JPH1089296A - Multistage compressor - Google Patents

Multistage compressor

Info

Publication number
JPH1089296A
JPH1089296A JP8244448A JP24444896A JPH1089296A JP H1089296 A JPH1089296 A JP H1089296A JP 8244448 A JP8244448 A JP 8244448A JP 24444896 A JP24444896 A JP 24444896A JP H1089296 A JPH1089296 A JP H1089296A
Authority
JP
Japan
Prior art keywords
stage
load operation
compressor
cooling
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8244448A
Other languages
Japanese (ja)
Other versions
JP3425308B2 (en
Inventor
Kazuki Takahashi
一樹 高橋
Haruo Miura
治雄 三浦
Hideo Nishida
秀夫 西田
Naohiko Takahashi
直彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24444896A priority Critical patent/JP3425308B2/en
Priority to US08/921,604 priority patent/US5980218A/en
Priority to CH02182/97A priority patent/CH695869A5/en
Publication of JPH1089296A publication Critical patent/JPH1089296A/en
Application granted granted Critical
Publication of JP3425308B2 publication Critical patent/JP3425308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • F16C32/0497Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor generating torque and radial force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure the cooling gas wind amount required for cooling a motor without deteriorating economical efficiency in the no-load operation by connecting a joint passage at which branch passages extending from the downstream of an impeller on the rear stage side and an intermediate cooler are connected to each other, and forming a flowing passage in which cooling gas is allowed to flow to a high-speed motor. SOLUTION: An extracting part 14a is provided between an intermediate gas cooler 6a and a second stage compressor 1b, an extracting part 14b is provided on the way of a blow-off passage 18 downstream from a blow-off valve 9, and operating gas of a compressor 1 is extracted from them to cool a motor 2. The extracting parts 14a, 14b are positioned downstream from the gas coolers 6a, 6b, gas to be supplied from them is cooled to the ordinary temperature, and the motor 2 can be cooled by only gas flowing in the motor 2. Extracting passages 22a, 22b branched from the extracting parts 14a, 14b are joined into one passage downstream from check valves 22a, 22b and guided to the motor 2, the guided gas is discharged after cooling the motor 2, and it is guided to a rejoint part 15 between a suction throttle valve 7 and a first stage compressor 1a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多段圧縮機に係り、
特に磁気軸受により支承される多段圧縮機に関する。
The present invention relates to a multi-stage compressor,
In particular, it relates to a multi-stage compressor supported by magnetic bearings.

【0002】[0002]

【従来の技術】電動機または磁気軸受を冷却するため圧
縮機の圧縮ガスを分岐抽出し、抽出したガスを電動機ま
たは磁気軸受の冷却ガスとして供給することが、実開平
3−19498号公報に示されれている。この従来技術
においては、電動機の回転軸軸端に遠心羽根車を設け、
電動機ロータを磁気軸受で支承して圧縮機を構成すると
ともに、圧縮機が凝縮器や蒸発器とともに冷凍サイクル
を構成している。ここで、冷凍サイクル中の冷媒の一部
をスプレーノズルから散布して磁気軸受及び電動機のコ
イルを冷却している。
2. Description of the Related Art Japanese Utility Model Laid-Open No. 3-19498 discloses that a compressed gas of a compressor is branched and extracted to cool a motor or a magnetic bearing, and the extracted gas is supplied as a cooling gas for the motor or the magnetic bearing. Have been. In this prior art, a centrifugal impeller is provided at the end of the rotating shaft of the electric motor,
The compressor is constituted by supporting the motor rotor with magnetic bearings, and the compressor constitutes a refrigeration cycle together with the condenser and the evaporator. Here, a part of the refrigerant in the refrigeration cycle is sprayed from the spray nozzle to cool the magnetic bearing and the coil of the electric motor.

【0003】また、特開昭64−80799号公報に
は、高周波電動機に圧縮段を結合した圧縮機において、
回転軸を磁気軸受で支承するとともに、外部に対して機
密な共通のハウジングで覆った構成が示されている。こ
の圧縮装置では、複数の圧縮段間に設けたガス側導管を
表面冷却器として作用させている。つまり、表面冷却器
において再冷却された圧縮ガスの一部が、供給通路を経
て高周波電動機の回転子及び励磁気の回転子及び磁気軸
受へ冷却のため供給された後、排出通路を経て吸込管片
へ戻される。
[0003] Japanese Patent Application Laid-Open No. 64-79999 discloses a compressor in which a compression stage is connected to a high-frequency motor.
A configuration is shown in which the rotating shaft is supported by a magnetic bearing and is covered by a common housing that is confidential to the outside. In this compression device, a gas-side conduit provided between a plurality of compression stages acts as a surface cooler. That is, a part of the compressed gas re-cooled in the surface cooler is supplied to the rotor of the high-frequency motor, the rotor for excitation, and the magnetic bearing through the supply passage for cooling, and then the suction pipe is discharged through the discharge passage. It is returned to a piece.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術の項で示
した実開平3−19498号公報に記載の冷却装置を圧
縮比の大きい多段圧縮機に適用すると、無負荷運転時に
必要な量に合わせて冷却ガスを最終段下流から抽出しな
ければならず、負荷運転時には必要以上の冷却風が流
れ、不経済であった。逆に、経済性を重視して中間段か
ら冷却ガスを抽出すると、無負荷運転時には抽出部が負
圧となり、冷却ガスを電動機内に通風することができな
いという不具合が生じる。さらに、上記公報に記載の冷
却装置は冷凍サイクル駆動用の遠心圧縮機に関するもの
で、電動機または磁気軸受の冷却に冷媒または冷却用媒
体を使用することを前提としており、一般の工業用空気
あるいはガスを圧縮する圧縮機の場合には冷却効果が十
分には得られない。
When the cooling device described in the above-mentioned prior art is disclosed in Japanese Utility Model Laid-Open No. 3-19498 is applied to a multi-stage compressor having a large compression ratio, the amount of the cooling device can be adjusted to the amount required during no-load operation. Therefore, the cooling gas must be extracted from the downstream of the final stage, and excessive cooling air flows during load operation, which is uneconomical. Conversely, if the cooling gas is extracted from the intermediate stage with an emphasis on economy, there is a problem in that the extraction unit has a negative pressure during the no-load operation, and the cooling gas cannot be ventilated into the electric motor. Further, the cooling device described in the above publication relates to a centrifugal compressor for driving a refrigeration cycle, and is premised on using a refrigerant or a cooling medium for cooling an electric motor or a magnetic bearing. In the case of a compressor that compresses, a sufficient cooling effect cannot be obtained.

【0005】上記従来技術の後者である特開昭64−8
0799号公報に記載の圧縮装置は、分割ケーシング構
造と成らざるを得ず、そのケーシングの周りをコイル状
の表面冷却器が取り巻いているため、組立に多大の工程
と労力を要する。また、無負荷運転時の冷却については
何等考慮されていない。さらに、表面冷却器から凝縮液
を排出することも考慮されておらず、水蒸気を含んだ空
気等の圧縮に用いたときに表面冷却器内に凝縮液が溜ま
ったり、冷却ガスに凝縮液の飛沫が混入して圧縮機内部
で凝縮が起こるおそれがあった。
[0005] Japanese Patent Application Laid-Open No. 64-8, which is the latter of the above prior art,
The compression device described in Japanese Patent Application No. 0799 has to have a split casing structure, and a coil-shaped surface cooler surrounds the casing, so that a large number of steps and labor are required for assembly. No consideration is given to cooling during no-load operation. Furthermore, it is not considered that the condensed liquid is discharged from the surface cooler, and condensate is accumulated in the surface cooler when used for compressing air or the like containing water vapor, or the condensed liquid splashes on the cooling gas. And condensed inside the compressor.

【0006】本発明の目的は、上記従来の技術の不具合
を解消し、簡単な構成の多段の圧縮機において負荷運転
時の経済性を損なうことなく、無負荷運転時にも電動機
の冷却に必要な冷却ガス風量を確保することにある。◆
また、本発明の他の目的は、上記従来の技術の不具合を
解消し、磁気軸受により支持される簡単な構成の多段の
圧縮機において、負荷運転時の経済性を損なうことな
く、無負荷運転時にも磁気軸受の冷却に必要な冷却ガス
風量を確保することにある。◆本発明のさらに他の目的
は、小型で簡単な構造の信頼性の高い多段のパッケージ
型遠心圧縮機を実現することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned disadvantages of the prior art, and to provide a multistage compressor having a simple structure, which does not impair the economy during load operation and which is necessary for cooling the motor even during no load operation. The purpose is to secure a cooling gas flow rate. ◆
Another object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to provide a multi-stage compressor having a simple configuration supported by magnetic bearings, without impairing the economics during load operation and without load operation. In some cases, the purpose is to secure a cooling gas flow rate necessary for cooling the magnetic bearing. Another object of the present invention is to realize a highly reliable multi-stage package type centrifugal compressor having a small size and a simple structure.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の態様は、回転軸を有する高速電動機
と、この回転軸の両端側に取り付けられた羽根車を含む
第1段及び第2段圧縮段と、この第1段及び第2段圧縮
段間に設けられた中間冷却器とを備え、負荷運転と無負
荷運転を切り換え可能にした多段圧縮機において、圧縮
機の吸込側に吸込絞り弁を、吐出側に放風弁をそれぞれ
設けるとともに、後段側の羽根車の下流側及び中間冷却
器の下流側から分岐した分岐路をそれぞれ設け、この分
岐路同士を接続して合流路を形成し、この合流路と高速
電動機を接続してこの高速電動機に冷却ガスを流通する
流通路を形成したものである。
According to a first aspect of the present invention, there is provided a first stage including a high-speed motor having a rotating shaft and impellers mounted on both ends of the rotating shaft. And a second stage compression stage, and an intercooler provided between the first stage and the second stage compression stage. A suction throttle valve is provided on the side, and a blow-off valve is provided on the discharge side, respectively, and branch paths branching from the downstream side of the downstream impeller and the downstream side of the intercooler are provided, and these branch paths are connected to each other. A junction is formed, and the junction and the high-speed motor are connected to form a flow passage through which the cooling gas flows.

【0008】上記目的を達成するための本発明の第2の
態様は、回転軸を有し磁気軸受によりこの回転軸を支承
する高速電動機と、この回転軸の両端側に取り付けられ
た羽根車を含む第1段及び第2段圧縮段と、この第1段
及び第2段圧縮段間に設けられた中間冷却器とを備え、
負荷運転と無負荷運転を切り換え可能にした多段圧縮機
において、圧縮機の吸込側に吸込絞り弁を、吐出側に放
風弁を設け、後段側の羽根車の下流側及び中間冷却器の
下流側から分岐した分岐路をそれぞれ設け、この分岐路
同士を接続して合流路を形成し、この合流路と高速電動
機を接続して磁気軸受に冷却ガスを流通する流通路を形
成したものである。
According to a second aspect of the present invention, there is provided a high-speed electric motor having a rotating shaft and supporting the rotating shaft by a magnetic bearing, and an impeller mounted on both ends of the rotating shaft. Including a first stage and a second stage compression stage, and an intercooler provided between the first stage and the second stage compression stage,
In a multi-stage compressor capable of switching between load operation and no-load operation, a suction throttle valve is provided on the suction side of the compressor, a blow-off valve is provided on the discharge side, and the downstream side of the downstream impeller and the downstream of the intercooler. A branch path is provided from each side, and the branch paths are connected to each other to form a merging path, and the merging path is connected to a high-speed motor to form a flow path through which the cooling gas flows through the magnetic bearing. .

【0009】そして好ましくは、中間冷却器にドレン回
収部を設ける、または、後段側の羽根車の下流に設けた
分岐路の分岐位置が放風弁の下流である、分岐路と合流
路間に逆止弁を設けた、中間冷却器の下流側から分岐し
た分岐管に減圧弁を設けたものである。より好ましく
は、減圧弁の開度を負荷運転時と無負荷運転時とで変化
させる制御手段を設けることである。
Preferably, a drain recovery section is provided in the intercooler, or a branch path provided downstream of the downstream impeller has a branch position downstream of the blow-off valve. A pressure reducing valve is provided in a branch pipe provided with a check valve and branched from a downstream side of the intercooler. More preferably, a control means for changing the opening of the pressure reducing valve between a load operation and a no-load operation is provided.

【0010】また好ましくは、それぞれの分岐館内の流
れのオン・オフを制御する流れ制御手段を設けたもので
ある。そして、より好ましくは、無負荷運転時には、後
段の羽根車の下流側から分岐した分岐管内の流れをオン
にし、他の分岐管内の流れをオフにするか、または負荷
運転時には、前記中間冷却器の下流で分岐した分岐管内
の流れをオンにし、他の分岐管内の流れをオフにするも
のである。
[0010] Preferably, a flow control means for controlling on / off of a flow in each branch building is provided. And more preferably, at the time of no-load operation, the flow in the branch pipe branched from the downstream side of the subsequent impeller is turned on, and the flow in the other branch pipe is turned off, or at the time of load operation, the intercooler is used. This turns on the flow in the branch pipe branched downstream of the pipe and turns off the flow in the other branch pipes.

【0011】また、高速電動機を冷却した冷却ガスを前
記吸い込み絞り弁の上流に戻す戻し流路を形成してもよ
いし、磁気軸受を冷却した冷却ガスを吸込絞り弁の上流
に戻す戻し流路を形成してもよい。
A return passage for returning the cooling gas cooled by the high-speed motor to the upstream of the suction throttle valve may be formed, or a return passage for returning the cooling gas cooled to the magnetic bearing upstream of the suction throttle valve. May be formed.

【0012】上記目的を達成するための本発明の第3の
態様は、回転軸を有する高速電動機と、この回転軸の両
端側に取り付けられた羽根車を含む第1段及び第2段圧
縮段と、この第1段及び第2段圧縮段間に設けられた中
間冷却器とを備え、負荷運転と無負荷運転を切り換え可
能にした多段圧縮機において、圧縮機の負荷運転時に前
記高速電動機を冷却する冷却流路と、圧縮機の無負荷運
転時に前記高速電動機を冷却する冷却流路とを中間冷却
器と前記放風弁との間の異なる位置から分岐させたもの
である。◆なお、上記いずれの態様においても羽根車は
遠心羽根車であることが望ましい。
According to a third aspect of the present invention, there is provided a high-speed motor having a rotating shaft, and first and second compression stages including impellers mounted on both ends of the rotating shaft. And an intercooler provided between the first and second compression stages, wherein the multi-stage compressor is capable of switching between a load operation and a no-load operation. A cooling passage for cooling and a cooling passage for cooling the high-speed motor during a no-load operation of the compressor are branched from different positions between the intercooler and the blow-off valve. In any of the above embodiments, the impeller is preferably a centrifugal impeller.

【0013】上記目的を達成するための本発明の第4の
態様は、回転軸を有する高速電動機と、この回転軸の両
端側に取り付けられた羽根車を含む第1段及び第2段圧
縮段と、この第1段及び第2段圧縮段間に設けられた中
間冷却器とを備え、負荷運転と無負荷運転を切り換え可
能にした多段圧縮機において、後段側の羽根車の下流側
及び中間冷却器の下流側には第1、第2の分岐路を、圧
縮機の吐出側には吐出圧力を検出する圧力検出手段を設
けるとともに、この圧力検出手段の出力に基づいて負荷
運転と無負荷運転を切り換える運転制御手段を設け、第
1及び第2の分岐路間を接続して合流路を形成し、この
合流路と前記高速電動機を接続してこの高速電動機に冷
却ガスを流通する流通路を形成するものである。
According to a fourth aspect of the present invention, there is provided a high-speed motor having a rotating shaft, and first and second compression stages including impellers mounted on both ends of the rotating shaft. And an intermediate cooler provided between the first and second compression stages, wherein the multistage compressor is capable of switching between a load operation and a no-load operation. First and second branch paths are provided downstream of the cooler, and pressure detection means for detecting discharge pressure is provided on the discharge side of the compressor. Load operation and no-load operation are performed based on the output of the pressure detection means. An operation control means for switching operation is provided, a connection path is formed by connecting the first and second branch paths, and a flow path for connecting the connection path and the high-speed motor to flow the cooling gas through the high-speed motor. Is formed.

【0014】上記目的を達成するための本発明の第5の
態様は、磁気軸受により支承される回転軸を有する高速
電動機と、この回転軸の両端側に取り付けられた羽根車
を含む第1段及び第2段圧縮段と、この第1段及び第2
段圧縮段間に設けられた中間冷却器とを備え、負荷運転
と無負荷運転を切り換え可能にした多段圧縮機におい
て、後段側の羽根車の下流側及び中間冷却器の下流側に
は第1および第2の分岐路を、圧縮機の吐出側には吐出
圧力を検出する圧力検出手段を設けるとともに、この圧
力検出手段の出力に基づいて負荷運転と無負荷運転を切
り換える運転制御手段を設け、第1及び第2の分岐路間
を接続して合流路を形成し、この合流路と高速電動機と
を接続して磁気軸受に冷却ガスを流通する流通路を形成
したものである。
According to a fifth aspect of the present invention, there is provided a first stage including a high-speed motor having a rotating shaft supported by a magnetic bearing, and impellers mounted on both ends of the rotating shaft. And the second stage compression stage and the first and second stage compression stages.
An intercooler provided between the first and second compression stages, wherein the multistage compressor is capable of switching between a load operation and a no-load operation. And the second branch, provided with pressure detection means for detecting the discharge pressure on the discharge side of the compressor, and provided with operation control means for switching between load operation and no-load operation based on the output of the pressure detection means, A junction is formed by connecting the first and second branch paths, and a flow path for flowing the cooling gas through the magnetic bearing is formed by connecting the junction and the high-speed motor.

【0015】すなわち、本発明に係る多段圧縮機によれ
ば、電動機の冷却ガスを複数の分岐抽出部から供給して
いることで、負荷運転時には圧縮機の中間段から、無負
荷運転時には大気放風通路から冷却ガスを電動機の冷却
用として供給でき、これにより、負荷運転時の経済性を
損なうことなく、無負荷運転時にも電動機の冷却に必要
な冷却ガス風量を確保できる。
That is, according to the multistage compressor of the present invention, since the cooling gas of the electric motor is supplied from the plurality of branch extraction units, the compressor is discharged from the middle stage of the compressor during the load operation and is discharged to the atmosphere during the no-load operation. Cooling gas can be supplied from the air passage for cooling the motor, and thereby, the amount of cooling gas required for cooling the motor can be secured even during no-load operation without impairing the economy during load operation.

【0016】また、本発明の多段圧縮機においては、負
荷運転と無負荷運転の切り換えを可能にし、磁気軸受の
冷却ガスを複数の分岐から分岐抽出しているので、負荷
運転時には圧縮機の中間段から、無負荷運転時には大気
放風通路から冷却ガスを供給することができ、これによ
り、負荷運転時の経済性を損なうことなく、無負荷運転
時にも磁気軸受の冷却に必要な冷却ガス風量を確保でき
Further, in the multi-stage compressor of the present invention, switching between the load operation and the no-load operation is made possible, and the cooling gas of the magnetic bearing is branched and extracted from a plurality of branches. From the stage, the cooling gas can be supplied from the air discharge passage during the no-load operation, thereby reducing the cooling gas flow rate required for cooling the magnetic bearing even during the no-load operation without impairing the economy during the load operation. Can secure

【0017】[0017]

【発明の実施の形態】以下、本発明のいくつかの実施例
について、図面を参照しながら説明する。◆図2は、本
発明に係る多段圧縮機の概略外観形状を示す三面図であ
る。圧縮機上部に吸込フィルタ13及び放風弁9に連動
した吸込絞り弁7がを配されており、圧縮機下部にはガ
ス冷却器6a、6bが配されている。第1段圧縮機1a
及び第2段圧縮機1bは、吸込ノズルを外周部に有し、
吸込ガス4a、4bは半径方向から流入する。また、第
1段圧縮機の吐出ノズル及び第2段圧縮機の吸込ノズル
と吐出ノズルは直接ガス冷却器に連結されており、コン
パクトな構造を実現している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a three side view showing a schematic external shape of the multistage compressor according to the present invention. The suction filter 13 and the suction throttle valve 7 linked to the blow-off valve 9 are arranged at the upper part of the compressor, and the gas coolers 6a and 6b are arranged at the lower part of the compressor. 1st stage compressor 1a
And the 2nd stage compressor 1b has a suction nozzle in the outer peripheral portion,
The suction gas 4a, 4b flows in from the radial direction. Further, the discharge nozzle of the first stage compressor and the suction nozzle and the discharge nozzle of the second stage compressor are directly connected to the gas cooler to realize a compact structure.

【0018】抽出部14aは、第2段圧縮機のケーシン
グ外周部に設けられており、第2段圧縮機の羽根車直前
の吸込部からガス冷却器6aで冷却した後の比較的低温
のガスを抽出している。また、分岐部14aの直後に
は、減圧手段としてオリフィス31が設置されている。
一方、抽出部14bは、吸込フィルタ13の前面に位置
しており、フィルタ内部で吸込絞り弁7の上流側及び放
風弁9の下流の放風通路18と連通している。
The extraction section 14a is provided on the outer peripheral portion of the casing of the second stage compressor, and a relatively low-temperature gas cooled by the gas cooler 6a from a suction section immediately before the impeller of the second stage compressor. Has been extracted. Immediately after the branch portion 14a, an orifice 31 is provided as a pressure reducing means.
On the other hand, the extraction part 14b is located in front of the suction filter 13 and communicates with the air discharge passage 18 upstream of the suction throttle valve 7 and downstream of the air discharge valve 9 inside the filter.

【0019】抽出部14a、14bから分岐した流路に
は、それぞれ逆止弁20a、20bが設置されており、
逆止弁20a、20bの下流で冷却ガスの分岐箱32に
接続されている。本図中には明示していないが、電動機
外周面に設けた冷却ガス供給部29a、29b、29
c、29dと冷却ガス分岐箱の間は、フレキシブルチュ
ーブで接続されている。同様に、冷却ガス排出部30
a、30b、30c、30d、30eから排出された冷
却ガスは、フレキシブルチューブにより、冷却ガス合流
箱33へ導かれている。冷却ガス合流箱33でまとめら
れた電動機2を冷却した後のガスは、第1段圧縮機のケ
ーシング外周部に設けられた再合流部15を経て、第1
段圧縮機の羽根車直前の吸込部へ戻される。
Check valves 20a and 20b are installed in the flow paths branched from the extraction sections 14a and 14b, respectively.
The cooling gas branch box 32 is connected downstream of the check valves 20a and 20b. Although not explicitly shown in the drawing, cooling gas supply units 29a, 29b, 29 provided on the outer peripheral surface of the electric motor are provided.
The flexible tubes are connected between c and 29d and the cooling gas branch box. Similarly, the cooling gas discharge unit 30
The cooling gas discharged from a, 30b, 30c, 30d, and 30e is guided to the cooling gas junction box 33 by a flexible tube. The gas after cooling the electric motor 2 assembled in the cooling gas merging box 33 passes through the re-merging portion 15 provided on the outer peripheral portion of the casing of the first stage compressor, and then the first gas is cooled.
It is returned to the suction section immediately before the impeller of the stage compressor.

【0020】ここで、電動機2はインバータ制御の高速
電動機であり、また、回転軸は磁気軸受によって支承さ
れている。図示しないが、圧縮機の駆動には電源盤やイ
ンバータ盤および磁気軸受制御盤等が必要であり、これ
は圧縮機1に隣接して設置される。
Here, the electric motor 2 is an inverter-controlled high-speed electric motor, and the rotating shaft is supported by magnetic bearings. Although not shown, a power supply panel, an inverter panel, a magnetic bearing control panel, and the like are required for driving the compressor, and are installed adjacent to the compressor 1.

【0021】この図2で示した多段圧縮機の一実施例の
フロー及び詳細を、図1及び図3を用いて説明する。図
1は、本発明に係る多段圧縮機の第1の実施例の構成を
示す圧縮機システムのフロー図である。この実施例では
多段の圧縮機は、工場空気源等の定圧ガス生成に用いら
れており、取り扱いガスとして空気が用いられている。
The flow and details of one embodiment of the multi-stage compressor shown in FIG. 2 will be described with reference to FIGS. FIG. 1 is a flowchart of a compressor system showing a configuration of a first embodiment of a multistage compressor according to the present invention. In this embodiment, a multi-stage compressor is used for generating a constant-pressure gas such as a factory air source, and air is used as a handling gas.

【0022】図1において、多段圧縮機1の低圧段を構
成する圧縮機1a及び高圧段を構成する圧縮機1bは、
それぞれ少なくとも1個の遠心羽根車を有している。こ
れらの羽根車は電動機2の本体から突出して延びる回転
軸3の両端側に取り付けられ、電動機2の回転と共に回
転駆動される。電動機2は回転軸3が磁気軸受により支
承された高速電動機であり、駆動部及び磁気軸受部に配
設されたコイルの鉄損と、高速回転による風損とによっ
て発熱する。
In FIG. 1, a compressor 1a constituting a low-pressure stage and a compressor 1b constituting a high-pressure stage of the multi-stage compressor 1 include:
Each has at least one centrifugal impeller. These impellers are attached to both ends of a rotating shaft 3 extending from the main body of the electric motor 2, and are driven to rotate with the rotation of the electric motor 2. The electric motor 2 is a high-speed electric motor in which the rotating shaft 3 is supported by a magnetic bearing, and generates heat due to iron loss of a coil provided in the drive unit and the magnetic bearing unit and wind loss due to high-speed rotation.

【0023】第1段圧縮機1aの上流には、吸込絞り弁
7とフィルタ13が設置されている。圧縮機の吸込ガス
4はフィルタ13によって除塵された後、吸込絞り弁7
を通過し、第1段圧縮機1aに導かれる。また、第1段
圧縮機1aと第2段圧縮機1bの間には中間ガス冷却器
6aが設置されており、第1段圧縮機1aで昇圧されて
温度が上昇したガスは、ガス冷却器6aで冷却されてか
ら第2段圧縮機1bへと導かれる。なお、フィルタ13
の上流側は大気開放されている。さらに、一般に吸込ガ
スは水蒸気を含んだ湿り空気である。
A suction throttle valve 7 and a filter 13 are provided upstream of the first stage compressor 1a. After the suction gas 4 of the compressor is removed by the filter 13, the suction throttle valve 7 is removed.
And is guided to the first stage compressor 1a. Further, an intermediate gas cooler 6a is provided between the first stage compressor 1a and the second stage compressor 1b, and the gas whose pressure has been raised by the first stage compressor 1a and whose temperature has risen is cooled by a gas cooler. After being cooled in 6a, it is guided to the second stage compressor 1b. The filter 13
Upstream is open to the atmosphere. Further, the suction gas is generally humid air containing water vapor.

【0024】圧縮機に吸込まれたガスは、昇圧されると
水蒸気の分圧が高くなる。この昇圧されたガスを、ガス
冷却器6aで冷却すると水蒸気の飽和圧力が下がり、ガ
スの相対湿度が上昇する。吸い込んだ大気の条件によっ
ては、冷却の途中の温度でガスの相対湿度が1となった
後で、さらに冷却されれば水蒸気の一部が凝縮し霧や露
を生じる。本発明の第1の実施例においては、この様に
して生じた凝縮液はガス冷却器中に溜まるので、ガス冷
却器はこのドレンをガス冷却器外に連続的に排出可能な
構造となっている。これにより、絶対湿度が上流側より
も小さいガス冷却器の下流側では相対湿度が1以下とな
り、水蒸気の凝縮が生じるおそれがない。本実施例で
は、構造の簡単化のため凝縮液をガスから分離する機器
を特には設置していないが、ガス冷却器の下流側に、エ
リミネータやデミスタを設けても良く、その場合、水分
をより確実に分離できる。
When the gas sucked into the compressor is pressurized, the partial pressure of water vapor increases. When the pressurized gas is cooled by the gas cooler 6a, the saturation pressure of water vapor decreases, and the relative humidity of the gas increases. Depending on the conditions of the sucked atmosphere, after the relative humidity of the gas becomes 1 at a temperature during the cooling, if the gas is further cooled, a part of the steam condenses to generate fog or dew. In the first embodiment of the present invention, the condensate generated in this manner accumulates in the gas cooler, and the gas cooler has a structure capable of continuously discharging the drain out of the gas cooler. I have. As a result, the relative humidity becomes 1 or less on the downstream side of the gas cooler whose absolute humidity is smaller than that on the upstream side, and there is no possibility of condensation of water vapor. In this embodiment, a device for separating the condensed liquid from the gas is not particularly installed in order to simplify the structure, but an eliminator or a demister may be provided on the downstream side of the gas cooler. Separation can be performed more reliably.

【0025】第2段圧縮機1bの下流には、ガス冷却器
6bと逆止弁10とレシーバタンク12とが設置されて
おり、第2段圧縮機1bの吐出ガス5bはガス冷却器6
bで冷却された後、その一部はレシーバタンク12に蓄
えられる、残りは下流の各ガス消費元に供給される。ガ
ス冷却器6bと逆止弁10との間から放風通路18が分
岐しており、放風通路18の途中に放風弁9が設置され
ている。放風弁9を開くことにより、第2段圧縮機1b
の吐出ガスを吸込フィルタ13へ導くことができる。本
実施例によれば、放風通路18を吸込フィルタ13へ導
き、フィルタがサイレンサの機能兼ねているので、構造
が簡単化する。なお、別個にサイレンサを設けて大気に
開放しても良いことは言うまでもない。
Downstream of the second-stage compressor 1b, a gas cooler 6b, a check valve 10, and a receiver tank 12 are provided, and a discharge gas 5b of the second-stage compressor 1b is supplied to the gas cooler 6b.
After being cooled in b, a part thereof is stored in the receiver tank 12, and the rest is supplied to each gas consumer downstream. A blow-off passage 18 branches from between the gas cooler 6 b and the check valve 10, and a blow-off valve 9 is provided in the middle of the blow-off passage 18. By opening the blow-off valve 9, the second stage compressor 1b
Can be guided to the suction filter 13. According to the present embodiment, since the air discharge passage 18 is guided to the suction filter 13 and the filter also functions as a silencer, the structure is simplified. Needless to say, a separate silencer may be provided and opened to the atmosphere.

【0026】逆止弁10の下流の圧力はプロセスへの供
給圧力であるから、多段圧縮機1はこの圧力を略一定に
保つように制御される。そのため、逆止弁の下流に供給
ガス圧を測定する圧力測定器11aが設置されている。
圧力測定器11aが測定したガス圧に基づいて定風圧制
御する制御装置11が設けられている。また、制御装置
11からの制御信号19a、19bはそれぞれ放風弁9
と吸込絞り弁7に送られ、供給ガス圧に応じて圧縮機1
の運転状態を制御する。
Since the pressure downstream of the check valve 10 is the supply pressure to the process, the multi-stage compressor 1 is controlled so as to keep this pressure substantially constant. Therefore, a pressure measuring device 11a for measuring the supply gas pressure is provided downstream of the check valve.
A control device 11 is provided for controlling the constant wind pressure based on the gas pressure measured by the pressure measuring device 11a. The control signals 19a and 19b from the control device 11 are
To the suction throttle valve 7 and the compressor 1
Control the operating state of the

【0027】圧縮機1の運転状態はプロセスへの供給ガ
ス圧に応じて制御され、制御装置11に予じめ設定され
ている所定の設定圧に対し、供給ガス圧が低い場合には
吸込絞り弁7を開き放風弁9を閉じて通常の負荷運転を
行う。一方、プロセスで消費されるガス量が少なく供給
ガス圧が設定圧を上回ったときには、圧縮機1のサージ
ングを防止し消費動力を節約するため、放風弁9を開
く。これとともに、吸込絞り弁7を絞り無負荷運転状態
(実際には負荷は減少するがゼロとはならない)に制御
する。
The operating state of the compressor 1 is controlled in accordance with the pressure of the gas supplied to the process. When the pressure of the supplied gas is lower than a predetermined pressure set in advance in the controller 11, the suction throttle is set. The normal operation is performed by opening the valve 7 and closing the blow-off valve 9. On the other hand, when the amount of gas consumed in the process is small and the supply gas pressure exceeds the set pressure, the blow-off valve 9 is opened to prevent surging of the compressor 1 and save power consumption. At the same time, the suction throttle valve 7 is controlled to a throttle-free operation state (actually, the load decreases but does not become zero).

【0028】負荷運転時には、吸込絞り弁7は開放され
ているため第1段圧縮機1aの吸込ガス4aの圧力は大
気圧にほぼ等しく約1気圧である。そして、第1段圧縮
機1a及び第2段圧縮機1bはともに仕様点で圧縮比が
約3となるよう設計されており、第1段圧縮機1aの吐
出ガス5a及び第2段圧縮機1bの吸込ガス4bの圧力
は約3気圧、第2段圧縮機1bの吐出ガス5bの圧力は
約9気圧である。
During load operation, the suction throttle valve 7 is open, so that the pressure of the suction gas 4a of the first stage compressor 1a is substantially equal to the atmospheric pressure and about 1 atm. The first stage compressor 1a and the second stage compressor 1b are both designed to have a compression ratio of about 3 at the specification point, and the discharge gas 5a of the first stage compressor 1a and the second stage compressor 1b The pressure of the suction gas 4b is about 3 atm, and the pressure of the discharge gas 5b of the second stage compressor 1b is about 9 atm.

【0029】無負荷運転時には、放風弁9は開放され吸
込絞り弁7は圧縮比を約3に保つよう絞られるため、放
風弁9の上流側の圧力(第2段圧縮機1bの吐出圧にほ
ぼ等しい)はバルブ及び管路の圧力損失により約1.5
気圧となり、第2段圧縮機1bの吸込ガス圧及び第1段
圧縮機1aの吐出ガス圧は約0.5気圧、第1段圧縮機
1aの吸込ガス圧は約0.2気圧となる。
During the no-load operation, the blow-off valve 9 is opened and the suction throttle valve 7 is throttled to keep the compression ratio at about 3, so that the pressure on the upstream side of the blow-off valve 9 (discharge of the second stage compressor 1b) (Approximately equal to pressure) is about 1.5 due to the pressure loss of valves and lines.
Atmospheric pressure, the suction gas pressure of the second stage compressor 1b and the discharge gas pressure of the first stage compressor 1a are about 0.5 atm, and the suction gas pressure of the first stage compressor 1a is about 0.2 atm.

【0030】中間ガス冷却器6aと第2段圧縮機1bの
間には抽出部14aが、また放風弁9の下流の放風通路
18の途中には抽出部14bがそれぞれ設けられてお
り、これら抽出部から圧縮機1の作動ガスを電動機2の
冷却のために抽出している。抽出部14a、14bはそ
れぞれガス冷却器6a、6bの下流に位置しており、こ
れらから供給されるガスは常温程度に冷却されているの
で、電動機2内を通風するだけで電動機2を冷却でき
る。抽出部14aから分岐した抽出流路22a中には減
圧弁8及び逆止弁20aが、また抽出部14bから分岐
した抽出流路22b中には逆止弁20bが設けられてい
る。これらの抽出流路22a、22bは逆止弁20a、
20bの下流で1本にまとめられ、電動機2へ導かれ
る。電動機2に導かれたガスは電動機2を冷却した後排
気され、吸込絞り弁7と第1段圧縮機1aの間の再合流
部15に導かれる。なお、抽出流路22a、22bを逆
止弁20a、20bの下流で1本にまとめているが、こ
れをまとめずに直接電動機2へ導いても良い。
An extraction unit 14a is provided between the intermediate gas cooler 6a and the second stage compressor 1b, and an extraction unit 14b is provided in the middle of the air discharge passage 18 downstream of the air discharge valve 9, respectively. The working gas of the compressor 1 is extracted from these extraction units for cooling the electric motor 2. The extraction units 14a and 14b are located downstream of the gas coolers 6a and 6b, respectively, and the gas supplied from them is cooled to about room temperature, so that the electric motor 2 can be cooled only by ventilating the electric motor 2. . The pressure reducing valve 8 and the check valve 20a are provided in the extraction flow path 22a branched from the extraction part 14a, and the check valve 20b is provided in the extraction flow path 22b branched from the extraction part 14b. These extraction flow paths 22a, 22b are provided with check valves 20a,
Downstream of 20b, they are combined into one and guided to the electric motor 2. The gas guided to the electric motor 2 is exhausted after cooling the electric motor 2, and is introduced to a rejoining portion 15 between the suction throttle valve 7 and the first-stage compressor 1 a. In addition, although the extraction flow paths 22a and 22b are combined into one downstream of the check valves 20a and 20b, they may be directly led to the electric motor 2 without being combined.

【0031】負荷運転時には、抽出部14a及び再合流
部15のガス圧は、前述の通りそれぞれ約3気圧、約1
気圧である。そして、放風弁9を閉じているので放風通
路18内にはガスの流れが存在せず、抽出部14bのガ
ス圧は吸込フィルタ13部の圧力に等しく約1気圧であ
る。したがって、再合流部15の圧力に対して抽出部1
4aで約2気圧の差圧があるのに対し、抽出部14bで
は差圧はほぼゼロとなるので、冷却ガス16は専ら抽出
部14aから供給される。電動機2の冷却に必要なガス
風量を確保できる差圧は概ね0.5〜1気圧なので、段
間に位置する抽出部14aから、十分な風量の冷却ガス
を電動機2に供給できる。
At the time of load operation, the gas pressures of the extraction section 14a and the re-merging section 15 are about 3 atmospheres and about 1 atmosphere, respectively, as described above.
Atmospheric pressure. Since the blow-off valve 9 is closed, there is no gas flow in the blow-off passage 18, and the gas pressure of the extraction unit 14b is equal to the pressure of the suction filter 13 and about 1 atm. Therefore, the pressure of the extraction unit 1 is
While there is a pressure difference of about 2 atm in 4a, the pressure difference in the extraction section 14b becomes almost zero, so the cooling gas 16 is supplied exclusively from the extraction section 14a. Since the differential pressure at which the gas air flow required for cooling the electric motor 2 can be secured is approximately 0.5 to 1 atm, a sufficient amount of cooling gas can be supplied to the electric motor 2 from the extraction unit 14a located between the stages.

【0032】冷却ガスを最終段下流からでなく中間段か
ら抽出するのは、冷却ガスとして最小限必要な風量を確
保すれば良く、それ以上の風量を通風することは圧縮機
の仕事で得られた高エネルギーのガスを浪費することに
なるからである。さらに経済性を考慮すれば、約2気圧
の差圧は電動機の冷却にはなお大きすぎるから、減圧弁
8を絞り、必要最小限の圧力にまで減圧してから電動機
2に導く方が良い。
In order to extract the cooling gas not from the downstream of the final stage but from the intermediate stage, it is sufficient to secure a minimum necessary air volume as the cooling gas, and it is possible to obtain a larger air volume through the work of the compressor. High-energy gas is wasted. Further, in consideration of economy, since the differential pressure of about 2 atm is still too large for cooling the motor, it is better to restrict the pressure reducing valve 8 and reduce the pressure to the minimum necessary pressure before introducing the pressure to the motor 2.

【0033】無負荷運転時には吸込絞り弁7を絞るの
で、抽出部14a及び再合流部15のガス圧は、前述の
通りそれぞれ約0.5気圧、約0.2気圧となる。そし
て、放風弁9を開いて放風通路18にもガスを流し、放
風通路の途中の抽出部14bと吸込フィルタ13の間に
設けたオリフィスや絞り弁等の絞り21で流路を絞るこ
とにより、抽出部14bにおいて1気圧強のガス圧が得
られる。ただし、絞り21を設けなくても、抽出部14
bの圧力は吸込フィルタ部とほぼ等しい約1気圧となる
ので、再合流部15の圧力に対する差圧は抽出部14a
で約0.3気圧、抽出部14bで0.8気圧強となり、
冷却ガス16は専ら抽出部14bから供給される。これ
により、無負荷運転時にも電動機の冷却に必要な冷却ガ
ス風量を確保できる。
At the time of no-load operation, the suction throttle valve 7 is throttled, so that the gas pressures of the extraction section 14a and the re-merging section 15 are about 0.5 atm and about 0.2 atm, respectively, as described above. Then, the blow-off valve 9 is opened to flow the gas also into the blow-off passage 18, and the flow passage is throttled by a throttle 21 such as an orifice or a throttle valve provided between the extraction part 14 b and the suction filter 13 in the middle of the blow-off passage. As a result, a gas pressure of slightly more than one atmosphere is obtained in the extraction unit 14b. However, even if the aperture 21 is not provided, the extraction unit 14
Since the pressure of b is about 1 atm, which is almost equal to that of the suction filter section, the pressure difference with respect to the pressure of the re-merging section 15 is
At about 0.3 atm, and at the extraction unit 14b at about 0.8 atm,
The cooling gas 16 is exclusively supplied from the extraction unit 14b. As a result, the amount of cooling gas required for cooling the electric motor can be secured even during the no-load operation.

【0034】なお、無負荷運転時には、回転数が一定の
ため風損や磁気軸受の鉄損は変化せず電動機駆動部の鉄
損が減少するので、必要な冷却風量は負荷運転時より少
ない。抽出部14bから分岐した抽出流路22bの途中
に、オリフィスや絞り弁等の絞りを設置し、電動機への
通風量をさらに減少させることもできる。ただし、この
ように構成すると、負荷運転時はともかく無負荷運転時
には経済的なメリットが少ない。また、冷却ガスを放風
通路18の途中からではなく大気から直接導入してもよ
い。この場合、大気中の水蒸気が電動機内で凝縮する恐
れがあるので、吸込口には除塵フィルタが必要である。
At the time of no-load operation, since the wind speed and the iron loss of the magnetic bearing do not change and the iron loss of the motor drive unit is reduced because the rotation speed is constant, the required cooling air flow is smaller than at the time of the load operation. A throttle such as an orifice or a throttle valve may be provided in the middle of the extraction flow path 22b branched from the extraction unit 14b to further reduce the amount of air flow to the electric motor. However, with this configuration, there is little economic merit during no-load operation aside from load operation. Further, the cooling gas may be introduced directly from the atmosphere, not from the middle of the ventilation passage 18. In this case, since the water vapor in the atmosphere may be condensed in the electric motor, a dust filter is required at the suction port.

【0035】図3に、図1に示した第1の実施例におけ
る電動機2及び圧縮機1a、1bの内部構造と、電動機
冷却ガスの供給経路の概略を示す。
FIG. 3 schematically shows the internal structure of the motor 2 and the compressors 1a and 1b in the first embodiment shown in FIG. 1, and the supply path of the motor cooling gas.

【0036】図3において、第1段圧縮機1a及び第2
段圧縮機1bは、それぞれ遠心羽根車28a、28bを
有し、これら遠心羽根車は電動機2の本体から突き出た
回転軸3の両端部に直接取り付けられている。電動機2
はインバータ制御式の高速電動機であり、中央部に駆動
部24を配し、回転軸はこの駆動部24と2枚の羽根車
28a、28bとの間に配設された2組のラジアル磁気
軸受25a、25bによって支承されている。また、第
2段圧縮機1b側のラジアル軸受25bより駆動部24
側には、圧縮機1で発生する軸方向推力を担持するアキ
シャル磁気軸受26a、26bが設置されている。
In FIG. 3, the first stage compressor 1a and the second stage compressor 1a
The stage compressor 1b has centrifugal impellers 28a and 28b, respectively, and these centrifugal impellers are directly attached to both ends of the rotating shaft 3 protruding from the main body of the electric motor 2. Electric motor 2
Is a high-speed motor of an inverter control type, in which a drive unit 24 is disposed in the center, and a rotary shaft is provided with two sets of radial magnetic bearings disposed between the drive unit 24 and the two impellers 28a, 28b. 25a, 25b. Also, the drive unit 24 is moved from the radial bearing 25b on the second stage compressor 1b side.
On the side, axial magnetic bearings 26a and 26b that carry the axial thrust generated in the compressor 1 are provided.

【0037】この実施例の電動機2においては、コイル
等における電気的なロスである鉄損と、回転体の高速回
転に起因する風損が発熱要因であり、主要な発熱源は電
動機の駆動部24とラジアル磁気軸受25a、25b、
アキシャル磁気軸受26a、26b、及びこれらと回転
体の間隙部である。圧縮機の負荷運転時は、電動機駆動
部24の発熱が大きく、磁気軸受の発熱はこれに比較し
て小さい。また、圧縮機の無負荷運転時には、回転数が
一定ため風損による発熱量は変わらないが、電動機2の
駆動動力が小さくなるので、電動機駆動部24の鉄損に
よる発熱は負荷運転時より小さくなる。
In the motor 2 of this embodiment, iron loss, which is an electrical loss in a coil and the like, and wind loss caused by high-speed rotation of a rotating body are heat-generating factors. 24 and radial magnetic bearings 25a, 25b,
The axial magnetic bearings 26a and 26b and the gap between these and the rotating body. During the load operation of the compressor, the heat generated by the motor driving unit 24 is large, and the heat generated by the magnetic bearing is small. Further, when the compressor is operated under no load, the amount of heat generated by the windage does not change because the rotation speed is constant, but the driving power of the electric motor 2 is reduced. Become.

【0038】これらの発熱源から発生する熱を冷却する
ために、圧縮機で昇圧されガス冷却器で冷却されたガス
の一部を抽出し、電動機2に冷却ガス16として供給す
る。電動機は、各発熱源の近傍に計4カ所の冷却ガス供
給部29a、29b、29c、29dを有しており、さ
らに各供給部は、それぞれ円周方向の複数箇所に供給口
を有している。また、電動機2を冷却した後の排気は、
やはり計5カ所の排出部30a、30b、30c、30
d、30eに設けられた円周方向に複数の排出口から排
出される。
In order to cool the heat generated from these heat sources, a part of the gas which is pressurized by the compressor and cooled by the gas cooler is extracted and supplied to the electric motor 2 as the cooling gas 16. The electric motor has a total of four cooling gas supply units 29a, 29b, 29c, and 29d in the vicinity of each heat source, and each supply unit has supply ports at a plurality of circumferential positions. I have. Also, the exhaust after cooling the motor 2 is:
Again, a total of five discharge units 30a, 30b, 30c, 30
It is discharged from a plurality of discharge ports in the circumferential direction provided in d and 30e.

【0039】第1段圧縮機1a側のラジアル磁気軸受2
5aを主として冷却するための冷却ガス16aは、冷却
ガス供給部29aからラジアル磁気軸受25aと羽根車
28aとの間に形成された空間へ導かれる。冷却ガスの
一部は第1段圧縮機1aからの漏れ流れとともに排出部
30aから排出され、残りがラジアル磁気軸受25aと
回転軸3との間隙を経て磁気軸受25aを冷却した後、
排出部30bから排出される。同様に、冷却ガス16b
は、電動機の駆動部24を冷却した後排出部30b及び
30cから排出され、また冷却ガス16cは、アキシャ
ル磁気軸受26aを冷却した後排出部30dから排出さ
れ、冷却ガス16dはアキシャル磁気軸受26bとラジ
アル磁気軸受25bとを冷却した後排出部30d及び3
0eから排出される。
Radial magnetic bearing 2 on the first stage compressor 1a side
The cooling gas 16a for mainly cooling the 5a is guided from the cooling gas supply unit 29a to a space formed between the radial magnetic bearing 25a and the impeller 28a. A part of the cooling gas is discharged from the discharge part 30a together with the leakage flow from the first stage compressor 1a, and the rest cools the magnetic bearing 25a through the gap between the radial magnetic bearing 25a and the rotating shaft 3,
It is discharged from the discharge unit 30b. Similarly, the cooling gas 16b
Is discharged from the discharge portions 30b and 30c after cooling the driving portion 24 of the electric motor, the cooling gas 16c is discharged from the discharge portion 30d after cooling the axial magnetic bearing 26a, and the cooling gas 16d is discharged from the axial magnetic bearing 26b. After cooling the radial magnetic bearing 25b, the discharge portions 30d and 3
0e.

【0040】電動機2内部における冷却ガス16の通路
は複雑かつ多様であり、供給部から排気部に至る間の圧
力損失は、各供給部位置毎に異なる。よって、各発熱部
の冷却に必要な通風量を確保するために、各供給部29
a、29b、29c、29dの上流にはそれぞれ、オリ
フィスや弁等の風量調整用の絞り27a、27b、17
c、17dが設けられている。
The passage of the cooling gas 16 inside the electric motor 2 is complicated and diverse, and the pressure loss from the supply section to the exhaust section differs for each supply section position. Therefore, in order to secure a ventilation amount necessary for cooling each heat generating unit, each supply unit 29 is required.
a, 29b, 29c, and 29d, upstream of the throttles 27a, 27b, and 17 for adjusting the air volume such as orifices and valves, respectively.
c and 17d are provided.

【0041】なおこの実施例においては、圧縮機の羽根
車を電動機の回転軸に直接取り付けているが、カップリ
ング等により連結されても良く、羽根車の枚数や配置も
これに限るものではない。つまり、本発明は負荷運転と
無負荷運転を切り換え可能な多段圧縮機に共通に適用可
能なものである。以上述べたように、図1ないし図3に
示した構成とすることで、負荷運転時の経済性を損なう
ことなく、無負荷運転時にも電動機あるいは磁気軸受の
冷却に必要な冷却ガス風量を確保した多段圧縮機を実現
できる。
In this embodiment, the impeller of the compressor is directly mounted on the rotating shaft of the electric motor. However, the impeller may be connected by a coupling or the like, and the number and arrangement of the impellers are not limited to this. . That is, the present invention can be commonly applied to a multi-stage compressor capable of switching between load operation and no-load operation. As described above, by adopting the configuration shown in FIGS. 1 to 3, the amount of cooling gas required for cooling the electric motor or the magnetic bearing can be ensured even during no-load operation without impairing the economy during load operation. A multi-stage compressor can be realized.

【0042】図4に、本発明に係る多段圧縮機の第2の
実施例の概略構成を示す。この第2の実施例は、図1に
示した第1の実施例とは、抽出部14a、14bから電
動機2に至る冷却ガス流路が異なっている。その他、同
一符号は同一部品を示す。
FIG. 4 shows a schematic configuration of a second embodiment of the multi-stage compressor according to the present invention. This second embodiment differs from the first embodiment shown in FIG. 1 in the cooling gas flow path from the extraction units 14a and 14b to the electric motor 2. In addition, the same reference numerals indicate the same parts.

【0043】図4において、電動機2を冷却するガスの
抽出部14a、14bは、第1の実施例と同様に、それ
ぞれ中間ガス冷却器6aと第2段圧縮機1bの間及び放
風弁9の下流の放風通路18中に位置している。抽出部
14a、14bから導かれる抽出流路22a、22b中
には、それぞれ逆止弁20a、20bが設置されてい
る。またこれらの抽出流路22a、22bは、逆止弁2
0a、20bの下流で1本にまとめられ、減圧弁8を経
た後電動機2へ導かれる。減圧弁8の開度は、圧縮機の
負荷運転と無負荷運転の運転状態に応じて調節可能であ
り、その制御信号19cは制御装置11から得られる。
In FIG. 4, gas extracting portions 14a and 14b for cooling the electric motor 2 are provided between the intermediate gas cooler 6a and the second stage compressor 1b and the blow-off valve 9 as in the first embodiment. Is located in the air discharge passage 18 downstream of. Check valves 20a and 20b are respectively installed in the extraction flow paths 22a and 22b led from the extraction units 14a and 14b. In addition, these extraction flow paths 22a and 22b are connected to the check valve 2
Downstream of 0 a and 20 b, they are combined into one and passed through a pressure reducing valve 8 and then guided to the electric motor 2. The degree of opening of the pressure reducing valve 8 can be adjusted according to the operation state of the compressor in the load operation and the no-load operation, and the control signal 19 c is obtained from the control device 11.

【0044】この第2の実施例においても、抽出部14
a、14b及び再合流部15の圧力は、第1の実施例と
同じであり、負荷運転時にはそれぞれ約3気圧、約1気
圧、約1気圧、無負荷運転時にはそれぞれ約0.5気
圧、1気圧前後、約0.2気圧である。よって、冷却ガ
スは、やはり第1の実施例と同様に、負荷運転時には抽
出部14aから、無負荷運転時には抽出部14bから供
給される。
Also in the second embodiment, the extraction unit 14
The pressures of a, 14b and the re-merging section 15 are the same as those in the first embodiment, and are about 3 atm, about 1 atm, about 1 atm during the load operation, and about 0.5 atm, respectively at the no-load operation. The pressure is about 0.2 atm. Therefore, similarly to the first embodiment, the cooling gas is supplied from the extracting unit 14a during the load operation and from the extracting unit 14b during the no-load operation.

【0045】本実施例においては、抽出部14a、14
bから供給された冷却ガスはともに減圧弁8を通過す
る。負荷運転時には、再合流部15の圧力より抽出部1
4aの圧力は約2気圧高いので、減圧弁を絞れば電動機
2の冷却に最小限必要なガス流量が通風される。無負荷
運転時には、減圧弁8を開放して電動機2の冷却に必要
な通風量を確保する。この様に減圧弁8の開度は、制御
装置11からの制御信号19cに基づき、負荷運転また
は無負荷運転の運転状態に応じて制御され、このとき制
御装置11は定風圧制御信号とともに減圧弁8の制御信
号を発信する。
In this embodiment, the extraction units 14a, 14a
Both of the cooling gas supplied from b pass through the pressure reducing valve 8. At the time of load operation, the extraction unit 1
Since the pressure at 4a is about 2 atm higher, if the pressure reducing valve is throttled, the gas flow required for cooling the electric motor 2 is ventilated. During a no-load operation, the pressure reducing valve 8 is opened to secure a ventilation amount necessary for cooling the electric motor 2. As described above, the opening degree of the pressure reducing valve 8 is controlled according to the operation state of the load operation or the no-load operation based on the control signal 19c from the control device 11, and at this time, the control device 11 controls the pressure reducing valve together with the constant wind pressure control signal. 8 is transmitted.

【0046】以上のような構成とすることで、第2の実
施例においても第1の実施例と同様の効果が得られる。
すなわち、負荷運転時の経済性を損なうことなく、無負
荷運転時にも電動機あるいは磁気軸受の冷却に必要な冷
却ガス風量を確保できる。
With the above configuration, the same effect as in the first embodiment can be obtained in the second embodiment.
That is, the amount of cooling gas required for cooling the electric motor or the magnetic bearing can be ensured even during the no-load operation without impairing the economy during the load operation.

【0047】図5に、本発明に係る多段圧縮機の第3の
実施例の概略構成を示す。この第3の実施例は、図1に
示した第1の実施例とは、抽出部14a、14bから電
動機2に至る冷却ガス流路が異なる。その他、図中同一
符号で示したものは同一部品を示す。
FIG. 5 shows a schematic configuration of a third embodiment of the multistage compressor according to the present invention. This third embodiment differs from the first embodiment shown in FIG. 1 in the cooling gas flow path from the extraction units 14a and 14b to the electric motor 2. In addition, components denoted by the same reference numerals in the drawings indicate the same components.

【0048】図5において、電動機2を冷却するガスの
抽出部14aは、第1の実施例と同様に、中間ガス冷却
器6aと第2段圧縮機1bの間に位置している。一方、
抽出部14bは、第1の実施例とは異なり、放風弁9の
上流の放風通路18中に位置している。この抽出部14
bは必ずしも放風通路18中にある必要はなく、圧力が
ほぼ等しい第2段圧縮機1bの下流に設けたガス冷却器
6bより下流にあっても良い。なお、抽出部14bが放
風弁9の上流に位置するため、第1の実施例における絞
り21に相当する装置は不要である。
In FIG. 5, the gas extracting portion 14a for cooling the electric motor 2 is located between the intermediate gas cooler 6a and the second stage compressor 1b, as in the first embodiment. on the other hand,
Unlike the first embodiment, the extraction unit 14 b is located in the air discharge passage 18 upstream of the air discharge valve 9. This extraction unit 14
b does not necessarily need to be in the air discharge passage 18 and may be downstream of the gas cooler 6b provided downstream of the second stage compressor 1b having substantially the same pressure. Since the extraction unit 14b is located upstream of the blow-off valve 9, a device corresponding to the throttle 21 in the first embodiment is unnecessary.

【0049】抽出部14a、14bから分岐した供給通
路は三方弁23に連結されており、冷却ガスはこれらの
いずれか一方からのみ電動機2へ供給される。三方弁
は、圧縮機の負荷運転と無負荷運転の運転状態に応じて
経路が切り換わり、その切り換えの制御信号19dが制
御装置11から出力される。抽出部14aから三方弁へ
至る間には、減圧弁8が設置されている。
The supply passages branched from the extraction sections 14a and 14b are connected to a three-way valve 23, and the cooling gas is supplied to the electric motor 2 from only one of them. The path of the three-way valve is switched according to the operation state of the load operation and the no-load operation of the compressor, and a control signal 19 d for the switching is output from the control device 11. A pressure reducing valve 8 is provided between the extraction unit 14a and the three-way valve.

【0050】第3の実施例においては、抽出部14a及
び再合流部15の圧力は、第1の実施例と同じであり、
負荷運転時にはそれぞれ約3気圧と約1気圧、無負荷運
転時にはそれぞれ約0.5気圧と約0.2気圧である。
また抽出部14bの圧力は、第2段圧縮機1bの吐出圧
にほぼ等しく、負荷運転時には約9気圧、無負荷運転時
には約1.5気圧である。
In the third embodiment, the pressures in the extraction section 14a and the re-merging section 15 are the same as in the first embodiment,
The pressure is about 3 atm and about 1 atm during the load operation, and about 0.5 and 0.2 atm respectively during the no-load operation.
The pressure of the extraction unit 14b is substantially equal to the discharge pressure of the second stage compressor 1b, and is about 9 atm during the load operation and about 1.5 atm during the no-load operation.

【0051】第1および第2の実施例において、電動機
2の冷却ガスの経路は、抽出部14a、14bの圧力に
よって受動的に決まるのに対し、第3の実施例では、三
方弁8を切り換えることで能動的に決定される。ここで
三方弁の切り換えは、制御装置11からの制御信号19
dに基づき、負荷運転と無負荷運転の運転状態に応じて
制御され、このとき制御装置11から定風圧制御信号と
ともに減圧弁8の制御信号も出力される。
In the first and second embodiments, the path of the cooling gas of the electric motor 2 is passively determined by the pressure of the extraction units 14a and 14b, whereas in the third embodiment, the three-way valve 8 is switched. It is actively determined by Here, the three-way valve is switched by the control signal 19 from the control device 11.
Based on d, control is performed according to the operation state of the load operation and the no-load operation, and at this time, the control signal of the pressure reducing valve 8 is output from the control device 11 together with the constant wind pressure control signal.

【0052】負荷運転時には、三方弁23は抽出部14
aから分岐した流路側に開放される。冷却ガスは減圧弁
8において必要最小限の風量に絞られ、電動機2へ供給
される。抽出部14bは放風弁9の上流に位置してお
り、その圧力は約9気圧と高いが、抽出部14bから分
岐した流路に対しては三方弁23が閉じられているの
で、不経済に多量のガスが電動機2へ通風されるおそれ
はない。
During load operation, the three-way valve 23 is
It is opened to the side of the flow path branched from a. The cooling gas is reduced to a minimum necessary air volume in the pressure reducing valve 8 and supplied to the electric motor 2. The extraction unit 14b is located upstream of the blow-off valve 9 and its pressure is as high as about 9 atm. However, since the three-way valve 23 is closed for the flow path branched from the extraction unit 14b, it is uneconomical. There is no possibility that a large amount of gas is ventilated to the electric motor 2.

【0053】無負荷運転時には、三方弁23は抽出部1
4bから分岐した流路側へ開放されている。このとき、
再合流部15の圧力に対する抽出部14bの差圧は約
1.3気圧であり、電動機の冷却に必要な冷却ガスの通
風量を十分確保できる。
During no-load operation, the three-way valve 23 is connected to the extraction unit 1
It is open to the side of the flow path branched from 4b. At this time,
The differential pressure of the extraction unit 14b with respect to the pressure of the re-merging unit 15 is about 1.3 atm, and it is possible to sufficiently secure the flow rate of the cooling gas required for cooling the electric motor.

【0054】以上のような構成とすることで、第3の実
施例においても、やはり第1の実施例と同様の効果を得
ることができ、すなわち、負荷運転時の経済性を損なう
ことなく、無負荷運転時にも電動機あるいは磁気軸受の
冷却に必要な冷却ガス風量を確保できる。
With the above-described configuration, the same effects as those of the first embodiment can also be obtained in the third embodiment, that is, without impairing the economy during load operation. Even during the no-load operation, the amount of cooling gas required for cooling the electric motor or the magnetic bearing can be secured.

【0055】なお、上記説明においては2段の遠心圧縮
機を例にとり説明したが、3段以上の遠心圧縮機でも同
様に行うことができることは言うまでもない。また、圧
縮機としては、遠心形に限るものでなく軸流形や容積形
であっても良い。
In the above description, a two-stage centrifugal compressor has been described as an example. However, it goes without saying that a centrifugal compressor with three or more stages can be similarly operated. Further, the compressor is not limited to the centrifugal type, but may be an axial flow type or a positive displacement type.

【0056】[0056]

【発明の効果】以上の詳細な説明からも明らかなよう
に、本発明に係る多段圧縮機によれば、電動機の冷却ガ
スを複数の抽出部から抽出する構成としたので、負荷運
転時には圧縮機の中間段から、無負荷運転時には大気放
風通路から冷却ガスを抽出でき、負荷運転時の経済性を
損なうことなく、無負荷運転時にも磁気軸受の冷却に必
要な冷却ガス風量を確保できる。
As is apparent from the above detailed description, according to the multistage compressor according to the present invention, since the cooling gas of the electric motor is extracted from the plurality of extraction units, the compressor is operated during the load operation. From the middle stage, the cooling gas can be extracted from the air discharge passage during the no-load operation, and the flow rate of the cooling gas required for cooling the magnetic bearing can be ensured even during the no-load operation without impairing the economy during the load operation.

【0057】また、本発明に係る磁気軸受で支持される
多段圧縮機において、磁気軸受の冷却ガスを複数の抽出
部から抽出するように構成したので、負荷運転時には圧
縮機の中間段から、無負荷運転時には大気放風通路から
冷却ガスを抽出することができ、負荷運転時の経済性を
損なうことなく、無負荷運転時にも磁気軸受の冷却に必
要な冷却ガス風量を確保できる。
Further, in the multi-stage compressor supported by the magnetic bearing according to the present invention, the cooling gas of the magnetic bearing is configured to be extracted from the plurality of extraction portions. The cooling gas can be extracted from the air discharge passage during the load operation, and the amount of cooling gas required for cooling the magnetic bearing can be secured even during the no-load operation without impairing the economy during the load operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多段圧縮機の第1実施例の構成図
である。
FIG. 1 is a configuration diagram of a first embodiment of a multistage compressor according to the present invention.

【図2】本発明に係る多段圧縮機の第1実施例の上面
図、正面図及び側面図である。
FIG. 2 is a top view, a front view, and a side view of the first embodiment of the multi-stage compressor according to the present invention.

【図3】本発明に係る多段圧縮機の第1実施例の縦断面
図であり、圧縮機内部の詳細を示す図である。
FIG. 3 is a longitudinal sectional view of the first embodiment of the multi-stage compressor according to the present invention, showing details inside the compressor.

【図4】本発明に係る多段圧縮機の第2実施例の構成図
である。
FIG. 4 is a configuration diagram of a second embodiment of the multi-stage compressor according to the present invention.

【図5】本発明に係る多段圧縮機の第3実施例の構成図
である。
FIG. 5 is a configuration diagram of a third embodiment of the multi-stage compressor according to the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、1a…第1段圧縮機、1b…第2段圧縮
機、2…駆動電動機、3…回転軸、4…吸込ガス、4a
…第1段圧縮機吸込ガス、4b…第2段圧縮機吸込ガ
ス、5…吐出ガスまたは供給ガス、5a…第1段圧縮機
吐出ガス、5b…第2段圧縮機吐出ガス、6…ガス冷却
器、6a…中間ガス冷却器、6b…吐出ガス冷却器、7
…吸込絞り弁、8…減圧弁、9…放風弁、10…逆止
弁、11…圧力検出器及び制御装置、12…レシーバタ
ンク、13…吸込フィルタ、14…抽出部、14a…負
荷運転時の抽出部、14b…無負荷運転時の抽出部、1
5…再合流部、16a,16b,16c,16d…電動
機冷却ガス、磁気軸受冷却ガス、17a,17b,17
c,17d,17e…冷却後の排気ガス、18…放風通
路、19a…放風弁駆動信号、19b…吸込絞り弁駆動
信号、19c…減圧弁駆動信号、19d…三方弁駆動信
号、20a…逆止弁、20b…逆止弁、21…絞り、2
2…抽出ガス、22a…負荷運転時の抽出ガス、22b
…無負荷運転時の抽出ガス、23…三方弁、24…電動
機の駆動部、25a,25b…ラジアル磁気軸受、26
a,26b…アキシャル磁気軸受、27a,27b,2
7c,27d…絞り弁、28…羽根車、28a…第1段
圧縮機羽根車、28b…第2段圧縮機羽根車、29a,
29b,29c,29d…冷却ガス供給部、30a,3
0b,30c,30d,30e…冷却ガス排出部。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 1a ... First stage compressor, 1b ... Second stage compressor, 2 ... Drive motor, 3 ... Rotary shaft, 4 ... Suction gas, 4a
1st stage compressor suction gas, 4b 2nd stage compressor suction gas, 5 discharge gas or supply gas, 5a 1st stage compressor discharge gas, 5b 2nd stage compressor discharge gas, 6 gas Cooler, 6a: Intermediate gas cooler, 6b: Discharge gas cooler, 7
... Suction throttle valve, 8 ... Pressure reducing valve, 9 ... Outlet valve, 10 ... Check valve, 11 ... Pressure detector and control device, 12 ... Receiver tank, 13 ... Suction filter, 14 ... Extraction unit, 14a ... Load operation Extraction unit at the time, 14b ... extraction unit at the time of no-load operation, 1
5: Rejoining part, 16a, 16b, 16c, 16d: Motor cooling gas, magnetic bearing cooling gas, 17a, 17b, 17
c, 17d, 17e: Exhaust gas after cooling, 18: Blow-off passage, 19a: Blow-off valve drive signal, 19b: Suction throttle valve drive signal, 19c: Reducer valve drive signal, 19d: Three-way valve drive signal, 20a ... Check valve, 20b check valve, 21 throttle, 2
2: Extracted gas, 22a: Extracted gas during load operation, 22b
... Extracted gas during no-load operation, 23 ... Three-way valve, 24 ... Drive section of electric motor, 25a, 25b ... Radial magnetic bearing, 26
a, 26b: axial magnetic bearings, 27a, 27b, 2
7c, 27d: throttle valve, 28: impeller, 28a: first stage compressor impeller, 28b: second stage compressor impeller, 29a,
29b, 29c, 29d: cooling gas supply unit, 30a, 3
0b, 30c, 30d, 30e: cooling gas discharge unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 直彦 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naohiko Takahashi 603, Kandachicho, Tsuchiura-shi, Ibaraki Pref.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】回転軸を有する高速電動機と、この回転軸
の両端側に取り付けられた羽根車を含む第1段及び第2
段圧縮段と、この第1段及び第2段圧縮段間に設けられ
た中間冷却器とを備え、負荷運転と無負荷運転を切り換
え可能にした多段圧縮機において、 圧縮機の吸込側に吸込絞り弁を、吐出側に放風弁をそれ
ぞれ設けるとともに、後段側の前記羽根車の下流側及び
前記中間冷却器の下流側から分岐した分岐路をそれぞれ
設け、この分岐路同士を接続して合流路を形成し、この
合流路と前記高速電動機を接続してこの高速電動機に冷
却ガスを流通する流通路を形成したことを特徴とする多
段圧縮機。
1. A high-speed electric motor having a rotating shaft, and first and second stages including an impeller mounted on both ends of the rotating shaft.
A multi-stage compressor comprising a stage compression stage and an intercooler provided between the first stage and the second stage compression stage and capable of switching between a load operation and a no-load operation. The throttle valve is provided with a blow-off valve on the discharge side, and branch paths are provided from the downstream side of the impeller and the downstream side of the intercooler on the downstream side, respectively. A multi-stage compressor, wherein a passage is formed, and the high-speed electric motor is connected to the merged flow passage to form a flow passage through which the cooling gas flows through the high-speed electric motor.
【請求項2】回転軸を有し磁気軸受によりこの回転軸を
支承する高速電動機と、この回転軸の両端側に取り付け
られた羽根車を含む第1段及び第2段圧縮段と、この第
1段及び第2段圧縮段間に設けられた中間冷却器とを備
え、負荷運転と無負荷運転を切り換え可能にした多段圧
縮機において、 圧縮機の吸込側に吸込絞り弁を、吐出側に放風弁を設
け、後段側の前記羽根車の下流側及び前記中間冷却器の
下流側から分岐した分岐路をそれぞれ設け、この分岐路
同士を接続して合流路を形成し、この合流路と前記高速
電動機を接続して前記磁気軸受に冷却ガスを流通する流
通路を形成したことを特徴とする多段圧縮機。
2. A high-speed electric motor having a rotating shaft and supporting the rotating shaft by a magnetic bearing, a first stage and a second stage compression stage including impellers mounted on both ends of the rotating shaft; An interstage cooler provided between the first and second compression stages, wherein a multistage compressor capable of switching between a load operation and a no-load operation is provided. A suction throttle valve is provided on a suction side of the compressor, and a suction throttle valve is provided on a discharge side. A blow-off valve is provided, and a branch path branched from the downstream side of the impeller and the downstream side of the intercooler on the subsequent stage is provided, and the branch paths are connected to form a merging flow path. A multi-stage compressor, wherein the high-speed motor is connected to form a flow passage through which the cooling gas flows through the magnetic bearing.
【請求項3】前記中間冷却器にドレン回収部を設けたこ
とを特徴とする請求項1または請求項2に記載の多段圧
縮機。
3. The multi-stage compressor according to claim 1, wherein a drain recovery section is provided in the intercooler.
【請求項4】回転軸を有する高速電動機と、この回転軸
の両端側に取り付けられた羽根車を含む第1段及び第2
段圧縮段と、この第1段及び第2段圧縮段間に設けられ
た中間冷却器とを備え、負荷運転と無負荷運転を切り換
え可能にした多段圧縮機において、 圧縮機の負荷運転時に前記高速電動機を冷却する冷却流
路と、圧縮機の無負荷運転時に前記高速電動機を冷却す
る冷却流路とを前記中間冷却器と前記放風弁との間の異
なる位置から分岐させたことを特徴とする多段圧縮機。
4. A first and second stage including a high-speed motor having a rotating shaft, and impellers mounted on both ends of the rotating shaft.
A multistage compressor comprising a stage compression stage and an intercooler provided between the first stage and the second stage compression stage, wherein the load operation can be switched between a load operation and a no-load operation. A cooling passage for cooling the high-speed motor and a cooling passage for cooling the high-speed motor during a no-load operation of the compressor are branched from different positions between the intercooler and the blow-off valve. And a multi-stage compressor.
【請求項5】前記分岐路と前記合流路間に逆止弁を設け
たことを特徴とする請求項1または請求項2に記載の多
段圧縮機。
5. The multi-stage compressor according to claim 1, wherein a check valve is provided between the branch path and the junction path.
【請求項6】前記後段側の羽根車の下流に設けた分岐路
は、その分岐位置が前記放風弁の下流であることを特徴
とする請求項1または請求項2に記載の多段圧縮機。
6. The multi-stage compressor according to claim 1, wherein the branch path provided downstream of the rear-stage impeller has a branch position downstream of the blow-off valve. .
【請求項7】前記中間冷却器の下流側から分岐した分岐
管に減圧弁を設けたことを特徴とする請求項1または請
求項2に記載の多段圧縮機。
7. The multi-stage compressor according to claim 1, wherein a pressure reducing valve is provided in a branch pipe branched from a downstream side of the intercooler.
【請求項8】前記減圧弁の開度を負荷運転時と無負荷運
転時とで変化させる制御手段を設けたことを特徴とする
請求項7に記載の多段圧縮機。
8. The multi-stage compressor according to claim 7, further comprising control means for changing the opening of said pressure reducing valve between a load operation and a no-load operation.
【請求項9】前記それぞれの分岐館内の流れのオン・オ
フを制御する流れ制御手段を設けたことを特徴とする請
求項1または請求項2に記載の多段圧縮機。
9. The multi-stage compressor according to claim 1, further comprising flow control means for controlling on / off of a flow in each of the branch buildings.
【請求項10】負荷運転時には、前記中間冷却器の下流
で分岐した分岐管内の流れをオンにし、他の分岐管内の
流れをオフにすることを特徴とする請求項9に記載の多
段圧縮機。
10. The multi-stage compressor according to claim 9, wherein, during a load operation, a flow in a branch pipe branched downstream of the intercooler is turned on, and a flow in another branch pipe is turned off. .
【請求項11】無負荷運転時には、後段の羽根車の下流
側から分岐した分岐管内の流れをオンにし、他の分岐管
内の流れをオフにすることを特徴とする請求項10に記
載の多段圧縮機。
11. The multi-stage according to claim 10, wherein during a no-load operation, a flow in a branch pipe branched from a downstream side of a subsequent impeller is turned on, and a flow in another branch pipe is turned off. Compressor.
【請求項12】前記高速電動機を冷却した冷却ガスを前
記吸い込み絞り弁の上流に戻す戻し流路を形成したこと
を特徴とする請求項1に記載の多段圧縮機。
12. The multi-stage compressor according to claim 1, wherein a return flow path for returning the cooling gas that has cooled the high-speed motor to a position upstream of the suction throttle valve is formed.
【請求項13】前記磁気軸受を冷却した冷却ガスを前記
吸い込み絞り弁の上流に戻す戻し流路を形成したことを
特徴とする請求項2に記載の多段圧縮機。
13. The multi-stage compressor according to claim 2, wherein a return flow path is formed for returning the cooling gas that has cooled the magnetic bearing upstream of the suction throttle valve.
【請求項14】回転軸を有する高速電動機と、この回転
軸の両端側に取り付けられた羽根車を含む第1段及び第
2段圧縮段と、この第1段及び第2段圧縮段間に設けら
れた中間冷却器とを備え、負荷運転と無負荷運転を切り
換え可能にした多段圧縮機において、 多段圧縮機の負荷運転時に前記高速電動機を冷却する冷
却流路と、多段圧縮機の無負荷運転時に前記高速電動機
を冷却する冷却流路とを設け、少なくとも1本の前記冷
却流路はほぼ大気圧雰囲気から分岐していることを特徴
とする多段圧縮機。
14. A high-speed motor having a rotating shaft, first and second compression stages including impellers mounted on both ends of the rotating shaft, and a first stage and a second stage between the first and second stages. A multi-stage compressor having an intercooler provided and capable of switching between a load operation and a no-load operation, wherein a cooling passage for cooling the high-speed motor during a load operation of the multi-stage compressor; A multi-stage compressor provided with a cooling passage for cooling the high-speed motor during operation, wherein at least one of the cooling passages is branched from a substantially atmospheric pressure atmosphere.
【請求項15】前記羽根車は遠心羽根車であることを特
徴とする請求項1ないし13のいずれか1項に記載の多
段圧縮機。
15. The multi-stage compressor according to claim 1, wherein said impeller is a centrifugal impeller.
【請求項16】回転軸を有する高速電動機と、この回転
軸の両端側に取り付けられた羽根車を含む第1段及び第
2段圧縮段と、この第1段及び第2段圧縮段の間に設け
られた中間冷却器とを備え、負荷運転と無負荷運転を切
り換え可能にした多段圧縮機において、 後段側の前記羽根車の下流側及び前記中間冷却器の下流
側には第1、第2の分岐路を、圧縮機の吐出側には吐出
圧力を検出する圧力検出手段を設けるとともに、この圧
力検出手段の出力に基づいて負荷運転と無負荷運転を切
り換える運転制御手段を設け、前記第1及び第2の分岐
路間を接続して合流路を形成し、この合流路と前記高速
電動機を接続してこの高速電動機に冷却ガスを流通する
流通路を形成したことを特徴とする多段圧縮機。
16. A high-speed electric motor having a rotating shaft, first and second compression stages including impellers mounted on both ends of the rotating shaft, and between the first and second compression stages. An intercooler provided in the multistage compressor that can switch between a load operation and a no-load operation, wherein a first stage and a second stage are provided downstream of the impeller and downstream of the intercooler on the downstream side. A pressure detection means for detecting a discharge pressure on the discharge side of the compressor, and an operation control means for switching between a load operation and a no-load operation based on the output of the pressure detection means, A multi-stage compressor, wherein a junction is formed by connecting the first and second branch paths, and the junction is connected to the high-speed motor to form a flow passage through which the cooling gas flows in the high-speed motor. Machine.
【請求項17】磁気軸受により支承される回転軸を有す
る高速電動機と、この回転軸の両端側に取り付けられた
羽根車を含む第1段及び第2段圧縮段と、この第1段及
び第2段圧縮段の間に設けられた中間冷却器とを備え、
負荷運転と無負荷運転を切り換え可能にした多段圧縮機
において、 後段側の前記羽根車の下流側及び前記中間冷却器の下流
側には第1および第2の分岐路を、圧縮機の吐出側には
吐出圧力を検出する圧力検出手段を設けるとともに、こ
の圧力検出手段の出力に基づいて負荷運転と無負荷運転
を切り換える運転制御手段を設け、前記第1及び第2の
分岐路間を接続して合流路を形成し、この合流路と前記
高速電動機とを接続して前記磁気軸受に冷却ガスを流通
する流通路を形成したことを特徴とする多段圧縮機。
17. A high-speed motor having a rotating shaft supported by a magnetic bearing, first and second compression stages including impellers mounted on both ends of the rotating shaft, and the first and second stages. An intercooler provided between the two compression stages,
In a multi-stage compressor capable of switching between a load operation and a no-load operation, first and second branch paths are provided downstream of the impeller and downstream of the intercooler on the downstream side, and the discharge side of the compressor is provided. Is provided with pressure detecting means for detecting the discharge pressure, and operation control means for switching between load operation and no-load operation based on the output of the pressure detecting means is provided, and connects between the first and second branch paths. A multi-stage compressor, wherein the merging channel is formed by connecting the merging channel and the high-speed motor to form a flow passage through which the cooling gas flows through the magnetic bearing.
JP24444896A 1996-09-17 1996-09-17 Multistage compressor Expired - Fee Related JP3425308B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24444896A JP3425308B2 (en) 1996-09-17 1996-09-17 Multistage compressor
US08/921,604 US5980218A (en) 1996-09-17 1997-09-02 Multi-stage compressor having first and second passages for cooling a motor during load and non-load operation
CH02182/97A CH695869A5 (en) 1996-09-17 1997-09-16 Multilevel, switchable between load and idling compressor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24444896A JP3425308B2 (en) 1996-09-17 1996-09-17 Multistage compressor

Publications (2)

Publication Number Publication Date
JPH1089296A true JPH1089296A (en) 1998-04-07
JP3425308B2 JP3425308B2 (en) 2003-07-14

Family

ID=17118811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24444896A Expired - Fee Related JP3425308B2 (en) 1996-09-17 1996-09-17 Multistage compressor

Country Status (3)

Country Link
US (1) US5980218A (en)
JP (1) JP3425308B2 (en)
CH (1) CH695869A5 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060073A1 (en) * 2006-11-17 2008-05-22 Kturbo, Inc. Blow off system for turbo compressor
WO2010044493A1 (en) 2008-10-13 2010-04-22 Kturbo, Inc. Blow-off system for multi-stage turbo compressor
JP2012026436A (en) * 2010-07-20 2012-02-09 Hamilton Sundstrand Corp Compressor and cooling method thereof
JP2012522934A (en) * 2009-04-07 2012-09-27 マン・ディーゼル・アンド・ターボ・エスイー Compressor assembly
KR101319192B1 (en) * 2011-06-22 2013-10-16 미우라고교 가부시키카이샤 Steam driven compressor
WO2015121945A1 (en) * 2014-02-13 2015-08-20 三菱重工業株式会社 Multi-stage electrically-powered centrifugal compressor
KR20170056068A (en) * 2015-11-12 2017-05-23 현대중공업 주식회사 Gas Compressor Systems
WO2017212713A1 (en) * 2016-06-07 2017-12-14 株式会社Ihi Rotary machine
KR20190042464A (en) * 2017-10-16 2019-04-24 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Device and process of compression
KR20190042463A (en) * 2017-10-16 2019-04-24 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Compression device and process and refrigeration machine
JP2019525064A (en) * 2016-08-05 2019-09-05 ダイキン アプライド アメリカズ インコーポレィティッド Centrifugal compressor, impeller gap amount controller of centrifugal compressor, and impeller gap amount control method of centrifugal compressor
JP2019190350A (en) * 2018-04-24 2019-10-31 北越工業株式会社 Operation control method for oil-cooled type screw compressor and oil-cooled type screw compressor
KR20210092032A (en) * 2020-01-15 2021-07-23 엘지전자 주식회사 Compressor and Chiller including the same
JP2022507210A (en) * 2018-11-13 2022-01-18 サーモダイン・エスエイエス Inertial filter for integrated motor compressor unit

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530757B1 (en) * 1999-07-15 2005-11-23 삼성테크윈 주식회사 Turbo compressor
EP1074746B1 (en) * 1999-07-16 2005-05-18 Man Turbo Ag Turbo compressor
JP3370046B2 (en) * 2000-03-30 2003-01-27 三洋電機株式会社 Multi-stage compressor
BE1013692A3 (en) * 2000-09-19 2002-06-04 Atlas Copco Airpower Nv HIGH PRESSURE, multi-stage centrifugal compressor.
DE10120947A1 (en) * 2001-04-22 2002-10-24 Daimler Chrysler Ag Fuel cell air supply device has electrically-driven low-pressure compressor in series with high-pressure compressor with turbine for energy recovery
US6644400B2 (en) * 2001-10-11 2003-11-11 Abi Technology, Inc. Backwash oil and gas production
JP2004036569A (en) * 2002-07-05 2004-02-05 Minebea Co Ltd Serial fan device
US9644633B2 (en) * 2003-04-11 2017-05-09 Thermodyn Centrifugal motor-compressor unit
WO2005003580A1 (en) * 2003-07-04 2005-01-13 Mitsubishi Denki Kabushiki Kaisha Magnetic bearing device
AU2004284018C1 (en) * 2003-10-28 2010-10-07 Ibex Industries Limited Powered hand tool
DE102004023148A1 (en) * 2004-05-07 2005-11-24 Atlas Copco Energas Gmbh Turbomachinery for low temperature applications
US8075668B2 (en) 2005-03-29 2011-12-13 Dresser-Rand Company Drainage system for compressor separators
DE102005039033B3 (en) * 2005-08-18 2006-11-02 Atlas Copco Energas Gmbh Turbo machine for low temperature application, has control valve that is provided in pressure gas inlet pipe for controlling volume of gas flow in dependence of temperatures arising in cold and warm zones
FR2896101B1 (en) * 2006-01-10 2008-04-18 Mecanique Magnetique Sa Soc D DEVICE FOR FILTERING PARTICLES IN A ROTATING MACHINE WITH ACTIVE MAGNETIC BEARINGS
EP1984628B1 (en) * 2006-02-13 2014-12-17 Ingersoll-Rand Company Multi-stage compression system and method of operating the same
EP2063978B1 (en) 2006-09-19 2014-07-09 Dresser-Rand Company Rotary separator drum seal
CA2663531C (en) 2006-09-21 2014-05-20 William C. Maier Separator drum and compressor impeller assembly
BRPI0717087B1 (en) 2006-09-25 2018-10-16 Dresser Rand Co connector spool system for connecting a first component and a second component of an industrial compression system
BRPI0717090A8 (en) 2006-09-25 2017-09-12 Dresser Rand Co COMPRESSOR ASSEMBLY SYSTEM
CA2663751C (en) 2006-09-25 2015-01-27 William C. Maier Access cover for pressurized connector spool
BRPI0717088B1 (en) 2006-09-25 2019-10-29 Dresser Rand Co coupling protection system
WO2008039446A2 (en) 2006-09-25 2008-04-03 Dresser-Rand Company Fluid deflector for fluid separator devices
EP2415507A1 (en) 2006-09-26 2012-02-08 Dresser-Rand Company Improved static fluid separator device
US8047809B2 (en) * 2007-04-30 2011-11-01 General Electric Company Modular air compression apparatus with separate platform arrangement
US8408879B2 (en) 2008-03-05 2013-04-02 Dresser-Rand Company Compressor assembly including separator and ejector pump
US7922218B2 (en) 2008-06-25 2011-04-12 Dresser-Rand Company Shear ring casing coupler device
US8062400B2 (en) 2008-06-25 2011-11-22 Dresser-Rand Company Dual body drum for rotary separators
US8079805B2 (en) 2008-06-25 2011-12-20 Dresser-Rand Company Rotary separator and shaft coupler for compressors
IT1392796B1 (en) * 2009-01-23 2012-03-23 Nuovo Pignone Spa REVERSIBLE GAS INJECTION AND EXTRACTION SYSTEM FOR ROTARY FLUID MACHINES
GB2469015B (en) * 2009-01-30 2011-09-28 Compair Uk Ltd Improvements in multi-stage centrifugal compressors
US8087901B2 (en) 2009-03-20 2012-01-03 Dresser-Rand Company Fluid channeling device for back-to-back compressors
US8210804B2 (en) 2009-03-20 2012-07-03 Dresser-Rand Company Slidable cover for casing access port
US8061972B2 (en) 2009-03-24 2011-11-22 Dresser-Rand Company High pressure casing access cover
EP2284399A1 (en) * 2009-07-08 2011-02-16 Siemens Aktiengesellschaft A cooling device and a system thereof
BR112012005866B1 (en) 2009-09-15 2021-01-19 Dresser-Rand Company apparatus for separating a fluid and method for separating a component of higher specific weight from a component of lower specific weight of a fluid
TW201128071A (en) * 2010-02-03 2011-08-16 Qiu Jun Teng Frequency variable circuit for changing operation mode of electromagnetic pump and electromagnetic pump
EP2533905B1 (en) 2010-02-10 2018-07-04 Dresser-Rand Company Separator fluid collector and method
US8807970B2 (en) * 2010-02-26 2014-08-19 Flowserve Management Company Cooling system for a multistage electric motor
US8673159B2 (en) 2010-07-15 2014-03-18 Dresser-Rand Company Enhanced in-line rotary separator
WO2012009159A2 (en) 2010-07-15 2012-01-19 Dresser-Rand Company Radial vane pack for rotary separators
WO2012012018A2 (en) 2010-07-20 2012-01-26 Dresser-Rand Company Combination of expansion and cooling to enhance separation
WO2012012143A2 (en) 2010-07-21 2012-01-26 Dresser-Rand Company Multiple modular in-line rotary separator bundle
WO2012033632A1 (en) 2010-09-09 2012-03-15 Dresser-Rand Company Flush-enabled controlled flow drain
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
WO2013109235A2 (en) 2010-12-30 2013-07-25 Dresser-Rand Company Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems
WO2012138545A2 (en) 2011-04-08 2012-10-11 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics
EP2715167B1 (en) 2011-05-27 2017-08-30 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems
CN103206378B (en) * 2012-01-11 2015-10-07 复盛股份有限公司 Multistage heat pump compressor
US8925197B2 (en) 2012-05-29 2015-01-06 Praxair Technology, Inc. Compressor thrust bearing surge protection
US9509183B2 (en) * 2013-07-19 2016-11-29 General Electric Company Rotor with non-cylindrical surface for dynamoelectric machine
CN103727043B (en) * 2014-01-03 2016-05-04 杭州万辰机电科技有限公司 The method of two stage centrifugal compressor and the static-pressure air bearing air feed to described two stage centrifugal compressor
EP3108188B1 (en) 2014-02-17 2020-08-12 Carrier Corporation Vapour compression system
US11421696B2 (en) 2014-12-31 2022-08-23 Ingersoll-Rand Industrial U.S., Inc. Multi-stage compressor with single electric direct drive motor
US10697472B2 (en) 2015-12-22 2020-06-30 Mitsubishi Heavy Industries Compressor Corporation Centrifugal compressor
US11035382B2 (en) * 2017-08-25 2021-06-15 Trane International Inc. Refrigerant gas cooling of motor and magnetic bearings
US10527174B2 (en) * 2017-08-25 2020-01-07 Trane International Inc. Variable orifice flow control device
US11201524B2 (en) * 2019-06-26 2021-12-14 Hamilton Sundstrand Corporation Motor cooling systems
CN112483430A (en) 2019-09-12 2021-03-12 开利公司 Centrifugal compressor and refrigeration device
US11923746B2 (en) * 2020-01-30 2024-03-05 Carrier Corporation Magnetic bearing cooling management
US20220220976A1 (en) * 2021-01-12 2022-07-14 Emerson Climate Technologies, Inc. Cooling system for centrifugal compressor and refrigeration system including same
US11661954B2 (en) * 2021-09-08 2023-05-30 Hamilton Sundstrand Corporation Cabin air compressor with bleed scoop and removable bleed duct filter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921446A (en) * 1956-11-02 1960-01-19 Carrier Corp Refrigeration machine
US3022638A (en) * 1959-05-06 1962-02-27 Carrier Corp Controls for refrigeration apparatus
US3232074A (en) * 1963-11-04 1966-02-01 American Radiator & Standard Cooling means for dynamoelectric machines
US3748065A (en) * 1970-06-08 1973-07-24 K Pilarczyk Gas compressor construction
US3744935A (en) * 1971-10-07 1973-07-10 Crane Co Cooling systems for motor driven pumps and the like
US3802795A (en) * 1972-04-19 1974-04-09 Worthington Cei Multi-stage centrifugal compressor
US4141708A (en) * 1977-08-29 1979-02-27 Carrier Corporation Dual flash and thermal economized refrigeration system
US4554799A (en) * 1984-10-29 1985-11-26 Vilter Manufacturing Corporation Multi-stage gas compressor system and desuperheater means therefor
JP2670091B2 (en) * 1988-06-22 1997-10-29 ハウス食品株式会社 Method for producing purine base-containing raw material
JP3143986B2 (en) * 1991-10-14 2001-03-07 株式会社日立製作所 Single shaft multi-stage centrifugal compressor
US5664939A (en) * 1995-07-31 1997-09-09 Taco, Inc. Circulator pump check valve

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060073A1 (en) * 2006-11-17 2008-05-22 Kturbo, Inc. Blow off system for turbo compressor
WO2010044493A1 (en) 2008-10-13 2010-04-22 Kturbo, Inc. Blow-off system for multi-stage turbo compressor
JP2012522934A (en) * 2009-04-07 2012-09-27 マン・ディーゼル・アンド・ターボ・エスイー Compressor assembly
US9261102B2 (en) 2009-04-07 2016-02-16 Man Diesel & Turbo Se Compressor arrangement
JP2012026436A (en) * 2010-07-20 2012-02-09 Hamilton Sundstrand Corp Compressor and cooling method thereof
KR101319192B1 (en) * 2011-06-22 2013-10-16 미우라고교 가부시키카이샤 Steam driven compressor
US10683874B2 (en) 2014-02-13 2020-06-16 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Multi-stage electric centrifugal compressor
WO2015121945A1 (en) * 2014-02-13 2015-08-20 三菱重工業株式会社 Multi-stage electrically-powered centrifugal compressor
KR20170056068A (en) * 2015-11-12 2017-05-23 현대중공업 주식회사 Gas Compressor Systems
WO2017212713A1 (en) * 2016-06-07 2017-12-14 株式会社Ihi Rotary machine
JP2017219246A (en) * 2016-06-07 2017-12-14 株式会社Ihi Rotary machine
JP2019525064A (en) * 2016-08-05 2019-09-05 ダイキン アプライド アメリカズ インコーポレィティッド Centrifugal compressor, impeller gap amount controller of centrifugal compressor, and impeller gap amount control method of centrifugal compressor
US10724546B2 (en) 2016-08-05 2020-07-28 Daikin Applied Americas Inc. Centrifugal compressor having a casing with an adjustable clearance and connections for a variable flow rate cooling medium, impeller clearance control apparatus for centrifugal compressor, and impeller clearance control method for centrifugal compressor
KR20190042464A (en) * 2017-10-16 2019-04-24 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Device and process of compression
KR20190042463A (en) * 2017-10-16 2019-04-24 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Compression device and process and refrigeration machine
JP2019190350A (en) * 2018-04-24 2019-10-31 北越工業株式会社 Operation control method for oil-cooled type screw compressor and oil-cooled type screw compressor
JP2022507210A (en) * 2018-11-13 2022-01-18 サーモダイン・エスエイエス Inertial filter for integrated motor compressor unit
KR20210092032A (en) * 2020-01-15 2021-07-23 엘지전자 주식회사 Compressor and Chiller including the same

Also Published As

Publication number Publication date
CH695869A5 (en) 2006-09-29
US5980218A (en) 1999-11-09
JP3425308B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
JPH1089296A (en) Multistage compressor
US20220113065A1 (en) Ejector Cycle
JP6087744B2 (en) refrigerator
EP3940315A1 (en) Refrigeration device unit, heat source unit, and refrigeration device
JP2006292356A (en) High performance heat pump
US20070186581A1 (en) Compressor cooling system
US8336324B2 (en) Turbo chiller and control method therefor
US10920760B2 (en) Air compressor having an oil separator, an oil cooler, first and second evaporators, and wherein intake air and the oil are simultaneously cooled in the first and second evaporators
KR100200087B1 (en) Cooling cycle of two-stage centrifugal compressor
US5960642A (en) Refrigerating cycle system for a refrigerator
CN103842743B (en) Heat pump
JPH05223366A (en) Method and device for recovering oil in centrifugal deep freezing system
CN103994595A (en) Turbine chiller
CN110260553A (en) The control method of air conditioner and air conditioner
JP6097109B2 (en) Turbo refrigerator
JP2003021406A (en) Refrigeration unit
JP2007032857A (en) Refrigerating device
JP4626380B2 (en) Internal combustion engine driven heat pump air conditioner
JP6096551B2 (en) Turbo refrigerator
JP5465491B2 (en) Air conditioner
JP2014190562A (en) Refrigeration cycle and cooling device
CN112781104B (en) Fresh air assembly, air conditioning system and control method of air conditioning system
JP2006177598A (en) Refrigerating cycle device
KR102486269B1 (en) Air conditioner including heat storage tank and a method controlling the same
KR102556958B1 (en) Air conditioning system for vehicles with improving energy efficiency

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees