JPH1087378A - Production of porous ceramic formed article - Google Patents

Production of porous ceramic formed article

Info

Publication number
JPH1087378A
JPH1087378A JP8241713A JP24171396A JPH1087378A JP H1087378 A JPH1087378 A JP H1087378A JP 8241713 A JP8241713 A JP 8241713A JP 24171396 A JP24171396 A JP 24171396A JP H1087378 A JPH1087378 A JP H1087378A
Authority
JP
Japan
Prior art keywords
molded product
water
parts
coal ash
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8241713A
Other languages
Japanese (ja)
Inventor
Yuzo Aido
勇三 相戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8241713A priority Critical patent/JPH1087378A/en
Publication of JPH1087378A publication Critical patent/JPH1087378A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1352Fuel ashes, e.g. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6309Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a porous lightweight heat resistant ceramic formed article at a low cost. SOLUTION: A ceramic stock compsn. contg. coal ash, an inorg. binder such as aluminum prim. phosphate or sodium silicate and a water-soluble alkali or alkali metallic halide, preferably sodium chloride as essential components or further contg. a hardening regulator such as alumina is preformed and fired at 300-600 deg.C to from a cermaic formed body. The water-soluble halide is then leached from the ceramic formed body by treatment with water or an aq. soln. to produce the objective porous lightweight ceramic formed body excellent in heat and sound insulating properties, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質セラミック
ス成形物の製造方法に関するものであり、さらに詳細に
は、産業廃棄物として大量に排出される石炭灰を有効活
用でき、しかも、耐熱性、機械的性質等も良好でかつ優
れた軽量性を有する多孔質セラミックス成形物を低コス
トで製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous ceramic molded product, and more particularly, to a method for effectively utilizing coal ash discharged as a large amount of industrial waste, and furthermore, has a high heat resistance. The present invention relates to a method for producing a porous ceramic molded product having good mechanical properties and excellent lightness at low cost.

【0002】[0002]

【従来の技術】火力発電用エネルギー源として、石炭が
大量に用いられており、その燃え滓である石炭灰も大量
に排出されている。
2. Description of the Related Art A large amount of coal is used as an energy source for thermal power generation, and a large amount of coal ash, which is the slag, is also discharged.

【0003】石炭灰の中で、特に微細なフライアッシュ
がある。フライアッシュは火力発電所等で微粉炭を燃焼
した際に生じた、石炭灰が溶融しそれが高温燃焼ガスと
共に煙道へ運ばれる途中で急激に冷やされ、表面張力に
よってガラス質の球状の微細粒子となったものである。
これが自己水和作用が有することから、一部のフライア
ッシュはフライアッシュセメントとして利用されてい
る。
[0003] Among the coal ash, there is particularly fine fly ash. Fly ash is produced when pulverized coal is burned at a thermal power plant, etc., where coal ash is melted and rapidly cooled while being transported to the flue along with high-temperature combustion gas. It has become particles.
Since this has a self-hydrating action, some fly ash is used as fly ash cement.

【0004】フライアッシュセメントは、ポルトランド
セメントと同じように水和反応によって凝結する。しか
しながら、500℃以上に加熱すると、セメント凝結物
中の結晶水が離脱することから、機械的強度は著しく低
下してしまう。
[0004] Like flyland cement, fly ash cement sets by a hydration reaction. However, when heated to 500 ° C. or higher, water of crystallization in the cement condensate is released, and the mechanical strength is significantly reduced.

【0005】一方、石炭灰をポルトランドセメントや水
ガラス等の無機バインダーやポリビニルアルコール等の
有機バインダーと混合した後、高温で焼結してセラミッ
クス状の成形物を得ることも知られているが、この方法
では高い焼結温度を必要とするため、エネルギー面での
不利は免れない。
[0005] On the other hand, it is also known that coal ash is mixed with an inorganic binder such as Portland cement or water glass or an organic binder such as polyvinyl alcohol, and then sintered at a high temperature to obtain a ceramic-like molded product. Since this method requires a high sintering temperature, disadvantages in terms of energy are inevitable.

【0006】この問題を解決する手段として、フライア
ッシュ等の石炭灰に、第1リン酸アルミニウム、水およ
び酸化アルミニウム等の硬化調節剤を混合し、成形およ
び乾燥後、150〜600℃という比較的低温で焼成す
ることによって、耐熱性、機械的特性等に優れたセラミ
ックス成形物を製造する方法が提案されている(第14
回無機高分子研究討論会)。
As a means for solving this problem, coal ash such as fly ash is mixed with a hardening modifier such as aluminum phosphate monobasic, water and aluminum oxide. There has been proposed a method of producing a ceramic molded article having excellent heat resistance, mechanical properties, and the like by firing at a low temperature (No. 14).
Inorganic Polymer Research Symposium).

【0007】この方法によれば、緻密で耐衝撃性の良好
なセラミックス成形物が製造されるが、例えばある種の
建築材料等一部の用途では、多孔質で軽量なセラミック
ス成形物が要求されている。
According to this method, a dense ceramic molded article having good impact resistance is produced. However, for some uses such as certain building materials, a porous and lightweight ceramic molded article is required. ing.

【0008】[0008]

【発明が解決しようとする課題】本発明者は上記の問題
を解決すべく鋭意研究の結果、石炭灰と第1リン酸アル
ミニウム等を主成分とする無機固結剤(バインダー)と
さらに必要に応じて硬化調節剤とを混合した組成物を使
用する場合において、該組成物に、塩化ナトリウム等の
水溶性のアルカリ金属またはアルカリ土類金属のハロゲ
ン化物の少なくとも1種を配合し、特定温度で加熱焼成
してセラミックス成形物とした後、これを水または水溶
液で処理して該成形物から上記水溶性ハロゲン化物を溶
出除去することによって、多孔質の軽量セラミックス成
形物が得られることを見い出だし、本発明に到達した。
SUMMARY OF THE INVENTION The present inventors have conducted intensive studies to solve the above-mentioned problems, and have found that coal ash and an inorganic binder mainly containing aluminum monophosphate and the like are further required. When using a composition mixed with a curing regulator accordingly, at least one of a water-soluble alkali metal or alkaline earth metal halide such as sodium chloride is added to the composition, and at a specific temperature. After heating and sintering to form a ceramic molded article, this is treated with water or an aqueous solution to elute and remove the water-soluble halide from the molded article, thereby obtaining a porous lightweight ceramic molded article. We started and arrived at the present invention.

【0009】[0009]

【課題を解決するための手段】上記の本発明の課題は、
石炭灰、無機固結剤および水溶性のアルカリ金属または
アルカリ土類金属のハロゲン化物の少なくとも1種を均
一に混合してセラミックス原料組成物を調製し、次い
で、型を用いて該組成物を所定の形状に成形した後、こ
れを300〜600℃の温度で焼成してセラミックス成
形物とした後、水または水溶液によって該成形物から上
記水溶性ハロゲン化物を溶解、除去して成形物を多孔質
化することを特徴とする、多孔質セラミックス成形物の
製造方法によって達成される。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
A ceramic raw material composition is prepared by uniformly mixing at least one of coal ash, an inorganic binder, and a water-soluble alkali metal or alkaline earth metal halide, and then the composition is subjected to a predetermined process using a mold. After firing into a ceramic molded article at a temperature of 300 to 600 ° C., the water-soluble halide is dissolved and removed from the molded article with water or an aqueous solution to make the molded article porous. This is achieved by a method for producing a porous ceramic molded product, characterized in that

【0010】この際、石炭灰、無機固結剤並びに水溶性
のアルカリ金属またはアルカリ土類金属のハロゲン化物
からなるセラミックス原料組成物、あるいは、さらに硬
化調節剤を含むセラミックス原料組成物に、石炭灰10
0重量部当り0〜40重量部の水を添加した状態で成形
することが好適である。
At this time, coal ash is added to a ceramic raw material composition comprising coal ash, an inorganic binder and a water-soluble alkali metal or alkaline earth metal halide, or a ceramic raw material composition further containing a hardening modifier. 10
It is preferable to mold with 0 to 40 parts by weight of water added per 0 parts by weight.

【0011】上記の無機固結剤としては、固相の第1リ
ン酸アルミニウム(粉末)または第1リン酸アルミニウ
ムを主成分とする水溶液、あるいは固相の珪酸ナトリウ
ムもしくは珪酸ナトリウムルムを主成分とする水溶液が
好適に使用される。また、上記の水溶性アルカリ金属ま
たはアルカリ土類金属のハロゲン化物としては、塩化ナ
トリウム、塩化カルシウム、塩化マグネシウムまたは臭
化カリウムが用いられ、これらは、組成物調製段階にお
いて平均粒径0.01〜1mmの粉末状または結晶状の
ものであることが好ましい。
The above-mentioned inorganic binder includes a solid phase of primary aluminum phosphate (powder) or an aqueous solution containing primary aluminum phosphate, or a solid phase of sodium silicate or sodium silicate. Aqueous solution is preferably used. As the halide of the water-soluble alkali metal or alkaline earth metal, sodium chloride, calcium chloride, magnesium chloride or potassium bromide is used. Preferably, it is a 1 mm powder or crystal.

【0012】なお、必要に応じてセラミックス原料組成
物に配合する硬化調節剤としては、アルミニウム、亜
鉛、マグネシウムおよびカルシウムから選ばれた少なく
とも1種の金属の酸化物もしくは水酸化物が好適であ
る。
[0012] If necessary, the hardening regulator to be added to the ceramic raw material composition is preferably an oxide or hydroxide of at least one metal selected from aluminum, zinc, magnesium and calcium.

【0013】石炭灰/無機固結剤/アルカリ金属または
アルカリ土類金属のハロゲン化物の配合割合は、石炭灰
100重量部に対し、無機固結剤10〜150重量部、
アルカリ金属またはアルカリ土類金属のハロゲン化物5
〜100重量部とするのが適当であり、また、硬化調節
剤を添加する場合、該硬化調節剤の配合量は、石炭灰1
00重量部に対し1〜20重量部とすることが好まし
い。
The mixing ratio of coal ash / inorganic binder / alkali metal or alkaline earth metal halide is 10 to 150 parts by weight of inorganic binder, 100 parts by weight of coal ash,
Alkali metal or alkaline earth metal halides 5
To 100 parts by weight, and when a curing control agent is added, the amount of the curing control agent should be 1
Preferably, the amount is 1 to 20 parts by weight based on 00 parts by weight.

【0014】[0014]

【発明の実施の形態】本発明方法において使用する石炭
灰は、火力発電所その他の工場から排出される石炭灰が
使用される。これらの石炭灰の中でも「フライアッシ
ュ」と呼ばれる均一で微細な石炭灰が好適に使用され
る。このフライアッシュは火力発電所等で微粉炭を燃焼
した際に生じた石炭灰が溶融し、それが高温燃焼ガスと
共に煙道へ運ばれる途中、急激に冷やされ、表面張力に
よってガラス質の球状の微細粒子となったものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As coal ash used in the method of the present invention, coal ash discharged from a thermal power plant or other factories is used. Among these coal ash, uniform and fine coal ash called “fly ash” is preferably used. This fly ash melts coal ash generated when pulverized coal is burned at a thermal power plant, and is rapidly cooled while being transported to the flue with high-temperature combustion gas. It became fine particles.

【0015】一方、無機固結剤(バインダー)として
は、第1リン酸アルミニウムまたはこれを主体とするも
の、あるいは、珪酸ナトリウムまたはこれを主成分とす
るものが使用される。
On the other hand, as the inorganic binding agent (binder), monobasic aluminum phosphate or a substance mainly composed thereof, or sodium silicate or a substance mainly composed of sodium silicate is used.

【0016】第1リン酸アルミニウムは、化学式、Al
2 3 ・3P2 5 ・6H2 O[すなわち、Al(H2
P04 3 ]で表される水溶性の酸性リン酸塩であり、
多くの場合、水溶液として市販されているが、本発明で
は、この第1リン酸アルミニウムとして、結合水(結晶
水)以外に実質的に水を含まない固相の第1リン酸アル
ミニウム(例えば、粉末状の第1リン酸アルミニウム)
が好ましい。この固相の第1リン酸アルミニウムは、混
合組成物中において石炭灰との反応および加熱による縮
合によって、石炭灰の硬化結合性を発現し、該混合組成
物をセラミックス化させる機能を有する。ただし、本発
明方法では固相のものに限定されず少量の水を含む液状
物も使用可能である。
The first aluminum phosphate has the chemical formula: Al
2 O 3 · 3P 2 0 5 · 6H 2 O [ ie, Al (H 2
P0 4) a water-soluble acid phosphate salt represented by 3],
In many cases, it is commercially available as an aqueous solution. However, in the present invention, the first aluminum phosphate is a solid phase first aluminum phosphate (for example, solid water) substantially free of water other than bound water (crystal water). Powdered primary aluminum phosphate)
Is preferred. The first aluminum phosphate in the solid phase has a function of expressing the hardening property of the coal ash by the reaction with the coal ash and the condensation by heating in the mixed composition, and has a function of converting the mixed composition into a ceramic. However, the method of the present invention is not limited to a solid phase, and a liquid containing a small amount of water can be used.

【0017】また、珪酸ナトリウムは、化学式、Na2
SiO3 で表される珪酸塩で、無水あるいは結晶水を含
む粉末状ないしは結晶状固体として使用される。さら
に、珪酸ナトリウムは水溶液(通常「水ガラス」と称さ
れている)の状態でも使用可能である。
Further, sodium silicate has a chemical formula of Na 2
A silicate represented by SiO 3 , used as a powder or crystalline solid containing anhydrous or water of crystallization. Further, sodium silicate can be used in the form of an aqueous solution (usually called "water glass").

【0018】これらの無機固結剤(バインダー)は、単
独で使用してもよく、上記の両者を併用してもよい。さ
らに必要に応じ、上記無機固結剤にほかにポルトランド
セメント等を添加してもよい。
These inorganic binders (binders) may be used alone or in combination. If necessary, Portland cement or the like may be added to the above-mentioned inorganic binder.

【0019】また、本発明方法では、石炭灰、上記無機
固結剤のほかに、硬化調節剤(固化促進剤)を併用する
ことができ、通常はその方が好ましい。この硬化調節剤
としては、アルミニウム、マグネシウム、鉄、亜鉛、ホ
ウ素、カルシウム等の酸化物が好適であるが、中でもア
ルミナ粉末が特に有効である。また、水酸化アルミニウ
ムや水酸化カルシウム等の水酸化物も好適に使用され
る。
Further, in the method of the present invention, in addition to coal ash and the above-mentioned inorganic binder, a curing regulator (solidification accelerator) can be used in combination, and usually it is preferable. As the curing regulator, oxides such as aluminum, magnesium, iron, zinc, boron, and calcium are suitable, and among them, alumina powder is particularly effective. Also, hydroxides such as aluminum hydroxide and calcium hydroxide are preferably used.

【0020】本発明方法で、セラミックス形成用の混合
組成物における上記各成分の配合割合(重量比)は、石
炭灰=FA,無機固結剤(第1リン酸アルミニウム、珪
酸ナトリウム)=P,水溶性ハロゲン化物(塩化ナトリ
ウム等)=N,硬化調節剤(固化促進剤)=Cとしたと
き、次の範囲が適当である。 FA/P=100/10〜100/150 (好適には100/20〜100 /100) FA/N=100/5〜100/100 (好適には100/20〜100/80) FA/C=100/1〜100/20 (好適には100/5〜100/10)
In the method of the present invention, the blending ratio (weight ratio) of each of the above components in the mixed composition for forming a ceramic is as follows: coal ash = FA, inorganic binder (aluminum monophosphate, sodium silicate) = P, When water-soluble halide (such as sodium chloride) = N and curing regulator (solidification accelerator) = C, the following ranges are appropriate. FA / P = 100 / 10-100 / 150 (preferably 100 / 20-100 / 100) FA / N = 100 / 5-100 / 100 (preferably 100 / 20-100 / 80) FA / C = 100/1 to 100/20 (preferably 100/5 to 100/10)

【0021】本発明では、上記各成分の他に、必要に応
じ、補強用の短繊維やウイスカー等を混合することもで
きる。補強用の繊維としては、ガラス繊維、炭素繊維、
SiC繊維、アラミド繊維、ポリアリレート繊維等が好
適である。また、軽量化を図るためにガラスバブルズ等
の無機軽量粒子を混合することもできる。これらの添加
物の割合は、石炭灰(FA)と無機固結剤(P)と水溶
性ハロゲン化物(N)と硬化調節剤(C)の合計重量
(A+P+N+C)に対し20重量%以下が適当であ
る。
In the present invention, in addition to the above components, short fibers for reinforcement, whiskers, and the like can be mixed as necessary. Glass fiber, carbon fiber,
SiC fibers, aramid fibers, polyarylate fibers and the like are preferred. In addition, inorganic lightweight particles such as glass bubbles can be mixed to reduce the weight. The proportion of these additives is suitably 20% by weight or less based on the total weight (A + P + N + C) of coal ash (FA), inorganic binder (P), water-soluble halide (N), and curing regulator (C). It is.

【0022】上記各成分を混合するには、通常、上記各
成分を乾式または湿式はでよく混合し均質な組成物とす
る。混合段階における多量の水分の存在は、水溶性ハロ
ゲン化物の溶解(溶出)により多孔質化に悪影響を与え
るので、石炭灰100重量部当たり40重量部以下に抑
えるのが好ましい。ただし、常温等の比較的低い温度で
プレス成形して予備成形物を調製する場合は、該成形物
の賦形性を維持するために、少量(好適には石炭灰10
0重量部当たり10〜30重量部)の水分を存在させる
のが適当である。
In order to mix the above components, the above components are usually mixed well in a dry or wet system to obtain a homogeneous composition. Since the presence of a large amount of water in the mixing step adversely affects the porosity due to dissolution (elution) of the water-soluble halide, it is preferable to suppress the amount to 40 parts by weight or less per 100 parts by weight of coal ash. However, when a preform is prepared by press molding at a relatively low temperature such as ordinary temperature, a small amount (preferably coal ash 10) is used in order to maintain the shapeability of the molded product.
It is appropriate to have 10 to 30 parts by weight of water per 0 parts by weight.

【0023】このセラミックス原料組成物は、これを3
0〜180℃、好ましくは80〜100℃、で5分間〜
30時間加熱してプレセラミックス化して使用すること
もできる。このプレセラミックスの形態は粉末状でもペ
レット状でも差支えない。
This ceramic raw material composition is
0 to 180 ° C, preferably 80 to 100 ° C, for 5 minutes to
It can also be used by heating for 30 hours to form a preceramic. The form of the preceramic may be a powder or a pellet.

【0024】本発明の方法によれば、このセラミックス
原料組成物(プレセラミックス化した場合を含む)は、
成形用の型に入れ、常温ないし加熱下で加圧成形(プレ
ス成形)した後、得られた予備成形物を型から取り出し
た後または型に入れたまま、300〜600℃、好まし
くは350〜550℃、の温度で焼成することによっ
て、強靭で耐熱性の優れたセラミックス成形物とするこ
とができる。また、このセラミックス原料組成物を、成
形用の型に入れ1〜500Kg/cm2 、好ましくは1
0〜500Kg/cm2 の圧力で加圧すると同時に上記
温度に加熱焼成することによっても、セラミックス成形
物とすることもできるが、前者の手段を組み合わせるの
が好ましい。
According to the method of the present invention, the ceramic raw material composition (including the case of preceramics)
After being placed in a molding die and subjected to pressure molding (press molding) at room temperature or under heating, the obtained preform is taken out of the mold or kept in the mold at 300 to 600 ° C, preferably 350 to 600 ° C. By firing at a temperature of 550 ° C., a ceramic molded article having toughness and excellent heat resistance can be obtained. Also, the ceramic raw material composition is put in a mold for molding, and 1 to 500 kg / cm 2 , preferably 1 kg / cm 2 .
A ceramic molded article can also be obtained by heating at the same temperature while pressurizing at a pressure of 0 to 500 kg / cm 2 , but it is preferable to combine the former means.

【0025】すなわち、セラミックス原料組成物を成形
用の型に入れて常温または加熱した状態で1〜500K
g/cm2 の圧力で成形して予備成形物となし、この後
でさらに上記の温度で焼成を行うのが特に好適であり、
例えば、セラミックス原料組成物を、成形用の型に入
れ、水分の存在下に1〜500Kg/cm2 の圧力で常
温プレスするか、あるいは100〜300℃に加熱下で
1〜500Kg/cm2の圧力で加熱プレスした予備成
形物を、型から取り出し、あるいは型に入れたまま、さ
らに300〜600℃に加熱焼成してセラミック化させ
ることにより改善された機械的特性と耐熱性とを兼備す
る良好なセラミックス成形物を製造することができる。
焼成時間は30分〜30時間が適当である。
That is, the ceramic raw material composition is placed in a mold for molding at room temperature or in a heated state at 1 to 500 K.
It is particularly preferred to form a preform by molding at a pressure of g / cm 2 , followed by further firing at the above temperature,
For example, a ceramic raw material composition is placed in a mold for molding and pressed at room temperature under a pressure of 1 to 500 kg / cm 2 in the presence of moisture, or 1 to 500 kg / cm 2 under heating to 100 to 300 ° C. The preform obtained by hot pressing under pressure is taken out of the mold or kept in the mold, and is further heated and fired at 300 to 600 ° C. to be ceramicized, thereby having both improved mechanical properties and improved heat resistance. A ceramic molded product can be manufactured.
The firing time is suitably from 30 minutes to 30 hours.

【0026】上記の加圧(プレス)成形においては公知
の圧縮成形の技術を応用することができる。例えば、所
望の形状および寸法の金型を用い、公知の型締め機を用
いて加圧し、加圧した金型を内部加熱あるいは外部加熱
によって上記の温度に保持することによって予備成形物
とすることができる。この加圧成形は、少なくとも10
分間、好ましくは30分〜3時間程度実施するのが適当
である。
In the above-mentioned pressure (press) molding, a known compression molding technique can be applied. For example, using a mold having a desired shape and dimensions, pressurizing using a known mold clamping machine, and keeping the pressurized mold at the above temperature by internal heating or external heating to form a preform. Can be. This pressing is at least 10
Minutes, preferably about 30 minutes to 3 hours.

【0027】なお、水分の存在下に常温またはその付近
で予備成形物を調製した場合は、該予備成型物を80℃
前後に加熱して乾燥後、300〜600℃で加熱焼成す
るのが好ましい。
When a preform is prepared at or near room temperature in the presence of moisture, the preform is heated to 80 ° C.
It is preferable to heat and bake at 300 to 600 ° C. after heating and drying before and after.

【0028】本発明で使用する上記のセラミックス原料
組成物は、従来の方法で使用される原料組成物と異な
り、比較的低温で焼成しても強靭なセラミックス成形物
とすることが可能である。例えば、100℃程度から徐
々に昇温し、最終到達温度300〜600℃、好ましく
は350〜550℃、で0.5〜30時間保持すること
によってセラミックス化し、良好なセラミックス成形物
が製造できる。
The above-mentioned ceramic raw material composition used in the present invention, unlike the raw material composition used in the conventional method, can be formed into a tough ceramic molded product even when fired at a relatively low temperature. For example, the temperature is gradually increased from about 100 ° C., and the final temperature is maintained at 300 to 600 ° C., preferably 350 to 550 ° C., for 0.5 to 30 hours, thereby forming ceramics, thereby producing a good ceramic molded product.

【0029】この焼成の雰囲気は、空気でも不活性ガス
でもよい。かくして、上記のセラミックス原料組成物か
らなる予備成形物は、このような比較的低温の成形/焼
成でも、耐熱性の良好なセラミックス成形品となる。
The firing atmosphere may be air or an inert gas. Thus, the preform made of the above ceramic raw material composition becomes a ceramic molded product having good heat resistance even at such relatively low temperature forming / firing.

【0030】しかるに、焼成温度が600℃を越える
と、後述する溶出工程で焼成後のセラミックス成形物か
ら水溶性ハロゲン化物を溶解・除去することが困難とな
り、本発明で目的とする多孔質成形物が製造できない。
However, when the firing temperature exceeds 600 ° C., it becomes difficult to dissolve and remove the water-soluble halide from the fired ceramic molded product in the elution step described below, and the porous molded product intended in the present invention is not used. Cannot be manufactured.

【0031】本発明の方法では、上記のごとく焼成して
得たハロゲン化物含有セラミックス成形物を、さらに、
水または水溶液で処理し、該セラミックス成形物から上
記の水溶性ハロゲン化物を溶解・除去(溶出)し、該セ
ラミックス成形物を多孔質化させる。
In the method of the present invention, the halide-containing ceramic molded product obtained by firing as described above is further subjected to
By treating with water or an aqueous solution, the water-soluble halide is dissolved and removed (eluted) from the ceramic molded product to make the ceramic molded product porous.

【0032】この溶出処理は、常温でも可能であるが、
セラミックス成形物を25〜100℃の温水中で処理す
ることによって、さらに効率的に実施することができ、
通常は温水浴中に該セラミックス成形物を浸漬し、液を
撹拌することによって実施される。
This elution treatment can be performed at room temperature.
By treating the ceramic molded product in warm water at 25 to 100 ° C., it can be more efficiently performed,
Usually, it is carried out by immersing the ceramic molded article in a warm water bath and stirring the liquid.

【0033】かくして、セラミックス成形物中の水溶性
ハロゲン化物が溶出されて、低比重の多孔質セラミック
ス成形物が製造される。
Thus, the water-soluble halide in the ceramic molded product is eluted to produce a porous ceramic molded product having a low specific gravity.

【0034】[0034]

【実施例】次に、本発明方法の実施例および比較例を説
明するが、これらは本発明の理解を助けるためのもので
あって、これらによって本発明の範囲が限定されるもの
ではない。なお、例中の「部」はとくに断らない限り、
重量部を意味する。
EXAMPLES Next, examples and comparative examples of the method of the present invention will be described, but these are intended to help the understanding of the present invention, and do not limit the scope of the present invention. Unless otherwise noted, "parts" in the examples
Means parts by weight.

【0035】[実施例1]火力発電所の石炭灰として得
られるフライアッシュ100部に、塩化ナトリウム60
部、粉末状第1リン酸アルミニウム系無機固結剤(多木
化学株式会社製「第1リン酸アルミニウム100P」)
70部および硬化調節剤としてのアルミナ粉末10部を
混合して均質なセラミックス原料組成物を調製した。
[Example 1] Sodium chloride 60 was added to 100 parts of fly ash obtained as coal ash from a thermal power plant.
Part, powdered monobasic aluminum phosphate inorganic binder ("Aluminum monophosphate 100P" manufactured by Taki Chemical Co., Ltd.)
70 parts and 10 parts of alumina powder as a curing regulator were mixed to prepare a homogeneous ceramic raw material composition.

【0036】この原料組成物を、内寸125mm×15
0mmの金型に入れ、300℃に加熱した型締め機で面
圧300Kg/cm2 で120分間保持して、熱圧成形
(プレス成形)を行った。
This raw material composition was prepared with an inner size of 125 mm × 15
It was placed in a 0 mm mold and held at a surface pressure of 300 kg / cm 2 for 120 minutes by a mold clamping machine heated to 300 ° C. to perform hot press molding (press molding).

【0037】冷却後、金型から取り出して得られたパネ
ル形状のセラミックス成形物(成形板)は固くて緻密な
構造を有し、その見掛け比重は1.60、曲げ強度(3
点曲げ)は248Kg/cm2 、曲げ弾性率は214T
on/cm2 であった。
After cooling, the panel-shaped ceramic molded product (molded plate) obtained by taking out from the mold has a hard and dense structure, an apparent specific gravity of 1.60 and a bending strength (3).
Point bending) is 248 kg / cm 2 , and the flexural modulus is 214 T.
on / cm 2 .

【0038】次いで、このセラミックス成形物を、70
℃の温水浴中に入れ、撹拌下5時間浸漬し、該成形物中
の塩化ナトリウムを溶出した後、加熱乾燥した。その結
果、見掛け比重1.20の多孔質セラミックス成形物
(成形板)が得られた。この見掛け比重の減少は、原料
組成物に配合した塩化ナトリウムの量に対応した。
Next, this ceramic molded product was
The molded product was immersed in a warm water bath at a temperature of 5 ° C. for 5 hours with stirring to elute sodium chloride in the molded product, and then dried by heating. As a result, a porous ceramic molded product (molded plate) having an apparent specific gravity of 1.20 was obtained. This decrease in apparent specific gravity corresponded to the amount of sodium chloride added to the raw material composition.

【0039】得られた多孔質セラミックス成形物の曲げ
強度は53Kg/cm2 、曲げ弾性率は62Ton/c
2 であった。なお、この多孔質セラミックス成形物の
断面を電子顕微鏡で観察したところ、塩化ナトリウムの
結晶に対応する微小な立方体の形状をした空洞が観察さ
れ、多孔質構造であることが確認された。
The resulting porous ceramic molded article had a flexural strength of 53 Kg / cm 2 and a flexural modulus of 62 Ton / c.
m 2 . When the cross section of this porous ceramics molded article was observed with an electron microscope, microscopic cubic cavities corresponding to the crystals of sodium chloride were observed, confirming that the porous ceramics had a porous structure.

【0040】[実施例2]実施例1と同じフライアッシ
ュ100部に、臭化ナトリウム60部、粉末状第1リン
酸アルミニウム系固結剤(多木化学株式会社製「第1リ
ン酸アルミニウム100P」)70部および硬化調節剤
としてのアルミナ粉末10部を均質に混合し、得られた
原料組成物を実施例1と同じサイズの金型に入れ、30
0℃に加熱した型締め機を用いて、面圧50Kg/cm
2 に90分間保持して、熱圧成形を実施した。その後、
120分間300℃での加熱を継続し、冷却後に、金型
から取り出してパネル形状のセラミックス成形物を得
た。この成形物の見掛け比重は1.67であった。
Example 2 The same fly ash as in Example 1 was mixed with 100 parts of fly ash, 60 parts of sodium bromide, and a powdered monobasic aluminum phosphate-based binder (“Aluminum monophosphate 100P” manufactured by Taki Kagaku Co., Ltd.). ") 70 parts and 10 parts of alumina powder as a curing regulator were mixed homogeneously, and the obtained raw material composition was placed in a mold having the same size as that of Example 1;
Using a mold clamper heated to 0 ° C, surface pressure 50Kg / cm
2 was held for 90 minutes to perform hot pressing. afterwards,
Heating at 300 ° C. was continued for 120 minutes, and after cooling, the product was taken out of the mold to obtain a panel-shaped ceramic molded product. The apparent specific gravity of this molded product was 1.67.

【0041】この成形物を実施例1と同様に温水浸漬処
理を行ったところ、見掛け比重1.24の多孔質セラミ
ックス成形物(成形板)を得た。この多孔質成形物の曲
げ強度は81Kg/cm2 、曲げ弾性率は69Ton/
cm2 であった。
This molded product was subjected to hot water immersion in the same manner as in Example 1 to obtain a porous ceramic molded product (molded plate) having an apparent specific gravity of 1.24. The flexural strength of this porous molded product was 81 kg / cm 2 , and the flexural modulus was 69 Ton /
cm 2 .

【0042】[実施例3]実施例1と同じフライアッシ
ュ100部に、塩化ナトリウム50部、粉末状第1リン
酸アルミニウム系固結剤(多木化学株式会社製「第1リ
ン酸アルミニウム100P」)30部、硬化調節剤とし
てのアルミナ粉末10部および水21部(全組成物に対
して10重量%に相当)を混合して均質なセラミックス
原料組成物とした。
Example 3 In 100 parts of fly ash as in Example 1, 50 parts of sodium chloride and a powdered aluminum phosphate monobasic binder ("Aluminum monophosphate 100P" manufactured by Taki Kagaku Co., Ltd.) 30), 10 parts of alumina powder as a curing regulator and 21 parts of water (corresponding to 10% by weight with respect to the total composition) were mixed to obtain a homogeneous ceramic raw material composition.

【0043】この原料組成物を、実施例1と同様の金型
に入れ、常温で30Kg/cm2 ので面圧で15分間プ
レス成形を行った後、金型から取り出して、80℃で1
20分間予備乾燥後、電気炉の中で100℃から300
℃まで昇温、加熱して焼成を行った。得られたセラミッ
クス成形物の見掛け比重は1.39であった。
This raw material composition was placed in a mold similar to that in Example 1, press-molded at room temperature at 30 kg / cm 2 at a surface pressure for 15 minutes, taken out of the mold, and heated at 80 ° C. for 1 minute.
After pre-drying for 20 minutes, 100-300 ° C in an electric furnace
The temperature was raised to 0 ° C. and heated to fire. The apparent specific gravity of the obtained ceramic molded product was 1.39.

【0044】この成形物を、70℃の温水浴に浸漬し
て、該成形物中の塩化ナトリウムを溶出した後、乾燥し
て得られた成形物は、見掛け比重1.03であり、多孔
質化していることを確認した。また、この多孔質セラミ
ックス成形物の曲げ特性を測定したところ、曲げ強度は
20Kg/cm2 、曲げ弾性率は27Ton/cm2
あった。
The molded product was immersed in a warm water bath at 70 ° C. to elute sodium chloride in the molded product, and then dried to obtain a molded product having an apparent specific gravity of 1.03. Confirmed that Moreover, the bending properties of the porous ceramic molded article was measured, the flexural strength 20 Kg / cm 2, a flexural modulus of 27Ton / cm 2.

【0045】[実施例4]実施例1と同じフライアッシ
ュ100部に、塩化ナトリウム50部、無機固結剤とし
て化粉末状第1リン酸アルミニウム系固結剤(多木化学
株式会社製「第1リン酸アルミニウム100P」)1.
5部および液状第1リン酸アルミニウム系固結剤(多木
化学株式会社製「アシドホス120M」57.0部[水
分28.5部を含む])そして硬化調節剤として水和ア
ルミナ10部を混合して均質なセラミックス原料組成物
を調製した。
Example 4 100 parts of fly ash as in Example 1, 50 parts of sodium chloride, and a powdered monobasic aluminum phosphate-based binder as an inorganic binder ("Taki Kagaku Co., Ltd." Aluminum monophosphate 100P ") 1.
5 parts of a liquid monobasic aluminum phosphate-based binder (57.0 parts of "Acidophos 120M" manufactured by Taki Kagaku Co., Ltd. [including 28.5 parts of water]) and 10 parts of hydrated alumina as a curing regulator Thus, a homogeneous ceramic raw material composition was prepared.

【0046】この原料組成物を、実施例1と同じサイズ
の金型に入れ、常温で50Kg/cm2 ので面圧で15
分間プレス成形を行った後、金型から取り出して、予備
乾燥した後、300℃で焼成を行った。得られたセラミ
ックス成形物の見掛け比重は1.44であった。
This raw material composition was placed in a mold having the same size as in Example 1, and at room temperature, 50 kg / cm 2 and a surface pressure of 15 kg.
After press-molding for minutes, it was taken out of the mold, pre-dried, and fired at 300 ° C. The apparent specific gravity of the obtained ceramic molded product was 1.44.

【0047】この成形物を、70℃の温水浴に浸漬し
て、該成形物中の塩化ナトリウムを溶出した後乾燥して
得られた成形物は、見掛け比重1.07であり、多孔質
化していることを確認した。
The molded product was immersed in a warm water bath at 70 ° C. to elute sodium chloride in the molded product, and then dried to obtain a molded product having an apparent specific gravity of 1.07. Confirmed that.

【0048】この多孔質セラミックス成形物の曲げ強度
は17Kg/cm2 、曲げ弾性率は17Ton/cm2
であった。
The flexural strength of this porous ceramic molded product was 17 kg / cm 2 and the flexural modulus was 17 Ton / cm 2.
Met.

【0049】[実施例5]実施例1と同じフライアッシ
ュ100部に、塩化ナトリウム50部、無機固結剤とし
て粉末状珪酸ナトリウム結晶(無水物)50部、硬化調
節剤としてアルミナ10部および水23.3部(全組成
物中10重量%に相当)を混合して均質なセラミックス
原料組成物を調製した。
Example 5 100 parts of fly ash as in Example 1, 50 parts of sodium chloride, 50 parts of powdery sodium silicate crystal (anhydride) as an inorganic binder, 10 parts of alumina as a curing regulator and water 23.3 parts (corresponding to 10% by weight of the total composition) were mixed to prepare a homogeneous ceramic raw material composition.

【0050】この原料組成物を、実施例1と同じサイズ
の金型に入れ、100℃に加熱した型締め機を用いて、
面圧50Kg/cm2 で60分間プレス成形を行った
後、金型から取り出して、500℃の電気炉で焼成を行
い、見掛け比重1.35のセラミックス成形物を得た。
This raw material composition was placed in a mold having the same size as in Example 1, and was heated to 100 ° C. using a mold clamping machine.
After press molding at a surface pressure of 50 kg / cm 2 for 60 minutes, the molded product was taken out of the mold and fired in an electric furnace at 500 ° C. to obtain a ceramic molded product having an apparent specific gravity of 1.35.

【0051】この成形物を、60〜70℃の温水浴に浸
漬して、該成形物中の塩化ナトリウムを溶出し、乾燥し
て得られた成形物の見掛け比重は0.95で、多孔質化
していることが確認された。
The molded product is immersed in a warm water bath at 60 to 70 ° C. to elute sodium chloride in the molded product, and the molded product obtained by drying has an apparent specific gravity of 0.95 and is porous. Has been confirmed.

【0052】この多孔質セラミックス成形物の曲げ強度
は103Kg/cm2 、曲げ弾性率は60Ton/cm
2 と良好な物性を示した。
The flexural strength of this porous ceramic molded product was 103 kg / cm 2 , and the flexural modulus was 60 Ton / cm.
2 showed good physical properties.

【0053】[実施例6]実施例1と同じフライアッシ
ュ100部に、塩化ナトリウム50部、珪酸ナトリウム
(無水物)50部および水36.3部(全組成物中1
5.4重量%に相当)を混合して均質なセラミックス原
料組成物を調製した。
Example 6 To 100 parts of fly ash as in Example 1, 50 parts of sodium chloride, 50 parts of sodium silicate (anhydride) and 36.3 parts of water (1 part in the total composition)
(Equivalent to 5.4% by weight) to prepare a homogeneous ceramic raw material composition.

【0054】この原料組成物を、実施例1と同様の金型
に入れ、常温で、50Kg/cm2の面圧で60分間プ
レス成形した後、さらに500℃で焼成を行い、見掛け
比重1.45のセラミックス成形物を得た。
This raw material composition was placed in the same mold as in Example 1, press-molded at room temperature at a surface pressure of 50 Kg / cm 2 for 60 minutes, and then calcined at 500 ° C. to give an apparent specific gravity of 1. Forty-five ceramic moldings were obtained.

【0055】この成形物を、70℃の温水浴に浸漬し
て、該成形物中の塩化ナトリウムを溶出し、乾燥して得
られた成形物の見掛け比重は1.02で、多孔質化して
いることが確認された。
This molded product is immersed in a warm water bath at 70 ° C. to elute sodium chloride in the molded product, and the molded product obtained by drying has an apparent specific gravity of 1.02 and is porous. It was confirmed that.

【0056】この多孔質セラミックス成形物の曲げ強度
は137Kg/cm2 、曲げ弾性率は81Ton/cm
2 と良好な物性を示した。
The flexural strength of this porous ceramic molded product was 137 kg / cm 2 , and the flexural modulus was 81 Ton / cm.
2 showed good physical properties.

【0057】[実施例7]実施例1と同じフライアッシ
ュ100部に、塩化ナトリウム60部、粉末状第1リン
酸アルミニウム系固結剤(多木化学株式会社製「第1リ
ン酸アルミニウム100P」30部、液状第1リン酸ア
ルミニウム系固結剤(多木化学株式会社製「アシドホシ
ス100L」50部)および硬化調節剤としての塩化亜
鉛5部を混合して均質なセラミックス原料組成物を調製
した。
Example 7 100 parts of fly ash as in Example 1 were mixed with 60 parts of sodium chloride and a powdered monobasic aluminum phosphate-based binder (“Aluminum monophosphate 100P” manufactured by Taki Kagaku Co., Ltd.) A homogeneous ceramic raw material composition was prepared by mixing 30 parts of a liquid monobasic aluminum phosphate-based binder (50 parts of "Acidophosis 100L" manufactured by Taki Kagaku Co., Ltd.) and 5 parts of zinc chloride as a curing regulator. .

【0058】この原料組成物を、実施例1と同様の金型
に入れ、常温で、30Kg/cm2の面圧で30分間プ
レス成形した。次いで、80℃の恒温槽で予備乾燥を行
った後、電気炉に移して100℃から400℃まで昇温
しつつ焼成を行った。得られたセラミックス成形物の見
掛け比重は1.71であった。
This raw material composition was placed in the same mold as in Example 1 and press-molded at room temperature at a surface pressure of 30 kg / cm 2 for 30 minutes. Next, after pre-drying was performed in a constant temperature bath at 80 ° C., it was transferred to an electric furnace and baked while raising the temperature from 100 ° C. to 400 ° C. The apparent specific gravity of the obtained ceramic molded product was 1.71.

【0059】この成形物を、70℃の温水浴に浸漬し
て、該成形物中の塩化ナトリウムを溶出し、乾燥した結
果、見掛け比重1.27の多孔質セラミックス成形物が
得られた。この多孔質セラミックス成形物の曲げ強度は
127Kg/cm2 、曲げ弾性率は113Ton/cm
2 と良好な物性を示した。
This molded product was immersed in a hot water bath at 70 ° C. to elute sodium chloride in the molded product, and dried to obtain a porous ceramic molded product having an apparent specific gravity of 1.27. The bending strength of this porous ceramic molded product is 127 kg / cm 2 , and the flexural modulus is 113 Ton / cm.
2 showed good physical properties.

【0060】[0060]

【発明の効果】以上のごとき本発明方法によれば、多孔
質で軽量性に優れた耐熱セラミックス成形物を製造する
ことができる。特に、焼成温度が上記のごとき比較的低
い温度範囲でも、1000℃にも耐える耐熱性の多孔質
セラミックス成形物が製造できる。
As described above, according to the method of the present invention, a heat-resistant ceramic molded article having excellent porosity and light weight can be manufactured. In particular, even when the sintering temperature is relatively low as described above, a heat-resistant porous ceramic molded article that can withstand 1000 ° C. can be produced.

【0061】そして、この成形物はほぼ均一な多孔質構
造を有するため、軽量性に優れるばかりでなく、断熱
性、防音性、通気性、保水性を有し、その特性を生かし
て種々の用途に有効に利用することが可能である。
Since this molded article has a substantially uniform porous structure, it not only has excellent lightness, but also has heat insulation, soundproofing, air permeability, and water retention. It can be used effectively.

【0062】したがって、本発明方法によるセラミック
ス成形物は、例えば、建築用の構造材、仕上げ材、装飾
材等の建築分野、道路の防音側壁、水中浮体等、広範な
用途において有効に活用することができる。
Accordingly, the ceramic molded article according to the method of the present invention can be effectively used in a wide range of applications, for example, in the construction field such as structural materials for buildings, finishing materials and decorative materials, soundproof side walls of roads and underwater floating bodies. Can be.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 石炭灰、無機固結剤および水溶性のアル
カリ金属またはアルカリ土類金属のハロゲン化物の少な
くとも1種を混合してセラミックス原料組成物を調製
し、次いで、型を用いて該組成物を所定の形状に成形
し、これを300〜600℃の温度で焼成してセラミッ
クス成形物とした後、水または水溶液によって該成形物
から上記水溶性ハロゲン化物を溶解・除去して該成形物
を多孔質化することを特徴とする、多孔質セラミックス
成形物の製造方法。
1. A ceramic raw material composition is prepared by mixing coal ash, an inorganic binder and at least one of a water-soluble alkali metal or alkaline earth metal halide, and then using a mold to form the ceramic raw material composition. An article is formed into a predetermined shape and fired at a temperature of 300 to 600 ° C. to form a ceramic article, and then the water-soluble halide is dissolved and removed from the article with water or an aqueous solution to form the article. A method for producing a porous ceramics molded article, comprising:
【請求項2】 石炭灰、無機固結剤、水溶性のアルカリ
金属またはアルカリ土類金属のハロゲン化物の1種以上
および硬化調節剤を混合してセラミックス原料組成物を
調製し、次いで、型を用いて該組成物を所定の形状に成
形し、これを300〜600℃の温度で焼成してセラミ
ックス成形物とした後、水または水溶液によって該成形
物から上記水溶性ハロゲン化物を溶解、除去して該成形
物を多孔質化することを特徴とする、多孔質セラミック
ス成形物の製造方法。
2. A ceramic raw material composition is prepared by mixing coal ash, an inorganic binder, at least one water-soluble alkali metal or alkaline earth metal halide, and a hardening modifier, and then forming a mold. After shaping the composition into a predetermined shape by using it and baking it at a temperature of 300 to 600 ° C. to form a ceramic molded product, the water-soluble halide is dissolved and removed from the molded product with water or an aqueous solution. A method for producing a porous ceramics molded article, wherein the molded article is made porous.
【請求項3】 石炭灰、無機固結剤および水溶性のアル
カリ金属またはアルカリ土類金属のハロゲン化物からな
る組成物、あるいは、さらにこれに硬化調節剤を添加し
たセラミックス原料組成物に、石炭灰100重量部当り
40重量部以下の水を添加した状態で成形することを特
徴とする、請求項1または請求項2記載の多孔質セラミ
ックス成形物の製造方法。
3. A composition comprising coal ash, an inorganic binding agent and a water-soluble alkali metal or alkaline earth metal halide, or a ceramic raw material composition further comprising a hardening modifier added thereto, wherein coal ash is added. The method for producing a porous ceramic molded product according to claim 1 or 2, wherein the molding is performed in a state in which water is added in an amount of 40 parts by weight or less per 100 parts by weight.
【請求項4】 無機固結剤が、第1リン酸アルミニウム
粉末もしくは第1リン酸アルミニウムを主成分とする水
溶液または珪酸ナトリウムもしくは珪酸ナトリウムを主
成分とする水溶液である請求項1、請求項2または請求
項3記載の多孔質セラミックス成形物の製造方法。
4. The inorganic binder according to claim 1, wherein the first binder is an aluminum phosphate powder, an aqueous solution mainly containing aluminum phosphate, or an aqueous solution mainly containing sodium silicate or sodium silicate. 4. A method for producing a porous ceramic molded product according to claim 3.
【請求項5】 アルカリ金属またはアルカリ土類金属の
ハロゲン化物が組成物調製段階において平均粒径0.0
1〜1mmの形粉末状または結晶状のものであることを
特徴とする、請求項1〜請求項4のいずれかに記載の多
孔質セラミックス成形物の製造方法。
5. An alkali metal or alkaline earth metal halide having an average particle size of 0.0
The method for producing a porous ceramic molded product according to any one of claims 1 to 4, wherein the porous ceramic molded product is a powder or a crystal having a shape of 1 to 1 mm.
【請求項6】 アルカリ金属またはアルカリ土類金属の
ハロゲン化物が塩化ナトリウムまたは臭化カリウムであ
ることを特徴とする、請求項1〜請求項5のいずれかに
記載の多孔質セラミックス成形物の製造方法。
6. The production of a porous ceramic molded product according to claim 1, wherein the alkali metal or alkaline earth metal halide is sodium chloride or potassium bromide. Method.
【請求項7】 硬化調節剤が、アルミニウム、亜鉛、マ
グネシウムおよびカルシウムから選ばれた少なくとも1
種の金属の酸化物または水酸化物であることを特徴とす
る、請求項1〜請求項6記載のいずれかに記載の多孔質
セラミックス成形物の製造方法。
7. The curing control agent according to claim 1, wherein the curing regulator is at least one selected from aluminum, zinc, magnesium and calcium.
The method for producing a porous ceramic molded product according to any one of claims 1 to 6, wherein the metal oxide is a metal oxide or hydroxide.
【請求項8】 石炭灰/無機固結剤/アルカリ金属また
はアルカリ土類金属のハロゲン化物の配合割合を、石炭
灰100重量部に対し、無機固結剤10〜150重量
部、アルカリ金属またはアルカリ土類金属のハロゲン化
物5〜100重量部とすることを特徴とする、請求項1
〜請求項7のいずれかに記載の多孔質セラミックス成形
物の製造方法。
8. The blending ratio of coal ash / inorganic binder / alkali metal or alkaline earth metal halide is 10 to 150 parts by weight of inorganic binder, 100 parts by weight of coal ash, alkali metal or alkali. 2. The method according to claim 1, wherein the amount of the earth metal halide is 5 to 100 parts by weight.
A method for producing a porous ceramic molded product according to any one of claims 1 to 7.
【請求項9】 硬化調節剤の配合量を、石炭灰100重
量部に対し1〜20重量部とすることを特徴とする、請
求項2〜請求項8のいずれかに記載の多孔質セラミック
ス成形物の製造方法。
9. The porous ceramic molding according to claim 2, wherein the amount of the curing regulator is 1 to 20 parts by weight based on 100 parts by weight of coal ash. Method of manufacturing a product.
JP8241713A 1996-09-12 1996-09-12 Production of porous ceramic formed article Pending JPH1087378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8241713A JPH1087378A (en) 1996-09-12 1996-09-12 Production of porous ceramic formed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8241713A JPH1087378A (en) 1996-09-12 1996-09-12 Production of porous ceramic formed article

Publications (1)

Publication Number Publication Date
JPH1087378A true JPH1087378A (en) 1998-04-07

Family

ID=17078434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8241713A Pending JPH1087378A (en) 1996-09-12 1996-09-12 Production of porous ceramic formed article

Country Status (1)

Country Link
JP (1) JPH1087378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102801A1 (en) 2007-02-21 2008-08-28 National Institute Of Advanced Industrial Science And Technology Ceramic porous body with communication macropores and process for producing the ceramic porous body
JP2014185906A (en) * 2013-03-22 2014-10-02 Fuji Kagaku Kk Criticality prevention coating material, criticality prevention coating layer and method for forming the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102801A1 (en) 2007-02-21 2008-08-28 National Institute Of Advanced Industrial Science And Technology Ceramic porous body with communication macropores and process for producing the ceramic porous body
US8262957B2 (en) 2007-02-21 2012-09-11 National Institute Of Advanced Industrial Science And Technology Ceramic porous body with communication macropores and process for producing the ceramic porous body
JP2014185906A (en) * 2013-03-22 2014-10-02 Fuji Kagaku Kk Criticality prevention coating material, criticality prevention coating layer and method for forming the same

Similar Documents

Publication Publication Date Title
CA1105503A (en) Gypsum compositions
KR20060126537A (en) Method for suppressing reaction of molten metals with refractory materials
JPH0225876B2 (en)
CZ2019602A3 (en) Composite with high heat accumulation
JP6207423B2 (en) Lightweight alkali-proof fireproof insulation brick and method for producing the same
JP2565361B2 (en) Method for producing high strength hydraulically cured product
RU2387623C2 (en) Raw mix for production of porous, fireproof, heat insulation material
JP2000063172A (en) Production of highly strong lightweight ceramic plate
JPH1087378A (en) Production of porous ceramic formed article
JP3908292B2 (en) Method for producing asbestos material sintered body
JPH06191957A (en) Ceramic sintered compact with metal as skeleton
CN113173780B (en) Magnesia-bonded refractory castable containing in-situ spinel and preparation method thereof
JP2756934B2 (en) Sinter from coal ash as raw material and method for producing the same
JP3464043B2 (en) Method for producing porous sintered body
JPH09295856A (en) Ceramic material composition and production of ceramic molded product therefrom
JPS61117168A (en) Refractory composition
JPH1081558A (en) Production of ceramic molded product
JPH10130075A (en) Production of lightweight ceramic compact
KR102326873B1 (en) Porous ceramic insulation material using waste aluminum dross powder and method for manufacturing same
JP2592047B2 (en) Method for treating municipal waste molten slag and method for producing sintered body using the treated material
JP3008341B2 (en) Sintered body made of phosphate conversion sludge and zeolite powder and its production method
JPH049747B2 (en)
JPH1160327A (en) Production of inorganic granular molded body
JPH0280363A (en) Ceramics product which prevents efflorescence and its production
JP3143731B2 (en) Lightweight fireproof castable