JPH1084111A - High breakdown voltage mos transistor - Google Patents

High breakdown voltage mos transistor

Info

Publication number
JPH1084111A
JPH1084111A JP8236050A JP23605096A JPH1084111A JP H1084111 A JPH1084111 A JP H1084111A JP 8236050 A JP8236050 A JP 8236050A JP 23605096 A JP23605096 A JP 23605096A JP H1084111 A JPH1084111 A JP H1084111A
Authority
JP
Japan
Prior art keywords
type diffusion
diffusion layer
conductivity type
type
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8236050A
Other languages
Japanese (ja)
Other versions
JP3193984B2 (en
Inventor
Atsuya Yamamoto
敦也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP23605096A priority Critical patent/JP3193984B2/en
Publication of JPH1084111A publication Critical patent/JPH1084111A/en
Application granted granted Critical
Publication of JP3193984B2 publication Critical patent/JP3193984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

PROBLEM TO BE SOLVED: To realize a high breakdown voltage MOS transistor capable of improving the operation speed by lowering ON resistance while maintaining a high breakdown voltage characteristics. SOLUTION: A P-type diffusion layer 3 covered with LOCOS oxide film 5 formed on the surface of N type well 2 is divided into a plurality of pieces in cross section in the channel length direction, and N-type diffusion layer 4 having an impurity concentration higher than that of N-type well 2 is formed to the same depth as or shallower than the depth of P-type diffusion layer 3 between the divided P-type diffusion layers 3. Depletion layers extended from a plurality of P-type diffusion layers 3 influence each other and the breakdown voltage is not decreased and a high breakdown voltage characteristics can be maintained. Further when the transistor is ON, the channel resistance decreases since the N type diffusion layer 4 is arranged between the P type diffusion layers 3 and the operating speed of the transistor can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高耐圧MOSト
ランジスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high voltage MOS transistor.

【0002】[0002]

【従来の技術】従来の高耐圧MOSトランジスタについ
て図3を参照しながら説明する。図3は従来の高耐圧M
OSトランジスタの断面構造図である。図3において、
1はP型シリコン基板、2はN型ウエル、3はP型拡散
層、5はLOCOS酸化膜、6はゲート電極、7はN型
ドレイン領域、8はN型ソース領域、9は層間絶縁膜、
10はドレイン電極、11はソース電極、12はPSG
(燐・シリケート・ガラス)膜、13はポリイミド膜で
ある。
2. Description of the Related Art A conventional high voltage MOS transistor will be described with reference to FIG. FIG. 3 shows a conventional high withstand voltage M
FIG. 3 is a cross-sectional structure diagram of an OS transistor. In FIG.
1 is a P-type silicon substrate, 2 is an N-type well, 3 is a P-type diffusion layer, 5 is a LOCOS oxide film, 6 is a gate electrode, 7 is an N-type drain region, 8 is an N-type source region, and 9 is an interlayer insulating film. ,
10 is a drain electrode, 11 is a source electrode, 12 is PSG
A (phosphorus silicate glass) film 13 is a polyimide film.

【0003】この従来の高耐圧MOSトランジスタは、
P型シリコン基板1の表面にN型ソース領域8とN型ウ
エル2を設け、N型ウエル2の表面にP型拡散層3とN
型ドレイン領域7を設け、P型拡散層3上をLOCOS
酸化膜5で覆ってあり、N型ソース領域8の端部上から
LOCOS酸化膜5上にかけてゲート酸化膜を介してゲ
ート電極6を設けている。そして、層間絶縁膜9のコン
タクトホールを介してN型ドレイン領域7,N型ソース
領域8上にそれぞれドレイン電極10,ソース電極11
を設け、保護膜としてPSG膜12およびポリイミド膜
13を設けている。
[0003] This conventional high withstand voltage MOS transistor,
An N-type source region 8 and an N-type well 2 are provided on the surface of a P-type silicon substrate 1, and a P-type diffusion layer 3 and an N-type
And a LOCOS is formed on the P-type diffusion layer 3.
The gate electrode 6 is covered by the oxide film 5 and extends from the end of the N-type source region 8 to the LOCOS oxide film 5 via the gate oxide film. Then, the drain electrode 10 and the source electrode 11 are formed on the N-type drain region 7 and the N-type source region 8 through the contact holes of the interlayer insulating film 9, respectively.
And a PSG film 12 and a polyimide film 13 are provided as protective films.

【0004】この構成では、P型拡散層3をソース電極
11と同電位にすることにより、P型拡散層3とN型ウ
エル2が両方から空乏化して高耐圧化できるようになっ
ている。また、トランジスタがオンした場合には、P型
拡散層3直下のN型ウエル2がチャネルとなる。
In this configuration, by setting the P-type diffusion layer 3 to the same potential as the source electrode 11, the P-type diffusion layer 3 and the N-type well 2 are depleted from both, so that a high breakdown voltage can be achieved. When the transistor is turned on, the N-type well 2 immediately below the P-type diffusion layer 3 becomes a channel.

【0005】[0005]

【発明が解決しようとする課題】このような従来の高耐
圧MOSトランジスタでは、トランジスタがオンになっ
た場合、ドレイン部のオン抵抗がP型拡散層3直下のN
型ウエル2の抵抗で決定されるために、チャネル部の不
純物濃度が低くなるとオン抵抗が高くなり、トランジス
タの動作速度を決定する一因であるオン電流が小さくな
り、動作速度が遅くなるという課題があった。
In such a conventional high withstand voltage MOS transistor, when the transistor is turned on, the on-resistance of the drain portion is reduced to the N-type level just below the P-type diffusion layer 3.
Since the resistance is determined by the resistance of the mold well 2, when the impurity concentration in the channel portion is low, the on-resistance is high, and the on-current, which is a factor in determining the operation speed of the transistor, is small, and the operation speed is low. was there.

【0006】この発明は上記課題を解決するもので、高
耐圧特性を維持しながら、オン抵抗を下げて動作速度を
向上することができる高耐圧MOSトランジスタを提供
することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-breakdown-voltage MOS transistor capable of improving the operating speed by lowering the on-resistance while maintaining high withstand voltage characteristics.

【0007】[0007]

【課題を解決するための手段】請求項1記載の高耐圧M
OSトランジスタは、第1導電型半導体基板の表面に第
2導電型ソース領域と第2導電型ウエルを設け、第2導
電型ウエルの表面に第1導電型拡散層と第2導電型ドレ
イン領域を設け、第1導電型拡散層上をLOCOS酸化
膜で覆い、第2導電型ソース領域の端部上からLOCO
S酸化膜上にかけてゲート酸化膜を介してゲート電極を
設けた高耐圧MOSトランジスタであって、第1導電型
拡散層をチャネル長方向断面において複数に分割し、こ
の分割した第1導電型拡散層の間に第2導電型拡散層を
第1導電型拡散層と同じまたは浅い深さに設けたことを
特徴とする。
A high withstand voltage M according to claim 1
In the OS transistor, a second conductivity type source region and a second conductivity type well are provided on a surface of a first conductivity type semiconductor substrate, and a first conductivity type diffusion layer and a second conductivity type drain region are formed on a surface of the second conductivity type well. The first conductive type diffusion layer is covered with a LOCOS oxide film, and the LOCOS oxide film is formed on the end of the second conductive type source region.
A high breakdown voltage MOS transistor in which a gate electrode is provided on an S oxide film via a gate oxide film, wherein the first conductivity type diffusion layer is divided into a plurality in a channel length direction cross section, and the divided first conductivity type diffusion layer The second conductive type diffusion layer is provided at the same or shallower depth as the first conductive type diffusion layer.

【0008】この構成によれば、第2導電型ウエルの表
面に形成された第1導電型拡散層をチャネル長方向断面
において複数に分割し、この分割した第1導電型拡散層
の間に第2導電型拡散層を設けたことにより、高耐圧特
性を維持しながら、トランジスタがオンしたときのチャ
ネル抵抗を低減することができ、トランジスタの動作速
度を向上することができる。
According to this structure, the first conductivity type diffusion layer formed on the surface of the second conductivity type well is divided into a plurality of sections in the channel length direction cross section, and the first conductivity type diffusion layer is provided between the divided first conductivity type diffusion layers. By providing the two-conductivity type diffusion layer, the channel resistance when the transistor is turned on can be reduced while the high withstand voltage characteristics are maintained, and the operation speed of the transistor can be improved.

【0009】請求項2記載の高耐圧MOSトランジスタ
は、請求項1記載の高耐圧MOSトランジスタにおい
て、第2導電型拡散層は第1導電型拡散層と同じまたは
浅い深さにしている。このように、第1導電型拡散層の
間に設けた第2導電型拡散層を、第1導電型拡散層と同
じまたは浅い深さとすることにより、第1導電型拡散層
からの空乏層が第2導電型拡散層の下部領域に拡がりや
すく、空乏化がより均一に行われ、高耐圧化に、より効
果がある。
According to a second aspect of the present invention, there is provided a high breakdown voltage MOS transistor according to the first aspect, wherein the second conductivity type diffusion layer has the same depth as the first conductivity type diffusion layer. As described above, by setting the second conductivity type diffusion layer provided between the first conductivity type diffusion layers to have the same or shallow depth as the first conductivity type diffusion layer, the depletion layer from the first conductivity type diffusion layer is reduced. It is easy to spread to the lower region of the second conductivity type diffusion layer, the depletion is performed more uniformly, and the higher withstand voltage is more effective.

【0010】請求項3記載の高耐圧MOSトランジスタ
は、請求項1または2記載の高耐圧MOSトランジスタ
において、第2導電型拡散層は第2導電型ウエルより不
純物濃度を高くしている。このように、第1導電型拡散
層の間に設けた第2導電型拡散層の不純物濃度を第2導
電型ウエルより高くすることにより、トランジスタがオ
ンしたときのチャネル抵抗をより低減することができ、
トランジスタの動作速度をより向上することができる。
According to a third aspect of the present invention, there is provided a high breakdown voltage MOS transistor according to the first or second aspect, wherein the second conductivity type diffusion layer has an impurity concentration higher than that of the second conductivity type well. As described above, by making the impurity concentration of the second conductivity type diffusion layer provided between the first conductivity type diffusion layers higher than that of the second conductivity type well, the channel resistance when the transistor is turned on can be further reduced. Can,
The operation speed of the transistor can be further improved.

【0011】[0011]

【発明の実施の形態】以下、この発明の実施の形態につ
いて図面を参照しながら説明する。図1はこの発明の実
施の形態における高耐圧MOSトランジスタの断面構造
図である。図1において、1はP型シリコン基板(第1
導電型半導体基板)、2はN型ウエル(第2導電型ウエ
ル)、3はP型拡散層(第1導電型拡散層)、4はN型
拡散層(第2導電型拡散層)、5はLOCOS酸化膜、
6はゲート電極、7はN型ドレイン領域、8はN型ソー
ス領域、9は層間絶縁膜、10はドレイン電極、11は
ソース電極、12はPSG(燐・シリケート・ガラス)
膜、13はポリイミド膜である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional structural view of a high voltage MOS transistor according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a P-type silicon substrate (first
A conductive type semiconductor substrate), 2 an N-type well (second conductive type well), 3 a P-type diffused layer (first conductive type diffused layer), 4 an N-type diffused layer (second conductive type diffused layer), 5 Is a LOCOS oxide film,
6 is a gate electrode, 7 is an N-type drain region, 8 is an N-type source region, 9 is an interlayer insulating film, 10 is a drain electrode, 11 is a source electrode, and 12 is PSG (phosphorus silicate glass).
The film 13 is a polyimide film.

【0012】この高耐圧MOSトランジスタは、N型ウ
エル2の表面に形成されLOCOS酸化膜5で覆われた
P型拡散層3をチャネル長方向断面において複数に分割
し、その分割したP型拡散層3の間にN型ウエル2より
不純物濃度の高いN型拡散層4をP型拡散層3と同じ深
さかそれよりも浅く形成したことを特徴とし、その他の
構成は図3に示す従来例と同様である。
In this high breakdown voltage MOS transistor, the P-type diffusion layer 3 formed on the surface of the N-type well 2 and covered with the LOCOS oxide film 5 is divided into a plurality of sections in the channel length direction, and the divided P-type diffusion layers are divided. 3 is characterized in that an N-type diffusion layer 4 having an impurity concentration higher than that of the N-type well 2 is formed at the same depth as the P-type diffusion layer 3 or shallower than the P-type diffusion layer 3. The same is true.

【0013】この高耐圧MOSトランジスタの製造方法
について、図2の工程順断面図を参照しながら説明して
おく。図2(a)に示すように、P型シリコン基板1の
表面にN型ウエル2をイオン注入と熱処理により形成す
る。つぎに、図2(b)に示すように、N型ウエル2内
の表面に、P型拡散層3とN型拡散層4をイオン注入と
熱処理により形成する。このP型拡散層3とN型拡散層
4は、例えば、P型拡散層用のマスクを用いてボロン注
入を行い、P型拡散層用のマスクを除去し、つぎにN型
拡散層用のマスクを用いてリン注入を行い、ドライブイ
ン処理することにより形成する。
A method of manufacturing this high voltage MOS transistor will be described with reference to the sectional views in the order of steps shown in FIG. As shown in FIG. 2A, an N-type well 2 is formed on the surface of a P-type silicon substrate 1 by ion implantation and heat treatment. Next, as shown in FIG. 2B, a P-type diffusion layer 3 and an N-type diffusion layer 4 are formed on the surface in the N-type well 2 by ion implantation and heat treatment. For example, boron is implanted into the P-type diffusion layer 3 and the N-type diffusion layer 4 using a mask for the P-type diffusion layer, and the mask for the P-type diffusion layer is removed. It is formed by performing phosphorus implantation using a mask and performing drive-in processing.

【0014】つぎに、図2(c)に示すように、P型拡
散層3とN型拡散層4を覆うようにLOCOS酸化膜5
を形成する。つぎに、図2(d)に示すように、LOC
OS酸化膜5の端を含む領域に酸化膜を介してゲート電
極6を形成した後、N型ドレイン領域7およびN型ソー
ス領域8をイオン注入により形成する。つぎに、図2
(e)に示すように、層間絶縁膜9を形成した後、コン
タクトホールを設けてドレイン電極10およびソース電
極11を形成する。最後に、図2(f)に示すように、
保護膜としてPSG膜12およびポリイミド膜13を形
成する。
Next, as shown in FIG. 2C, a LOCOS oxide film 5 is formed so as to cover the P-type diffusion layer 3 and the N-type diffusion layer 4.
To form Next, as shown in FIG.
After forming the gate electrode 6 in the region including the end of the OS oxide film 5 via the oxide film, the N-type drain region 7 and the N-type source region 8 are formed by ion implantation. Next, FIG.
As shown in (e), after the interlayer insulating film 9 is formed, a contact hole is provided and a drain electrode 10 and a source electrode 11 are formed. Finally, as shown in FIG.
A PSG film 12 and a polyimide film 13 are formed as protective films.

【0015】以上のようにこの実施の形態によれば、N
型ウエル2の表面に形成されるP型拡散層3をチャネル
長方向断面において複数に分割し、P型拡散層3の間に
P型拡散層3と同じまたは浅い深さのN型拡散層4を形
成している。この実施の形態では、N型ウエル2の濃度
は約1×1016cm-3であり、N型拡散層4の表面濃度
は約2×1016cm-3、P型拡散層3の表面濃度は約4
×1016cm-3である。そして、P型拡散層3はソース
電極11と同電位になるように接続されている。この構
成によれば、複数個のP型拡散層3から延びた空乏層は
互いに影響し、最終的には図3の従来例と同様になり、
耐圧としては低下することはなく、高耐圧特性を維持で
きる。また、トランジスタがオンしたとき、チャネル部
分は、N型ウエル2だけでなくN型拡散層4の一部分ま
で含まれることから、P型拡散層3のある部分とN型拡
散層4のある部分とではチャネル部分の断面積と不純物
濃度が異なり、全体として見た場合、従来例に比べてチ
ャネル抵抗が低減する。その結果、トランジスタの動作
速度を向上することができる。
As described above, according to this embodiment, N
The P-type diffusion layer 3 formed on the surface of the mold well 2 is divided into a plurality of sections in the cross section in the channel length direction, and an N-type diffusion layer 4 having the same or shallow depth as the P-type diffusion layer 3 is formed between the P-type diffusion layers 3. Is formed. In this embodiment, the concentration of the N-type well 2 is about 1 × 10 16 cm −3 , the surface concentration of the N-type diffusion layer 4 is about 2 × 10 16 cm −3 , and the surface concentration of the P-type diffusion layer 3 Is about 4
× 10 16 cm -3 . The P-type diffusion layer 3 is connected to have the same potential as the source electrode 11. According to this configuration, the depletion layers extending from the plurality of P-type diffusion layers 3 affect each other, and eventually become the same as the conventional example of FIG.
The withstand voltage does not decrease, and high withstand voltage characteristics can be maintained. Further, when the transistor is turned on, the channel portion is included not only in the N-type well 2 but also in a portion of the N-type diffusion layer 4, so that the channel portion includes the P-type diffusion layer 3 and the N-type diffusion layer 4. In this case, the cross-sectional area of the channel portion and the impurity concentration are different, and when viewed as a whole, the channel resistance is reduced as compared with the conventional example. As a result, the operation speed of the transistor can be improved.

【0016】なお、N型拡散層4を、P型拡散層3と同
じまたは浅い深さにした理由は、P型拡散層3からの空
乏層がN型拡散層4の下部領域に拡がりやすく、空乏化
がより均一に行われ、高耐圧化を実現するうえで好まし
いからであり、もしN型拡散層4がP型拡散層3より深
い領域にまで形成されていると、P型拡散層3から延び
た空乏層がN型拡散層4の下部で狭くなり、耐圧が下が
ることになる。
The reason why the N-type diffusion layer 4 has the same or shallow depth as the P-type diffusion layer 3 is that the depletion layer from the P-type diffusion layer 3 easily spreads to the lower region of the N-type diffusion layer 4. This is because the depletion is more uniformly performed and it is preferable to realize a high breakdown voltage. If the N-type diffusion layer 4 is formed to a region deeper than the P-type diffusion layer 3, the P-type diffusion layer 3 The depletion layer extending from the N-type diffusion layer 4 becomes narrower below the N-type diffusion layer 4, and the breakdown voltage decreases.

【0017】なお、この実施の形態では、N型ウエル2
内に形成したN型拡散層4を、P型拡散層3と接するよ
うに配置したが、P型拡散層3の間にP型拡散層3と離
して配置してもよい。また、各P型拡散層3および各N
型拡散層4はそれぞれ同じ形状にする必要はない。ま
た、高耐圧構造によく用いられる構造にも適用でき、島
状のN型ドレイン領域7を中心としてその周りにLOC
OS酸化膜5をリング状に配置し、そのリング状のLO
COS酸化膜5の下部に、同じくリング状のP型拡散層
3とN型拡散層4とを交互に配置するようにしてもよ
い。
In this embodiment, the N-type well 2
Although the N-type diffusion layer 4 formed therein is arranged so as to be in contact with the P-type diffusion layer 3, it may be arranged between the P-type diffusion layers 3 so as to be separated from the P-type diffusion layer 3. Further, each P-type diffusion layer 3 and each N
The mold diffusion layers 4 do not need to have the same shape. In addition, the present invention can be applied to a structure often used for a high withstand voltage structure.
The OS oxide film 5 is arranged in a ring shape, and the ring-shaped LO
A ring-shaped P-type diffusion layer 3 and an N-type diffusion layer 4 may be alternately arranged below the COS oxide film 5.

【0018】また、保護膜としてPSG膜12とポリイ
ミド膜13を使用したが、特に限定されたものではな
い。なお、この実施の形態では、P型半導体基板を用い
たが、N型半導体基板を用い、各領域の導電型を逆にし
てもよい。
Although the PSG film 12 and the polyimide film 13 are used as the protective films, they are not particularly limited. In this embodiment, a P-type semiconductor substrate is used, but an N-type semiconductor substrate may be used and the conductivity type of each region may be reversed.

【0019】[0019]

【発明の効果】以上のようにこの発明によれば、第2導
電型ウエルの表面に形成されLOCOS酸化膜で覆われ
た第1導電型拡散層をチャネル長方向断面において複数
に分割し、この分割した第1導電型拡散層の間に第2導
電型拡散層を設けたことにより、高耐圧特性を維持しな
がら、トランジスタがオンしたときのチャネル抵抗を低
減することができ、トランジスタの動作速度を向上する
ことができる。
As described above, according to the present invention, the first conductivity type diffusion layer formed on the surface of the second conductivity type well and covered with the LOCOS oxide film is divided into a plurality in the channel length direction cross section. By providing the second conductivity type diffusion layer between the divided first conductivity type diffusion layers, the channel resistance when the transistor is turned on can be reduced while maintaining high breakdown voltage characteristics, and the operation speed of the transistor can be reduced. Can be improved.

【0020】さらに、第1導電型拡散層の間に設けた第
2導電型拡散層を、第1導電型拡散層と同じまたは浅い
深さとすることにより、第1導電型拡散層からの空乏層
が第2導電型拡散層の下部領域に拡がりやすく、空乏化
がより均一に行われ、高耐圧化に、より効果がある。ま
た、第2導電型拡散層の不純物濃度を第2導電型ウエル
より高くすることにより、トランジスタがオンしたとき
のチャネル抵抗をより低減することができ、トランジス
タの動作速度をより向上することができる。
Further, by making the second conductivity type diffusion layer provided between the first conductivity type diffusion layers the same or shallower as the first conductivity type diffusion layer, a depletion layer from the first conductivity type diffusion layer is formed. Are easily spread to the lower region of the second conductivity type diffusion layer, depletion is performed more uniformly, and this is more effective in increasing the breakdown voltage. Further, by setting the impurity concentration of the second conductivity type diffusion layer higher than that of the second conductivity type well, the channel resistance when the transistor is turned on can be further reduced, and the operation speed of the transistor can be further improved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態における高耐圧MOSト
ランジスタの断面構造図。
FIG. 1 is a sectional structural view of a high-voltage MOS transistor according to an embodiment of the present invention.

【図2】この発明の実施の形態における製造工程を示す
断面図。
FIG. 2 is a sectional view showing a manufacturing process according to the embodiment of the present invention.

【図3】従来の高耐圧MOSトランジスタの断面構造
図。
FIG. 3 is a sectional structural view of a conventional high-breakdown-voltage MOS transistor.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板(第1導電型半導体基板) 2 N型ウエル(第2導電型ウエル) 3 P型拡散層(第1導電型拡散層) 4 N型拡散層(第2導電型拡散層) 5 LOCOS酸化膜 6 ゲート電極 7 N型ドレイン領域 8 N型ソース領域 9 層間絶縁膜 10 ドレイン電極 11 ソース電極 12 PSG膜 13 ポリイミド膜 Reference Signs List 1 P-type silicon substrate (first conductivity type semiconductor substrate) 2 N-type well (second conductivity type well) 3 P-type diffusion layer (first conductivity type diffusion layer) 4 N-type diffusion layer (second conductivity type diffusion layer) Reference Signs List 5 LOCOS oxide film 6 Gate electrode 7 N-type drain region 8 N-type source region 9 Interlayer insulating film 10 Drain electrode 11 Source electrode 12 PSG film 13 Polyimide film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型半導体基板の表面に第2導電
型ソース領域と第2導電型ウエルを設け、前記第2導電
型ウエルの表面に第1導電型拡散層と第2導電型ドレイ
ン領域を設け、前記第1導電型拡散層上をLOCOS酸
化膜で覆い、前記第2導電型ソース領域の端部上から前
記LOCOS酸化膜上にかけてゲート酸化膜を介してゲ
ート電極を設けた高耐圧MOSトランジスタであって、 前記第1導電型拡散層をチャネル長方向断面において複
数に分割し、この分割した前記第1導電型拡散層の間に
第2導電型拡散層を設けたことを特徴とする高耐圧MO
Sトランジスタ。
A second conductivity type source region and a second conductivity type well provided on a surface of the first conductivity type semiconductor substrate; a first conductivity type diffusion layer and a second conductivity type drain on the surface of the second conductivity type well; A high withstand voltage, wherein a region is provided, the first conductivity type diffusion layer is covered with a LOCOS oxide film, and a gate electrode is provided from the end of the second conductivity type source region to the LOCOS oxide film via a gate oxide film. A MOS transistor, wherein the first conductivity type diffusion layer is divided into a plurality in a channel length direction cross section, and a second conductivity type diffusion layer is provided between the divided first conductivity type diffusion layers. High withstand voltage MO
S transistor.
【請求項2】 第2導電型拡散層は第1導電型拡散層と
同じまたは浅い深さにした請求項1記載の高耐圧MOS
トランジスタ。
2. The high breakdown voltage MOS according to claim 1, wherein the second conductivity type diffusion layer has the same or shallow depth as the first conductivity type diffusion layer.
Transistor.
【請求項3】 第2導電型拡散層は第2導電型ウエルよ
り不純物濃度を高くした請求項1または2記載の高耐圧
MOSトランジスタ。
3. The high breakdown voltage MOS transistor according to claim 1, wherein the second conductivity type diffusion layer has a higher impurity concentration than the second conductivity type well.
JP23605096A 1996-09-06 1996-09-06 High voltage MOS transistor Expired - Fee Related JP3193984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23605096A JP3193984B2 (en) 1996-09-06 1996-09-06 High voltage MOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23605096A JP3193984B2 (en) 1996-09-06 1996-09-06 High voltage MOS transistor

Publications (2)

Publication Number Publication Date
JPH1084111A true JPH1084111A (en) 1998-03-31
JP3193984B2 JP3193984B2 (en) 2001-07-30

Family

ID=16995013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23605096A Expired - Fee Related JP3193984B2 (en) 1996-09-06 1996-09-06 High voltage MOS transistor

Country Status (1)

Country Link
JP (1) JP3193984B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312996B1 (en) 1998-10-19 2001-11-06 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US6534829B2 (en) 1998-06-25 2003-03-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
JP2008034738A (en) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd Semiconductor device
CN102694008A (en) * 2011-03-22 2012-09-26 立锜科技股份有限公司 High voltage component and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534829B2 (en) 1998-06-25 2003-03-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US6312996B1 (en) 1998-10-19 2001-11-06 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
JP2008034738A (en) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd Semiconductor device
CN102694008A (en) * 2011-03-22 2012-09-26 立锜科技股份有限公司 High voltage component and method for manufacturing the same

Also Published As

Publication number Publication date
JP3193984B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JP3185656B2 (en) Lateral field effect transistor and method of manufacturing the same
JPH08264787A (en) Edge termination method of power mosfet and its structure
JPH0897411A (en) Lateral trench mos fet having high withstanding voltage and its manufacture
JP2000260987A (en) Semiconductor device and its manufacture
JP2000188391A (en) Manufacture of semiconductor integrated circuit device
JPH08107202A (en) Lateral type high withstand voltage field effect transistor and its manufacture
JP2007088334A (en) Semiconductor device and its manufacturing method
JP2001308321A (en) Semiconductor device and its manufacturing method
JPH11251597A (en) Semiconductor device
JPH0846196A (en) Mos transistor and its preparation
JP2004022769A (en) Lateral high breakdown voltage semiconductor device
JP3193984B2 (en) High voltage MOS transistor
JP4677166B2 (en) Semiconductor device and manufacturing method thereof
JP2000068499A (en) Semiconductor device and manufacture of the same
JP2001060634A (en) Semiconductor device and manufacture thereof
JP2004063918A (en) Lateral mos transistor
JPS61210673A (en) Mis type semiconductor device
JPH11186402A (en) Semiconductor device and manufacture of semiconductor
JP2000174218A (en) Semiconductor device and its manufacture
KR20050000001A (en) Semiconductor device and manufacturing method thereof
JPS6016469A (en) Manufacture of mis semiconductor device
JPS62133763A (en) Mos transistor
JPS6254959A (en) Manufacture of mis semiconductor device
JPS5837968A (en) Insulated gate type field defect semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees