JPH1089940A - Equipment for measuring fine surface shape of object - Google Patents

Equipment for measuring fine surface shape of object

Info

Publication number
JPH1089940A
JPH1089940A JP24538396A JP24538396A JPH1089940A JP H1089940 A JPH1089940 A JP H1089940A JP 24538396 A JP24538396 A JP 24538396A JP 24538396 A JP24538396 A JP 24538396A JP H1089940 A JPH1089940 A JP H1089940A
Authority
JP
Japan
Prior art keywords
light
photoelectric conversion
measuring
electric signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24538396A
Other languages
Japanese (ja)
Inventor
Osamu Imon
修 井門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24538396A priority Critical patent/JPH1089940A/en
Publication of JPH1089940A publication Critical patent/JPH1089940A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To protect the surface of an object perfectly through noncontact measurement wherein the extent of irregularities on the surface of the object is measured based on the difference of outputs from first and second photoelectric conversion means. SOLUTION: A photoelectric conversion element 6 generates an electric signal Sγ corresponding to the combined quantity of reference light Pir . An optical head 8 irradiates a measuring point 7a on the surface of an object 7 with a first measuring light Pia and an optical head 9 irradiates the measuring point 7a with a second measuring light Pib . A photoelectric conversion element 10 generates an electric signal Sa corresponding to the combined quantity of reflected light of the first measuring light Pia from the measuring point 7a . A photoelectric conversion element 11 generates an electric signal Sb corresponding to the combined quantity of reflected light of the second measuring light Pib from the measuring point 7a . An operating unit 13 operates the difference between the electric signal Sr and the electric signal Sa or the electric signal Sb A controller 14 measures the extent of irregularities of the object 7 at the measuring point 7a based on the difference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体表面の微細形
状計測装置に関し、たとえば表面粗さ計や三次元レーザ
・ディジタイジング・システムに適用できる物体表面の
微細形状計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine shape measuring device for an object surface, and more particularly to a fine shape measuring device for an object surface applicable to a surface roughness meter and a three-dimensional laser digitizing system.

【0002】[0002]

【従来の技術】超精密加工物体の表面検査に用いられる
表面粗さ計の公知技術の一つに、いわゆる「触針法」が
ある。これは、針の先端を検査対象物体の表面に当てて
動かしながら針の先端の上下動を記録するというもの
で、針の大きさにもよるが、ナノミクロンオーダのきわ
めて高い計測精度が得られる。また、触針法は、物体の
三次元形状を計測して、たとえば、CAE(computer a
ided engineering)等の計算機応用装置への入力情報を
生成するシステム(三次元レーザ・ディジタイジング・
システム)にも用いられる。
2. Description of the Related Art There is a so-called "contact probe method" as one of known techniques of a surface roughness meter used for surface inspection of an ultra-precision machined object. In this method, the vertical movement of the needle tip is recorded while moving the tip of the needle against the surface of the object to be inspected. Depending on the size of the needle, extremely high measurement accuracy on the order of nanometers can be obtained. . The stylus method measures the three-dimensional shape of an object and, for example, uses a CAE (computer a)
A system that generates input information to computer application devices such as ided engineering (3D laser digitizing,
System).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、触針法
は、物体表面に“針”を接触させるものであったため、
接触力が強すぎたり接触面の材料が柔らかかったりした
場合に、物体表面を傷つけてしまうという問題点があっ
た。そこで、本発明は、物体表面をまったく傷つけない
非接触の微細形状計測装置の提供を目的とする。
However, the stylus method involves bringing a "needle" into contact with the surface of an object.
When the contact force is too strong or the material of the contact surface is soft, there is a problem that the object surface is damaged. Therefore, an object of the present invention is to provide a non-contact fine shape measuring device that does not damage the object surface at all.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
コヒーレントな光を発生する光源と、前記光を第1の光
と第2の光に分光する分光手段と、前記第1の光を偏向
する偏向手段と、前記第2の光と偏向後の第1の光との
合成光量に応じた大きさの電気信号を発生する第1の光
電変換手段と、前記第2の光と偏向後の第1の光とを測
定対象物体の表面に照射する照射手段と、前記測定対象
物体の表面からの反射光量に応じた大きさの電気信号を
発生する第2の光電変換手段と、前記第1の光電変換手
段の出力と前記第2の光電変換手段の出力との差分に基
づいて前記測定対象物体の表面の凹凸の大きさを測定す
る測定手段と、を備えたことを特徴とする。
The invention according to claim 1 is
A light source that generates coherent light, a light splitting unit that splits the light into a first light and a second light, a deflecting unit that deflects the first light, and a second light that deflects the second light. First photoelectric conversion means for generating an electric signal having a magnitude corresponding to a combined light amount with the first light, and irradiation for irradiating the surface of the measurement target object with the second light and the deflected first light Means, a second photoelectric conversion means for generating an electric signal having a magnitude corresponding to the amount of light reflected from the surface of the object to be measured, and an output of the first photoelectric conversion means and an output of the second photoelectric conversion means. Measuring means for measuring the size of the irregularities on the surface of the object to be measured based on the difference from the output.

【0005】請求項2に係る発明は、請求項1に係る発
明において、前記第1の光と第2の光の波長を異ならせ
たことを特徴とする。請求項3に係る発明は、請求項1
に係る発明において、前記照射手段の照射光若しくは該
照射光と同一の特性を有する他の照射光の光軸を、前記
測定対象物体の表面の鉛直線に対して、0度よりも大き
く且つ90度よりも小さい角度にしたことを特徴とす
る。
According to a second aspect of the present invention, in the first aspect of the present invention, the first light and the second light have different wavelengths. The invention according to claim 3 is the invention according to claim 1.
In the invention according to the above, the optical axis of the irradiation light of the irradiation means or another irradiation light having the same characteristics as the irradiation light is larger than 0 degree and 90 degrees with respect to a vertical line of the surface of the measurement object. The angle is smaller than the degree.

【0006】[0006]

【作用】コヒーレントな光を二つの光(第1の光、第2
の光)に分光し、その一方を偏向して該二つの光を測定
対象物体の表面に照射すると、該表面上における二つの
光の照射点が上記偏向量に対応して離れることになる。
今、便宜的に照射点をそれぞれA、Bと表わすと、A、
Bの高さが一致している場合には、A、Bからの二つの
反射光の周波数と位相は一致するが、A、Bの高さが一
致していない場合には、同二つの反射光の周波数又は位
相に差を生じ、この差は上記高さに対応したものとな
る。したがって、上記構成の第1の光電変換手段は、測
定対象物体の表面に照射する前の二つの光(第2の光と
偏向後の第1の光)の位相差に相当する電気信号(便宜
的に「基準信号」と言う)を取り出すもの、また、第2
の光電変換手段は、測定対象物体の表面からの二つの反
射光(第2の光の反射光と偏向後の第1の光の反射光)
の位相差に相当する電気信号(便宜的に「測定信号」と
言う)を取り出すものであり、基準信号と測定信号の差
分は、測定対象物体の表面の高さを表わしているから、
非接触で表面の形状測定を行うことができ、物体表面を
まったく傷つけない微細形状計測装置を提供できる。
[Function] Coherent light is converted into two lights (first light, second light).
When the two lights are irradiated on the surface of the object to be measured by deflecting one of them, the irradiation points of the two lights on the surface are separated according to the amount of deflection.
Now, for convenience, if the irradiation points are represented as A and B, respectively, A,
When the heights of B are the same, the frequencies and phases of the two reflected lights from A and B match, but when the heights of A and B do not match, the two reflected lights A difference occurs in the frequency or phase of the light, and the difference corresponds to the height. Therefore, the first photoelectric conversion means having the above-described configuration provides an electric signal (for convenience) corresponding to the phase difference between the two lights (the second light and the first light after the deflection) before irradiating the surface of the measurement object. (Referred to as “reference signal”), and the second
The photoelectric conversion means of (2) includes two reflected lights (a reflected light of the second light and a reflected light of the first light after the deflection) from the surface of the object to be measured.
An electric signal (referred to as a “measurement signal” for convenience) is taken out, and the difference between the reference signal and the measurement signal indicates the height of the surface of the object to be measured.
It is possible to measure the shape of the surface in a non-contact manner, and to provide a fine shape measuring device which does not damage the surface of the object at all.

【0007】又は、第1の光と第2の光の波長を異なら
せると、基準信号と測定信号の周波数がその波長差に応
じた低い周波数になり、広帯域の光電変換手段を使用し
なくても済みコストを低減できるから好ましい。又は、
測定対象物体の鉛直線に対して、0度よりも大きく且つ
90度よりも小さい角度で第2の光と偏向後の第1の光
を照射すると、測定対象物体の垂直面を検出して、位相
飛びを回避できるから好ましい。
Alternatively, if the wavelengths of the first light and the second light are made different, the frequency of the reference signal and the frequency of the measurement signal become low according to the wavelength difference, so that wide-band photoelectric conversion means is not used. It is preferable because the cost can be reduced. Or
When the second light and the first light after deflection are irradiated at an angle larger than 0 degree and smaller than 90 degrees with respect to the vertical line of the measurement target object, the vertical plane of the measurement target object is detected, This is preferable because phase jump can be avoided.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明するが、その前に本発明の原理を解説する。 (原理)周波数f1 の波と周波数f2 (便宜的にf1
2 )の波を混合すると、周波数f1 −f2 の波ができ
る。また、同一周波数の二つの波を混合すると、その位
相差を取り出すことができる。電波領域では、高周波の
受信信号に局部発振信号を混合(ヘテロダイン検波)す
ることにより、その周波数差に相当する低い周波数の信
号(中間周波数信号)に変換し、受信機内部における信
号の取り扱い容易化を図っている。他方、レーザ光のよ
うなコヒーレントな光も“波”であるから、同様に、周
波数f1 の“光”と周波数f2 の“光”を混合すると、
周波数f1−f2 の“光”ができ、また、同一周波数の
二つの光P1 、P2 を混合すると、その位相差を取り出
すことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings, but before that, the principle of the present invention will be explained. (Principle) Wave of frequency f 1 and frequency f 2 (for convenience, f 1 >
When the waves of f 2 ) are mixed, a wave of frequency f 1 −f 2 is formed. When two waves having the same frequency are mixed, the phase difference can be obtained. In the radio wave area, the local oscillation signal is mixed with the high-frequency reception signal (heterodyne detection) to convert it to a low-frequency signal (intermediate frequency signal) corresponding to the frequency difference, facilitating the handling of the signal inside the receiver. Is being planned. On the other hand, coherent light such as laser light is also a “wave”, so if “light” at frequency f 1 and “light” at frequency f 2 are similarly mixed,
Frequency f 1 of the -f 2 can "light", also when mixing two light P 1, P 2 of the same frequency, it is possible to retrieve the phase difference.

【0009】ここで、P1 とP2 を測定対象物体の表面
に照射し、その反射光(混合された波)の強度を測定し
た場合を考える。P1 とP2 の照射点の高さが一致して
いる限り位相差は生じないが、わずかでも高度差がある
とその差に応じた位相差が生じるから、この位相差に基
づいてP1 とP2 の照射点の高度差を知ることができ、
測定範囲の全域にわたって高度差を測定してプロットす
ることにより、測定対象物体の微細な表面形状を定量的
に測定できる。このような原理に基づく、好ましい実施
例は以下のとおりである。 (実施例)図1〜図9は本発明に係る物体表面の微細形
状計測装置の一実施例を示す図である。
Here, it is assumed that P 1 and P 2 are irradiated on the surface of the object to be measured, and the intensity of the reflected light (mixed wave) is measured. The height of the irradiation point of the P 1 and P 2 is not generated phase difference as long as they match, the slightest there is a height difference from the phase difference corresponding to the difference is generated, P 1 based on the phase difference and it is possible to know the altitude difference of the irradiation point of P 2,
By measuring and plotting the altitude difference over the entire measurement range, the fine surface shape of the object to be measured can be quantitatively measured. A preferred embodiment based on such a principle is as follows. (Embodiment) FIGS. 1 to 9 are views showing an embodiment of an apparatus for measuring a fine shape of an object surface according to the present invention.

【0010】まず、構成を説明する。図1において、1
は単一波長で位相が揃った光P0 (コヒーレントな光)
を発生する光源であり、特に限定しないが、ここでは、
波長633ナノメータのコヒーレント光を発生するHe
−Neレーザを使用している。2は分光手段及び偏向手
段であり、ここでは、平凹レンズ2a、平凹レンズ2
b、音響光学素子2c、平凹レンズ2d及び円筒レンズ
2eを順次に並べて構成している。
First, the configuration will be described. In FIG. 1, 1
Is the light P 0 (coherent light) whose phase is aligned at a single wavelength
Which is not particularly limited, but here,
He that generates coherent light with a wavelength of 633 nanometers
-Ne laser is used. Reference numeral 2 denotes a spectroscopic unit and a deflecting unit.
b, an acousto-optic element 2c, a plano-concave lens 2d, and a cylindrical lens 2e are sequentially arranged.

【0011】音響光学素子2cは、超音波によって媒体
内にできる周期的な疎密に起因する光の回折を利用して
光P0 の偏向を操作する素子であり、この音響光学素子
2cからは、偏向量固定の第1の光P1 と、偏向量可変
の第2の光P2 とが取り出される。なお、第1の光P1
と第2の光P2 の偏向量は、操作部2fからの信号で制
御されるようになっている。また、音響光学素子2c以
外にも、反射鏡を適当な軸の周りに回転又は振動させて
反射光の方向を変える機械的光偏向器やポッケルス効果
と複屈折性を利用する電気光学的光偏向器などを使用で
きる。
The acousto-optic element 2c is a device for controlling the deflection of the light P 0 by utilizing the diffraction of light caused by the periodic density created in the medium by the ultrasonic waves. A first light P 1 having a fixed deflection amount and a second light P 2 having a variable deflection amount are extracted. Note that the first light P 1
When the amount of deflection of the second light P 2 is adapted to be controlled by the signal from the operation unit 2f. In addition to the acousto-optic element 2c, a mechanical optical deflector that changes the direction of reflected light by rotating or oscillating a reflecting mirror around an appropriate axis, or electro-optical light deflection using the Pockels effect and birefringence. Can be used.

【0012】3及び4は第1の光P1 と第2の光P2
共に2方向に振り分けるビームスプリッタである。以
下、下側のビームスプリッタ3を真っ直ぐに通り抜けた
二つの光(Pi ;iは1、2)を第1の測定光(Pi
)と言い、上側のビームスプリッタ4で直角に曲げら
れた二つの光を第2の測定光(Pib )と言い、さら
に、上側のビームスプリッタ4を真っ直ぐに通り抜けた
二つの光を参照光(Pir )と言うことにする。
Reference numerals 3 and 4 denote beam splitters for distributing the first light P 1 and the second light P 2 together in two directions. Hereinafter, two lights (P i ; i is 1 and 2) that have passed straight through the lower beam splitter 3 are converted into a first measurement light (P i a).
) And said, refers to two light bent at a right angle at the upper side of the beam splitter 4 and the second measurement light and (P i b), further, the reference light two light passing through the upper beam splitter 4 straight to (P i r) and say it.

【0013】6は参照光Pir の合成光量に応じた電気
信号Srを発生する光電変換素子、7は測定対象物体で
ある。8は第1の測定光Pia を測定対象物体7の表面
上の測定点7aに照射する光ヘッド、9は第2の測定光
ib を同測定点7aに照射する光ヘッド、10は測定
点7aからの第1の測定光Pia の反射光Pia′ (以
下、第1の反射光と言う)の合成光量に応じた電気信号
Saを発生する光電変換素子、11は測定点7aからの
第2の測定光Pib の反射光Pib′ (以下、第2の反
射光と言う)の合成光量に応じた電気信号Sbを発生す
る光電変換素子である。
[0013] 6 photoelectric conversion element for generating an electrical signal Sr corresponding to the synthesized light intensity of the reference light P i r, 7 is a measured object. 8 an optical head for irradiating a first measuring beam P i a measuring point 7a on the surface of the measured object 7, the optical head for irradiating a second measuring beam P i b in the measuring point 7a 9, 10 the first measuring beam P i a of the reflected light P i a 'from the measurement point 7a photoelectric conversion element for generating an electric signal Sa corresponding to the synthesized light intensity (hereinafter, the first means and the reflected light), 11 This is a photoelectric conversion element that generates an electric signal Sb corresponding to a combined light amount of reflected light P i b ′ of second measurement light P i b (hereinafter, referred to as second reflected light) from the measurement point 7a.

【0014】これら二つの光ヘッド8、9及び二つの光
電変換素子10、11は、好ましくは、共通のヘッド機
構12に搭載され、このヘッド機構12の自由な動きに
よって、測定対象物体7の測定点7aに様々な方向から
光を照射し及びその反射光を受けることができるように
なっている。13は電気信号Srと電気信号Sa又は電
気信号Srと電気信号Sbの差分ΔSを演算する演算器
であり、14は上記差分に基づいて測定対象物体7の測
定点7aの凹凸の大きさを測定すると共に、ヘッド機構
12や測定対象物体7のステージ7b及び光偏向器2c
の操作部2fなどの各部をシーケンスコントロールする
コントローラである。
The two optical heads 8, 9 and the two photoelectric conversion elements 10, 11 are preferably mounted on a common head mechanism 12, and the free movement of the head mechanism 12 allows the measurement of the object 7 to be measured. The point 7a can be irradiated with light from various directions and receive the reflected light. Numeral 13 denotes an arithmetic unit for calculating the difference ΔS between the electric signal Sr and the electric signal Sa or between the electric signal Sr and the electric signal Sb, and 14 measures the size of the unevenness of the measuring point 7a of the measuring object 7 based on the difference. And the head mechanism 12, the stage 7b of the object 7 to be measured, and the optical deflector 2c.
Is a controller that performs sequence control of each unit such as the operation unit 2f.

【0015】次に、作用を説明する。既述したように、
二つの光を混合すると、二つの光の位相差の情報を取り
出すことができる。今、二つの光Pi の周波数をそれぞ
れf1 、f2 とすると、Piは、次式(1)(2)で表
わすことができる。 P1(t)=A1 exp{i2πf1 t+φ1 } ………(1) P2(t)=A2 exp{i2πf2 t+φ2 } ………(2) ただし、A1 、A2 はP1 、P2 の振幅、φ1 、φ2
1 、P2 の初期位相、tは時間、iは虚数単位であ
る。
Next, the operation will be described. As already mentioned,
When the two lights are mixed, information on the phase difference between the two lights can be extracted. Now, assuming that the frequencies of the two lights P i are f 1 and f 2 , P i can be represented by the following equations (1) and (2). P 1 (t) = A 1 exp {i2πf 1 t + φ 1} ......... (1) P 2 (t) = A 2 exp {i2πf 2 t + φ 2} ......... (2) However, A 1, A 2 is The amplitudes of P 1 and P 2 , φ 1 and φ 2 are the initial phases of P 1 and P 2 , t is time, and i is an imaginary unit.

【0016】P1 、P2 を干渉させた場合の強度Iは、 I=<P1 +P22 ………(3) となり、 Δf=f1 −f2 ………(4) Δφ=φ1 −φ2 ………(5) と置くと、上式(3)は、 I=A1 2+A2 2+2A12 cos(2π+Δft+Δφ) ………(6) と書き表すことができ、この式(6)の右辺第3項の交
流成分は、二つの光Piの周波数差(Δf)と位相差
(Δφ)の情報を含むから、右辺第1項と第2項に相当
する大きさのバイアスを加えて同第1項と第2項を取り
除くことにより、 I=2A12 cos(2π+Δft+Δφ) ………(6)′ として、上記周波数差(Δf)と位相差(Δφ)の情報
をIの変化で取り出すことができる。
The intensity I of the case of causing interference P 1, P 2 is, I = <P 1 + P 2> 2 ......... (3) next, Δf = f 1 -f 2 ......... (4) Δφ = placing phi 1 -.phi 2 ......... (5), the above equation (3) is, I = a 1 2 + a 2 2 + 2A 1 a 2 cos (2π + Δft + Δφ) can be written as ......... (6), Since the AC component of the third term on the right side of the equation (6) includes information on the frequency difference (Δf) and phase difference (Δφ) of the two lights P i , the magnitude corresponding to the first and second terms on the right side By removing the first and second terms by applying a bias, the above frequency difference (Δf) and phase difference (Δφ) are obtained as I = 2A 1 A 2 cos (2π + Δft + Δφ) (6) ′. Can be extracted by the change of I.

【0017】ここで、Δfを0とすると、以下の作用が
得られる。すなわち、測定対象物体7の測定点7aの表
面形状を便宜的に図2(a)のとおりと仮定し、同測定
点7aの任意位置にPia を照射すると、P1a 、P2
a のそれぞれの照射位置に高度差hがある場合には、
1a 、P2a の光路長に差が付き、同図(b)に示す
ように、光路長の差に応じた位相差φが生じる。
Here, assuming that Δf is 0, the following operation is obtained. That is, when the surface shape of the measurement points 7a of the measured object 7 conveniently assumes that as in FIG. 2 (a), irradiation with P i a at any position of the measurement point 7a, P 1 a, P 2
When there is an altitude difference h at each irradiation position of a,
There is a difference between the optical path lengths of P 1 a and P 2 a, and a phase difference φ occurs according to the difference in the optical path length as shown in FIG.

【0018】したがって、Pia の反射光(第2の反射
光Pia′ )を干渉させた場合の強度Iは、上式(6)
より、図2(b)の位相差φの情報を含むから、また、
位相差Δφと高低差Δhとの間には、次式(7)に示す
関係があるから、 Δh=λ・Δφ/4π ………(7) 第2の反射光Pia′ の合成光を光電変換素子10で受
光して電気信号Saに変換することにより、測定対象物
体7の表面形状を光の波長λ以下の精度で測定すること
ができ、たとえば、He−Neレーザの波長λは約63
3ナノメータのため、位相測定の分解能を1度とする
と、およそ0.88ナノメータの高い精度でΔhを測定
できる。
[0018] Thus, P i a of the reflected light intensity I in the case of causing interference (second reflected light P i a ') is the equation (6)
Since the information of the phase difference φ in FIG. 2B is included,
Between the phase difference [Delta] [phi and height difference Delta] h, the relationship expressed by the following equation (7), Δh = λ · Δφ / 4π ......... (7) the combined light of the second reflected light P i a ' Is received by the photoelectric conversion element 10 and converted into an electric signal Sa, the surface shape of the measurement target object 7 can be measured with an accuracy of the wavelength λ or less of the light. For example, the wavelength λ of the He-Ne laser is About 63
Since the resolution of the phase measurement is 1 degree because of 3 nm, Δh can be measured with a high accuracy of about 0.88 nm.

【0019】周波数f1 、f2 は、原理的には等値(f
1 =f2 )でも構わないが、光電変換素子6、10、1
1に高帯域のもの(金属−金属点接触ダイオードやジョ
セフソンダイオードなど)を使用しなければならないか
ら、コストの点で見た場合、Δfが105 〜106 Hz
程度になるような値にf1 、f2 を設定するのが望まし
い。一般的なフォトディテクタを使用できる。
The frequencies f 1 and f 2 are, in principle, equal (f
1 = f 2 ), but the photoelectric conversion elements 6, 10, 1
1 requires the use of a high band (metal-metal point contact diode, Josephson diode, etc.), so that from the viewpoint of cost, Δf is 10 5 to 10 6 Hz.
It is desirable to set f 1 and f 2 to such values as to be about the same. A general photodetector can be used.

【0020】なお、本実施例では、第1の測定光(Pi
a )の他に第2の測定光(Pib )を使用している
が、その理由は以下のとおりである。本実施例の測定法
は、光の波長以下のきわめて高い分解能を得られる点で
優れているが、たとえば、図2(a)の高度差hが比較
的大きく、位相飛び現象、すなわち一波長の整数倍を越
える位相差φ(便宜的にφ=360度+α度)が生じた
場合には、「360度+α度」と「α度」の見分けがつ
かず、誤測定を免れない。図3はそのような誤測定を招
きやすい例を示す図である。段差を跨いでP1a とP2
a が位置しているため、P1a とP2a の光路長の差
が相当に大きくなり、段差の程度によっては一波長の整
数倍を越える位相差φが生じる。
In this embodiment, the first measurement light (P i
Other a) using the second measurement light (P i b), but the reason is as follows. The measurement method of the present embodiment is excellent in that an extremely high resolution of less than the wavelength of light can be obtained. For example, the height difference h in FIG. If a phase difference φ exceeding the integral multiple (φ = 360 degrees + α degrees) occurs, “360 degrees + α degrees” cannot be distinguished from “α degrees”, and erroneous measurement cannot be avoided. FIG. 3 is a diagram showing an example in which such erroneous measurement is likely to occur. P 1 a and P 2 across the step
Since a is located, the difference between the optical path lengths of P 1 a and P 2 a becomes considerably large, and depending on the degree of the step, a phase difference φ exceeding an integral multiple of one wavelength occurs.

【0021】本実施例の第2の測定光(Pib )及びそ
の関連要素(光電変換素子11)は、かかる誤測定を回
避するための付加要素であり、その必須とする事項は、
第2の測定光(Pib )の測定対象物体7への照射角度
を、第1の測定光(Pia )の照射角度に対して、0度
よりも大きく且つ90度よりも小さくした点にあり、さ
らに、第2の測定光(Pib )の反射光(第2の反射光
ib′ )を受光できる位置に光電変換素子11を配置
した点にある。なお、上記角度(0度、90度)の臨界
的意義は、0度では第1の測定光と同じになってしまう
から、また、90度若しくはそれ以上では光ヘッドと測
定対象物体が干渉してしまうからである。
The second measuring beam of the present embodiment (P i b) and related elements (photoelectric conversion element 11) that is an addition element for avoiding such erroneous measurements, matters and its essential,
The irradiation angle of the second measurement light (P i b) to the measurement target object 7 is larger than 0 degree and smaller than 90 degrees with respect to the irradiation angle of the first measurement light (P i a). The point is that the photoelectric conversion element 11 is arranged at a position where the reflected light (the second reflected light P i b ′) of the second measurement light (P i b) can be received. Note that the critical meaning of the angles (0 degree, 90 degrees) becomes the same as the first measurement light at 0 degrees, and at 90 degrees or more, the optical head interferes with the object to be measured. It is because.

【0022】これによれば、図4に示すように、第2の
測定光(Pib )が段差の垂直面に照射されるため、P
1b′ とP2b′ の位相差が小さくなって、段差の存在
を検知でき、そのときの測定結果を破棄できるから、一
波長の整数倍を越える位相差φの検出を回避できる。な
お、第1の測定光(Pia )の光軸を、適宜に、0度よ
りも大きく且つ90度よりも小さくできるように構成す
れば、この第1の測定光(Pia )を第2の測定光とし
ても使用できる。
According to this, as shown in FIG. 4, since the second measuring beam (P i b) is irradiated on the vertical surface of the stepped, P
1 b 'and P 2 b' becomes small phase difference, can detect the presence of the step, because it discards the measurement result at that time, it can be avoided detection of the phase difference φ exceeds the integral multiple of wave. The first measuring light optical axis (P i a), suitably, be configured to allow a smaller than larger and 90 degrees than 0 degrees, the first measurement light (P i a) It can also be used as the second measurement light.

【0023】また、本実施例では、二つの光の一方(P
2a )の偏向量を可変としているが、その可変幅が二つ
の光の混合限界距離を越えてしまうと、冒頭で述べた原
理(ヘテロダイン検波)を利用できなくなるため、次の
ように工夫する必要がある。すなわち、図5に示すよう
に、基準側の光(P1a )を点Xに照射している間に、
一方の光(P2a )を偏向してその照射位置を逐次にシ
フトするが、それ以上シフトしては、二つの光の反射光
(Pia′ )の合成光が得られなくなる限界点(好まし
くはその手前の点)yに達した時点で、測定対象物体7
のステージを移動し、基準側の光(P1a )の照射点を
yに移して、再び一方の光(P2a )を偏向し、その照
射位置を逐次にシフトするという動作を繰り返すように
すれば、適正な可変幅の偏向量とすることができる。
In this embodiment, one of the two lights (P
Although the amount of deflection of 2 a) are variable and the variable width may exceed a mixed limit distance of the two light, to become unavailable principle (heterodyne detection) mentioned at the outset, devised as follows There is a need. That is, as shown in FIG. 5, while irradiating the point X with the reference side light (P 1 a),
One light (P 2 a) is deflected to sequentially shift its irradiation position, but if it is shifted further, a limit point at which a combined light of the reflected light (P i a ′) of the two lights cannot be obtained. (Preferably the point just before) When the object reaches y, the measurement object 7
, The irradiation point of the reference side light (P 1 a) is moved to y, one of the lights (P 2 a) is again deflected, and the operation of sequentially shifting the irradiation position is repeated. By doing so, it is possible to set the deflection amount to an appropriate variable width.

【0024】さらに、本実施例では、図6に示すよう
に、光ヘッド8、9や光電変換素子6、10、11を
X、Y、Z軸周りに回転自在に配置したため、測定対象
物体7に対して、あらゆる方向からの光照射や受光が可
能であり、たとえば、図7に示すように、測定光(Pi
a′ )の反射角度が光電変換素子10の方向とずれて
いても、光ヘッドや光電変換素子を適宜適切に回転させ
ることにより、ずれを修正して正常な受光を行うことが
できる。
Furthermore, in this embodiment, as shown in FIG. 6, the optical heads 8, 9 and the photoelectric conversion elements 6, 10, 11 are rotatably arranged around the X, Y, and Z axes. against a possible light irradiation or light from any direction, for example, as shown in FIG. 7, the measuring light (P i
Even if the reflection angle of a ′) deviates from the direction of the photoelectric conversion element 10, the deviation can be corrected and normal light reception can be performed by appropriately rotating the optical head and the photoelectric conversion element.

【0025】図8は、以上説明した本実施例の測定フロ
ーチャートである。このフローチャートでは、測定対象
物体7の測定範囲を入力(ステップ20)し、計測ピッ
チ(図5(a)参照)を指定(ステップ21)して計測
開始を指示(ステップ22)すると、まず、第1の測定
光(Pia )と第2の測定光(Pib )を用いた2方向
からの測定を実行(ステップ23)し、受光可能でなけ
れば(ステップ24のNo判定)ヘッド機構12を移動
(ステップ25)してステップ23を再実行し、受光可
能であれば(ステップ24のYes判定)、垂直面であ
るか否かを判定(ステップ26)する。そして、垂直面
であれば(ステップ26のYes判定)、ヘッド機構1
2を移動(ステップ27)してステップ23を再実行
し、垂直面でなければ(ステップ26のNo判定)、計
測結果を出力(ステップ28)し、以上の動作を計測範
囲が終了する(ステップ29のYes判定)まで繰り返
し実行する。
FIG. 8 is a measurement flowchart of the present embodiment described above. In this flowchart, when the measurement range of the measurement target object 7 is input (step 20), the measurement pitch (see FIG. 5A) is specified (step 21), and measurement start is instructed (step 22). 1 of the measuring light (P i a) and the second measuring beam (P i b) perform the measurement from two directions with (step 23), if possible light (No judgment in step 24) the head mechanism 12 is moved (step 25) and step 23 is executed again. If light can be received (Yes in step 24), it is determined whether or not the plane is a vertical plane (step 26). If it is a vertical plane (Yes in step 26), the head mechanism 1
2 is moved (step 27) and step 23 is re-executed. If it is not a vertical plane (No in step 26), the measurement result is output (step 28), and the above operation ends the measurement range (step 26). The processing is repeatedly executed until the determination is Yes at 29).

【0026】また、図9は、図8のフローで測定した位
相差情報に基づいて測定対象物体7の表面形状データを
生成するフローチャートであり、特に限定しないが、C
AEの計算機を利用した有限要素法(FEM)の数値シ
ミュレーションに使用するための入力情報を生成する三
次元レーザ・ディジタイジグ・システムへの適用例であ
る。
FIG. 9 is a flowchart for generating the surface shape data of the measurement object 7 based on the phase difference information measured in the flow of FIG.
This is an application example to a three-dimensional laser digitizing system that generates input information to be used for numerical simulation of a finite element method (FEM) using an AE computer.

【0027】図9のフローでは、まず、前式(7)を用
いて、位相差Δφを高度差Δhに変換すると共に、すべ
ての高度差Δhの値を三次元座標に展開する(ステップ
40)。次に、三次元平面内で隣り合う高度差Δhの値
の間隔を求め(ステップ41)、その間隔がビームスポ
ットの径よりも大きい場合(ステップ42のYes判
定)には、その間隔を曲線補間(ステップ43)し、ビ
ームスポットの径よりも小さい場合(ステップ42のN
o判定)には、その間隔を直線補間(ステップ44)し
て、ワイヤーフレームを作成する(ステップ45)。次
に、FEM解析用のモデルを作成するために、全体の希
望要素数や細かく分割したい部分及び粗く分割したい部
分などを指定(ステップ46)した後、入力要素数やモ
デルの体積及び表面積から適当な要素長を決定すると共
に、各計測点から節点を作成して要素分割を行ってメッ
シング作業を実行する(ステップ47、48、49)。
最後に、必要な解析条件を入力して解析ツール用の入力
ファイルを作成(ステップ50)し処理を終了する。
In the flow of FIG. 9, first, the phase difference Δφ is converted into an altitude difference Δh by using the above equation (7), and all the values of the altitude difference Δh are developed into three-dimensional coordinates (step 40). . Next, the interval between adjacent altitude differences Δh in the three-dimensional plane is determined (step 41). If the interval is larger than the diameter of the beam spot (Yes in step 42), the interval is subjected to curve interpolation. (Step 43) When the diameter is smaller than the beam spot diameter (N in Step 42)
In o determination), a wire frame is created (step 45) by linearly interpolating the interval (step 44). Next, in order to create a model for FEM analysis, after designating the desired number of elements as a whole, a part to be finely divided and a part to be roughly divided (step 46), the number of input elements and the volume and surface area of the model are appropriately determined. The element length is determined, and a node is created from each measurement point to perform element division to execute a meshing operation (steps 47, 48, and 49).
Finally, the necessary analysis conditions are input to create an input file for the analysis tool (step 50), and the process ends.

【0028】[0028]

【発明の効果】本発明によれば、対象物を傷つけずにき
わめて高精度な表面形状測定を行うことができるため、
超微細加工物体の形状検査や三次元レーザ・ディジタイ
ジング・システムなどに用いて好適な形状検査装置を提
供できるという従来技術にない格別有利な効果が得られ
る。
According to the present invention, since extremely accurate surface shape measurement can be performed without damaging the object,
A particularly advantageous effect that can be provided for a shape inspection apparatus suitable for use in a shape inspection of a hyperfine processed object or a three-dimensional laser digitizing system, which is not available in the related art, is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の概念構成図である。FIG. 1 is a conceptual configuration diagram of an embodiment.

【図2】二つの光の光路差と位相差の関係を示す模式図
である。
FIG. 2 is a schematic diagram illustrating a relationship between an optical path difference and a phase difference between two lights.

【図3】位相飛びの説明模式図である。FIG. 3 is an explanatory schematic diagram of a phase jump.

【図4】位相飛びを回避する説明模式図である。FIG. 4 is an explanatory schematic diagram for avoiding phase jump.

【図5】偏向量の操作模式図である。FIG. 5 is an operation schematic diagram of a deflection amount.

【図6】ヘッド機構の移動模式図である。FIG. 6 is a schematic view of the movement of a head mechanism.

【図7】受光不能の説明図である。FIG. 7 is an explanatory diagram of light receiving failure.

【図8】一実施例の測定フロー図である。FIG. 8 is a measurement flowchart of one embodiment.

【図9】一実施例のメッシングデータ生成フロー図であ
る。
FIG. 9 is a flowchart of generating meshing data according to one embodiment;

【符号の説明】[Explanation of symbols]

1:光源 2:分光手段及び偏向手段 6:光電変換素子(第1の光電変換手段) 7:測定対象物体 8:光ヘッド(照射手段) 10:光電変換素子(第2の光電変換手段) 13:演算器(測定手段) 14:コントローラ(測定手段) 1: light source 2: spectral means and deflecting means 6: photoelectric conversion element (first photoelectric conversion means) 7: object to be measured 8: optical head (irradiation means) 10: photoelectric conversion element (second photoelectric conversion means) 13 : Computing unit (measuring means) 14: Controller (measuring means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】コヒーレントな光を発生する光源と、 前記光を第1の光と第2の光に分光する分光手段と、 前記第1の光を偏向する偏向手段と、 前記第2の光と偏向後の第1の光との合成光量に応じた
大きさの電気信号を発生する第1の光電変換手段と、 前記第2の光と偏向後の第1の光とを測定対象物体の表
面に照射する照射手段と、 前記測定対象物体の表面からの反射光量に応じた大きさ
の電気信号を発生する第2の光電変換手段と、 前記第1の光電変換手段の出力と前記第2の光電変換手
段の出力との差分に基づいて前記測定対象物体の表面の
凹凸の大きさを測定する測定手段と、を備えたことを特
徴とする物体表面の微細形状計測装置。
A light source for generating coherent light; a light splitting means for splitting the light into a first light and a second light; a deflecting means for deflecting the first light; and the second light. A first photoelectric conversion means for generating an electric signal having a magnitude corresponding to a combined light amount of the first light after the deflection and the first light after the deflection; Irradiating means for irradiating the surface; second photoelectric conversion means for generating an electric signal having a magnitude corresponding to the amount of reflected light from the surface of the measurement object; output of the first photoelectric conversion means and the second Measuring means for measuring the size of the irregularities on the surface of the object to be measured based on the difference from the output of the photoelectric conversion means.
【請求項2】前記第1の光と第2の光の波長を異ならせ
たことを特徴とする請求項1記載の物体表面の微細形状
計測装置。
2. The apparatus according to claim 1, wherein the first light and the second light have different wavelengths.
【請求項3】前記照射手段の照射光若しくは該照射光と
同一の特性を有する他の照射光の光軸を、前記測定対象
物体の表面の鉛直線に対して、0度よりも大きく且つ9
0度よりも小さい角度にしたことを特徴とする請求項1
記載の物体表面の微細形状計測装置。
3. An illuminating light of said irradiating means or an optical axis of another irradiating light having the same characteristic as said irradiating light is larger than 0 degree with respect to a vertical line of the surface of said object to be measured by 9 degrees.
2. An angle smaller than 0 degree.
An apparatus for measuring a fine shape of an object surface according to the above.
JP24538396A 1996-09-18 1996-09-18 Equipment for measuring fine surface shape of object Withdrawn JPH1089940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24538396A JPH1089940A (en) 1996-09-18 1996-09-18 Equipment for measuring fine surface shape of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24538396A JPH1089940A (en) 1996-09-18 1996-09-18 Equipment for measuring fine surface shape of object

Publications (1)

Publication Number Publication Date
JPH1089940A true JPH1089940A (en) 1998-04-10

Family

ID=17132849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24538396A Withdrawn JPH1089940A (en) 1996-09-18 1996-09-18 Equipment for measuring fine surface shape of object

Country Status (1)

Country Link
JP (1) JPH1089940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178309A (en) * 2005-12-28 2007-07-12 Mitsutoyo Corp Noncontact displacement measuring device, its edge detection method and edge detection program
JP2016538134A (en) * 2013-09-23 2016-12-08 プレシテク オプトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for measuring depth of penetration of laser beam into workpiece and laser processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178309A (en) * 2005-12-28 2007-07-12 Mitsutoyo Corp Noncontact displacement measuring device, its edge detection method and edge detection program
JP2016538134A (en) * 2013-09-23 2016-12-08 プレシテク オプトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for measuring depth of penetration of laser beam into workpiece and laser processing apparatus

Similar Documents

Publication Publication Date Title
Wagner Optical detection of ultrasound
EP0124224A2 (en) Method and apparatus for thin film thickness measurement
US7649632B2 (en) Characterization of micro- and nano scale materials by acoustic wave generation with a CW modulated laser
CN104296698A (en) Method for measuring evenness of optical surface with ultrahigh precision
US10113861B2 (en) Optical system and methods for the determination of stress in a substrate
US20030020923A1 (en) Method and apparatus for using a two-wave mixing ultrasonic detection in rapid scanning applications
JP2009030996A (en) Device for stabilizing interference fringe and non-destructive inspection device using it
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JP4031711B2 (en) Residual stress distribution measuring apparatus and residual stress distribution measuring method
KR100924199B1 (en) Laser ultrasonic inspection apparatus and method for surface breaking cracks by using multi laser surface waves
JPH1089940A (en) Equipment for measuring fine surface shape of object
JPH03128411A (en) Optical form measuring instrument
US4870865A (en) Device for testing formation of connection
US5796004A (en) Method and apparatus for exciting bulk acoustic wave
JP3545611B2 (en) Laser ultrasonic inspection apparatus and laser ultrasonic inspection method
US6295131B1 (en) Interference detecting system for use in interferometer
JP3150239B2 (en) Measuring device for micro-periodic vibration displacement
JP3799453B2 (en) Internal temperature distribution measuring device and internal temperature distribution measuring method
Zhu et al. Differential two-wave mixing interferometer for crack detection in metallic structures based on laser-induced ultrasound
JP4536873B2 (en) Three-dimensional shape measuring method and apparatus
Zhang et al. Spatiotemporal phase unwrapping and its application in fringe projection fiber optic phase-shifting profilometry
JPH05288720A (en) Evaluating method of sample by ultrasonic vibration measurement
KR100270365B1 (en) High Speed Scanning Interferometer System
Somekh et al. Heterodyne common path interferometers for surface profilometry and characterization
JPH10116480A (en) Disk surface testing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202