiment of the present invention shown in FIG. 3, and a curve B is a dispersing member having no escape recess, that is, a dispersing member having only an injection hole formed on a bottom portion. The thermoelectric converters arranged close together, curves C are shown in FIGS.
5 is a characteristic curve of the conventional thermoelectric converter shown in FIG.

【0030】従来の熱電変換装置は図8に示すように供
給管107から排出管108にかけての水105の流路
が狭く、しかも複数回蛇行して距離が長いことから、水
105の圧損が大きい。また水105が放熱側絶縁基板
101の表面と平行になってほぼ層流状態で流れるた
め、放熱側絶縁基板101から水105への熱伝達が余
り良くないことから、曲線Cに示すように熱コンダクタ
ンスがもっとも小さい。
In the conventional thermoelectric converter, as shown in FIG. 8, since the flow path of the water 105 from the supply pipe 107 to the discharge pipe 108 is narrow and the path is meandered a plurality of times, the pressure loss of the water 105 is large. . Further, since the water 105 flows in a substantially laminar flow state in parallel with the surface of the heat-dissipating insulating substrate 101, heat transfer from the heat-dissipating insulating substrate 101 to the water 105 is not very good. The smallest conductance.

【0031】これに較べて曲線A,Bのものは、放熱側
基板の伝熱面に対して水を衝突するように供給して放熱
側基板から熱を奪い取るようになっており、しかも水の
流路長が従来のものに比較して短く、圧損が小さいこと
から、熱コンダクタンスが大い。そのなかでも本発明の
ように放熱側基板に衝突した水が直ちに放熱側基板の表
面から逃がして、次の新しい水が放熱側基板に衝突する
ように噴射孔の近傍に逃げ用凹部を形成した曲線Aのも
のは、優れた熱コンダクタンス特性を有している。
On the other hand, the curves A and B are designed so that water is supplied so as to impinge on the heat transfer surface of the radiating side substrate to remove heat from the radiating side substrate. Since the flow path length is shorter than the conventional one and the pressure loss is small, the thermal conductance is large. Among them, as in the present invention, water that collided with the heat radiation side substrate immediately escaped from the surface of the heat radiation side substrate, and a relief recess was formed near the injection hole so that the next new water collided with the heat radiation side substrate. The curve A has excellent thermal conductance characteristics.

【0032】本発明は前述のような構成になっており、
基体の面に対して液状熱移動媒体を衝突させるもので、
液状熱移動媒体の基体と接する状態が確実に乱流とな
る。また液状熱移動媒体を基体に対して噴射せしめる分
散部材の各噴射孔の近傍に逃げ用凹部を形成することに
より、使用済みの熱移動媒体を基体表面から一早く逃が
すことができるため、熱の移動が効率的になされ、その
結果、装置全体としての熱交換能力が高められ、性能的
に優れている。
The present invention is configured as described above.
A liquid heat transfer medium is caused to collide with the surface of the substrate,
The state in which the liquid heat transfer medium is in contact with the substrate is surely turbulent. Further, by forming escape recesses near each injection hole of the dispersing member for injecting the liquid heat transfer medium to the base, the used heat transfer medium can be released from the base surface as quickly as possible. The transfer is performed efficiently, and as a result, the heat exchange capacity of the entire apparatus is enhanced, and the apparatus is excellent in performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る熱電変換装置
の断面図である。
FIG. 1 is a sectional view of a thermoelectric conversion device according to a first embodiment of the present invention.

【図2】その熱電変換装置に用いる分散部材の底面図で
ある。
FIG. 2 is a bottom view of a dispersion member used in the thermoelectric conversion device.

【図3】本発明の第2の実施の形態に係る熱電変換装置
の断面図である。
FIG. 3 is a cross-sectional view of a thermoelectric conversion device according to a second embodiment of the present invention.

【図4】その熱電変換装置に用いる放熱側基板の平面図
である。
FIG. 4 is a plan view of a heat radiation side substrate used in the thermoelectric conversion device.

【図5】本発明の第1ならびに第2の実施の形態に係る
熱電変換装置の水の流速と熱コンダクタンスとの関係を
示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a flow rate of water and a thermal conductance of the thermoelectric conversion devices according to the first and second embodiments of the present invention.

【図6】各熱電変換装置の熱コンダクタンス特性図であ
る。
FIG. 6 is a thermal conductance characteristic diagram of each thermoelectric converter.

【図7】従来の熱電変換装置の縦断面図である。FIG. 7 is a longitudinal sectional view of a conventional thermoelectric converter.

【図8】図7X−X線上の断面図である。FIG. 8 is a sectional view taken on line XX of FIG. 7;

【符号の説明】[Explanation of symbols]

1 吸熱部材 2 吸熱側基板 3 熱電変換素子群 4 放熱側基板 5 支持枠体 6 カバー部材 7 分散部材 8 給水管部 9 排水管部 15 底面部 16 噴射孔 17 噴射ノズル 18 逃げ用凹部 20 第1空間 21 第2空間 22 水 REFERENCE SIGNS LIST 1 heat absorbing member 2 heat absorbing side substrate 3 thermoelectric conversion element group 4 heat radiating side substrate 5 support frame 6 cover member 7 dispersing member 8 water supply pipe section 9 drain pipe section 15 bottom section 16 injection hole 17 injection nozzle 18 escape recess 20 first Space 21 second space 22 water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 一也 北海道登別市柏木町3丁目36番83号 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuya Sato 3-36-83 Kashiwagi-cho, Noboribetsu-shi, Hokkaido

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 N型半導体層ならびにP型半導体層を支
持する基体と、その基体の半導体層支持面と反対側の面
に対して液状熱移動媒体を噴射する噴射孔を形成した噴
射ノズルを多数設けた分散部材とを所定の隙間を介して
対向し、 その分散部材の噴射ノズルの近傍に、前記基体の半導体
層支持面と反対側の面に噴射した液状熱移動媒体を前記
反対側の面から逃がすための逃げ用凹部を設けたことを
特徴とする熱電変換装置。
An injection nozzle having a base for supporting an N-type semiconductor layer and a P-type semiconductor layer, and an injection hole for spraying a liquid heat transfer medium to a surface of the base opposite to the semiconductor layer supporting surface. A large number of dispersing members are opposed to each other with a predetermined gap therebetween, and a liquid heat transfer medium ejected on the surface of the substrate opposite to the semiconductor layer supporting surface is provided near the ejection nozzle of the dispersing member. A thermoelectric conversion device comprising an escape recess for escape from a surface.
【請求項2】 請求項1記載において、前記基体の半導
体層支持面と反対側の面に多数の凹凸を形成したことを
特徴とする熱電変換装置。
2. The thermoelectric conversion device according to claim 1, wherein a large number of irregularities are formed on a surface of the base opposite to the semiconductor layer supporting surface.
JP9234286A 1997-08-29 1997-08-29 Thermoelectric conversion device Pending JPH1093150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9234286A JPH1093150A (en) 1997-08-29 1997-08-29 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9234286A JPH1093150A (en) 1997-08-29 1997-08-29 Thermoelectric conversion device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8237939A Division JPH1084139A (en) 1996-09-09 1996-09-09 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH1093150A true JPH1093150A (en) 1998-04-10

Family

ID=16968610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9234286A Pending JPH1093150A (en) 1997-08-29 1997-08-29 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH1093150A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034451A1 (en) * 1997-12-25 1999-07-08 Eco 21, Inc. Thermoelectric converter
JP2007085683A (en) * 2005-09-26 2007-04-05 Hitachi Industrial Equipment Systems Co Ltd Air cleaning device and air cleaning system using the same
KR102520648B1 (en) * 2021-10-12 2023-04-12 한국건설기술연구원 Thermoelectric heat pump with improved heat transfer performance using impinging jet and cooling and heating system using thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034451A1 (en) * 1997-12-25 1999-07-08 Eco 21, Inc. Thermoelectric converter
US6185941B1 (en) 1997-12-25 2001-02-13 Eco 21, Inc. Thermoelectric converter
JP2007085683A (en) * 2005-09-26 2007-04-05 Hitachi Industrial Equipment Systems Co Ltd Air cleaning device and air cleaning system using the same
JP4699846B2 (en) * 2005-09-26 2011-06-15 株式会社日立産機システム Air cleaning device and air cleaning system using the same
KR102520648B1 (en) * 2021-10-12 2023-04-12 한국건설기술연구원 Thermoelectric heat pump with improved heat transfer performance using impinging jet and cooling and heating system using thereof

Similar Documents

Publication Publication Date Title
JPH1084139A (en) Thermoelectric conversion device
US5239443A (en) Blind hole cold plate cooling system
US10665529B2 (en) Modular microjet cooling of packaged electronic components
US10770372B2 (en) Fluid routing devices and methods for cooling integrated circuit packages
US5177667A (en) Thermal conduction module with integral impingement cooling
US6257320B1 (en) Heat sink device for power semiconductors
US5239200A (en) Apparatus for cooling integrated circuit chips
US7255153B2 (en) High performance integrated MLC cooling device for high power density ICS and method for manufacturing
US20090090490A1 (en) Cooler
JP3203475B2 (en) Semiconductor device
CN114303037B (en) Re-entry fluid cold plate
JP2745948B2 (en) Integrated circuit cooling structure
CN100461995C (en) Array jetting micro heat exchanger
US5705854A (en) Cooling apparatus for electronic device
JP4619387B2 (en) Semiconductor device cooling device
JP4041437B2 (en) Semiconductor device cooling device
US10147669B2 (en) Cooler
JP3560391B2 (en) Thermoelectric converter
US20220142002A1 (en) Fluid cooling device
JP2006303264A (en) Cooling device of semiconductor module
TWI726806B (en) Water-cooling heat dissipation device and manufacturing method thereof
JPH1093150A (en) Thermoelectric conversion device
CN114828598A (en) Liquid cooling radiator, electric drive controller and car
US20090014158A1 (en) Nano shower for chip-scale cooling
JPH08241943A (en) Liquid-cooled heat sink for power semiconductor element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071206