JPH108281A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JPH108281A
JPH108281A JP8153912A JP15391296A JPH108281A JP H108281 A JPH108281 A JP H108281A JP 8153912 A JP8153912 A JP 8153912A JP 15391296 A JP15391296 A JP 15391296A JP H108281 A JPH108281 A JP H108281A
Authority
JP
Japan
Prior art keywords
platinum
iridium
plating layer
ozone
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8153912A
Other languages
Japanese (ja)
Inventor
Kenichi Yokota
健市 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JONAN DENKI KOGYOSHO KK
Original Assignee
JONAN DENKI KOGYOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JONAN DENKI KOGYOSHO KK filed Critical JONAN DENKI KOGYOSHO KK
Priority to JP8153912A priority Critical patent/JPH108281A/en
Publication of JPH108281A publication Critical patent/JPH108281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress production of ozone and to sufficiently maintain the sterilizing effect of a strong acid water by forming a two-layer structure of a platinum plating layer and an iridium plating layer on the surface of a titanium electrode base body. SOLUTION: The electrode used for electrolysis of water has such structure that consists of a titanium base body 10, a platinum plating layer 11 on the titanium surface, and further an iridium plating layer 12 on the surface of the platinum layer. Instead of iridium for the layer 12, palladium or rhodium can be used. When only a platinum plating layer is formed as a conventional method, toxic ozone is produced by the catalytic effect of the platinum. By covering the surface of the platinum with a noble metal such as iridium, the catalytic effect of platinum can be suppressed to avoid production of ozone. The strong acid water produced on the anode contains a large amt. of hypochlorous acid by the catalytic effect of iridium, which has a strong sterilizing effect and is harmless.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水の電解槽に関し、
特に、チタンを基礎とする電極構造に関する。
TECHNICAL FIELD The present invention relates to a water electrolysis tank,
In particular, it relates to an electrode structure based on titanium.

【0002】[0002]

【従来の技術】最近、医療、食品等の分野において、殺
菌、除菌、洗浄、漂白、脱臭等の目的のため、機能水の
利用技術が注目されはじめている。この機能水は水の電
気分解により生成されるが、微量の食塩を添加した水を
電気分解する際、電極自体の溶解を防止するため、従来
は、チタン基材の表面に白金をめっき等により鍍金した
電極が用いられていた。
2. Description of the Related Art Recently, in the fields of medicine, foods, etc., attention has been paid to techniques for using functional water for the purpose of sterilization, disinfection, washing, bleaching, deodorization, and the like. This functional water is generated by the electrolysis of water.However, when electrolyzing water with a trace amount of salt added, platinum is conventionally plated on the surface of the titanium substrate by plating, etc. Plated electrodes were used.

【0003】しかし、この従来技術によると、電極の溶
解は抑止されるものの、食塩水の電気分解によって陽極
に毒性の強いオゾンが発生するという重大な欠点があっ
た。また、陽極に生成される強酸性水の殺菌保持力が充
分でないという欠点があった。
However, according to this conventional technique, although the dissolution of the electrode is suppressed, there is a serious disadvantage that highly toxic ozone is generated at the anode due to the electrolysis of the saline solution. Further, there is a disadvantage that the sterilizing ability of the strongly acidic water generated at the anode is not sufficient.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明はいかな
る設置環境においても毒性の強いオゾンの発生が抑えら
れて安全に使用することができ、殺菌保持力が強い電解
槽の提供を解決課題とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electrolytic cell which can be safely used in any installation environment with less toxic ozone generated, and has a strong sterilization holding power. .

【0005】[0005]

【課題を解決するための手段】この課題を解決するため
の本発明の電解槽は、水を電気分解する電極の構造が、
基材となるチタンの表面に、白金めっき層とイリジュー
ムめっき層の二重層、または、白金とイリジュームの複
合めっき層が設けられていることを特徴としている。イ
リジュームは、これに均等な貴金属に置き換えて実施す
ることができる。イリジューム(Ir)に均等な貴金属
とは、パラジウム(Pb)、ロジウム(Rh)、ルテニ
ウム(Ru)、オスミウム(Os)をいう。
The electrolytic cell according to the present invention for solving this problem has an electrode structure for electrolyzing water,
It is characterized in that a double layer of a platinum plating layer and an iridium plating layer or a composite plating layer of platinum and iridium is provided on the surface of titanium as a base material. Iridium can be implemented by replacing it with a noble metal equivalent to this. The noble metal equivalent to iridium (Ir) refers to palladium (Pb), rhodium (Rh), ruthenium (Ru), and osmium (Os).

【0006】[0006]

【作用】一般に、白金は触媒として使用されることが多
く、水の電気分解の電極構造として従来例のように白金
めっきのみを施した場合は、白金の触媒的な作用により
毒性の強いオゾンが発生するものと思われる。本発明に
おいては、白金の表面をイリジューム等の貴金属で被う
ことにより白金の触媒作用を抑え、オゾンの発生を無く
している。
In general, platinum is often used as a catalyst, and when only platinum plating is applied as an electrode structure for water electrolysis as in the conventional example, highly toxic ozone is generated due to the catalytic action of platinum. It seems to happen. In the present invention, the catalytic action of platinum is suppressed by covering the surface of platinum with a noble metal such as iridium, thereby eliminating the generation of ozone.

【0007】また、陽極から生成される強酸性水は、イ
リジューム等の触媒作用により次亜塩素酸が多く含ま
れ、これは殺菌力が強く無害である。この次亜塩素酸
(Hocl)は食塩水中のNacl(食塩) が電気分解されてCl
2ガスになり、このCl2がH2O(水)と反応して生成さ
れる。
[0007] The strongly acidic water generated from the anode contains a large amount of hypochlorous acid due to the catalytic action of iridium and the like, which has strong sterilizing power and is harmless. This hypochlorous acid
(Hocl) is obtained by electrolyzing Nacl (salt) in saline
It becomes two gases, and this Cl 2 is produced by reacting with H 2 O (water).

【0008】[0008]

【発明の実施の形態】図1に本発明が適用される電解槽
の一例の縦断面図を示す。相対向する陽電極1と陰電極
2の中間に隔膜3が張設されて陽極域4と陰極域5に区
分され、槽の下に、電気分解すべき弱食塩水を陽極域4
と陰極域5の双方に供給するための供給管6が設けら
れ、陽極域4の上には電気分解により生じた酸性水を取
り出す酸性水取出管7が設けられ、陰極域5の上には電
気分解により生じたアルカリ水を取り出すアルカリ水取
出管8が設けられている。
FIG. 1 is a longitudinal sectional view of an example of an electrolytic cell to which the present invention is applied. A diaphragm 3 is stretched between opposing positive and negative electrodes 1 and 2 so as to be divided into an anode area 4 and a cathode area 5.
A supply pipe 6 is provided for supplying both to the anode region 5 and the cathode region 5, an acid water take-out tube 7 is provided above the anode region 4 for taking out acidic water generated by the electrolysis, and above the cathode region 5. An alkaline water extraction pipe 8 for extracting alkaline water generated by the electrolysis is provided.

【0009】実施例の数値例を示せば、電極板の大きさ
20cm×14cm、電極間距離6mm、電極間に印加
した電圧12ボルト、供給管から供給した弱食塩水の塩
分濃度0.07%、その流量1分間当り2リットルであ
った。
The numerical example of the embodiment is as follows. The size of the electrode plate is 20 cm × 14 cm, the distance between the electrodes is 6 mm, the voltage applied between the electrodes is 12 volts, and the salt concentration of the weak saline supplied from the supply pipe is 0.07%. The flow rate was 2 liters per minute.

【0010】図2に電極1,2の電極構造の模式図を示
す。図(A)に示す実施例は、基材となるチタン10の
表面に白金めっき層11が設けられ、さらにその表面に
イリジュームめっき層12が設けられたものである。白
金めっき層11の厚さは約0.5μm、イリジユームめ
っき層12の厚さは0.1μm以上、好ましくは0.5
μm以上、更に好ましくは1.0μm以上がよい。
FIG. 2 is a schematic diagram of the electrode structure of the electrodes 1 and 2. In the embodiment shown in FIG. 1A, a platinum plating layer 11 is provided on the surface of titanium 10 as a base material, and an iridium plating layer 12 is further provided on the surface. The thickness of the platinum plating layer 11 is about 0.5 μm, and the thickness of the iridium plating layer 12 is 0.1 μm or more, preferably 0.5 μm.
μm or more, more preferably 1.0 μm or more.

【0011】めっき層12の材料は、イリジューム(I
r)に代えてパラジウム(Pb)、ロジウム(Rh)、
ルテニウム(Ru)、オスミウム(Os)を用いること
ができる。
The material of the plating layer 12 is iridium (I
r) instead of palladium (Pb), rhodium (Rh),
Ruthenium (Ru) and osmium (Os) can be used.

【0012】図(B)に示す実施例は、基材となるチタ
ン10の表面に白金とイリジュームの複合めっき層13
が設けられたものである。複合めっき層13の厚みは
0.1μm以上、好ましくは0.5μm以上、更に好ま
しくは1.0μm以上がよい。また、イリジューム(I
r)を、パラジウム(Pb)、ロジウム(Rh)、ルテ
ニウム(Ru)、オスミウム(Os)に置換した複合め
っき層により実施することができる。
In the embodiment shown in FIG. 1B, a composite plating layer 13 of platinum and iridium is formed on the surface of titanium 10 as a base material.
Is provided. The thickness of the composite plating layer 13 is 0.1 μm or more, preferably 0.5 μm or more, and more preferably 1.0 μm or more. In addition, Irijumu (I
r) can be implemented by a composite plating layer in which palladium (Pb), rhodium (Rh), ruthenium (Ru), and osmium (Os) are substituted.

【0013】[0013]

【実施例】実施例1.厚さ1mmのチタンを基材とし、
厚さ0.5μmの白金めっき層11、厚さ0.5μmの
イリジュームめっき層12の2層めっき構造の電極を使
用し、食塩添加濃度0.07%の食塩水を流量2.0l
/分で電解槽に供給し、電極間電圧12Vの条件で電気
分解を行った。電気分解中の電流9A、陽極における酸
性水生成量1.0l/分、陰極におけるアルカリ水生成
量1.0l/分であった。また、酸性水RH値、酸性水
ORP値(酸化還元電位)、オゾンガス濃度、残留塩素
濃度、酸性水中オゾン濃度はそれぞれ表1に記載の通り
であった。
[Embodiment 1] 1mm thick titanium as the base material,
Using an electrode having a two-layer plating structure of a platinum plating layer 0.5 having a thickness of 0.5 μm and an iridium plating layer 12 having a thickness of 0.5 μm, a flow rate of 2.0 l of a salt solution having a salt addition concentration of 0.07% was used.
Per minute, and electrolysis was performed under the condition of a voltage between electrodes of 12 V. The current during electrolysis was 9 A, the amount of acidic water generated at the anode was 1.0 l / min, and the amount of alkaline water generated at the cathode was 1.0 l / min. The RH value of the acidic water, the ORP value of the acidic water (redox potential), the ozone gas concentration, the residual chlorine concentration, and the ozone concentration of the acidic water were as shown in Table 1, respectively.

【0014】なお、オゾンガス濃度は、電解槽の陽極側
より排出されるガス成分中に含まれているオゾンガス濃
度であって、荏原実業株式会社製、気相オゾン濃度測定
器EG−2001Rを用いて測定した。この測定器の最
大スケールは200ppmである。また、酸性水中オゾ
ン濃度は、電解槽の陽極側より得られた酸性水中に含ま
れる液相オゾン濃度であって、オキトロニクス社製、液
相オゾン濃度測定器ModelOZM−7000Lを用いて
測定した。
The concentration of ozone gas is the concentration of ozone gas contained in the gas component discharged from the anode side of the electrolytic cell, and is measured using a gas phase ozone concentration measuring device EG-2001R manufactured by Ebara Corporation. It was measured. The maximum scale of this instrument is 200 ppm. The ozone concentration in the acidic water is a liquid ozone concentration contained in the acidic water obtained from the anode side of the electrolytic cell, and was measured using a liquid phase ozone concentration meter Model OZM-7000L manufactured by Okitronics.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2.厚さ1mmのチタンを基材と
し、白金・イリジューム(重量比1:1)厚さ1μmの
複合めっき層13の電極を使用し、食塩添加濃度0.0
7%の食塩水を用い、実施例1と同一設定条件で電気分
解を行った。その実測値は同一測定器を用いて表1の通
りであった。
Embodiment 2 FIG. Using a 1 mm thick titanium base material, platinum-iridium (weight ratio: 1: 1) composite plating layer 13 electrode having a thickness of 1 μm, and adding a salt concentration of 0.0
Electrolysis was carried out using 7% saline under the same conditions as in Example 1. The measured values were as shown in Table 1 using the same measuring instrument.

【0017】[0017]

【発明の効果】表1に上記した本発明実施例1,2と比
較例として従来例1,2の試験データの一覧表を示す。
この従来例1,2はいずれも厚さ1mmのチタンを基材
とし、厚さ1μmの白金のみのめっき層を設けた電極を
用いたものである。従来例2は本発明実施例と同じ0.
07%の食塩水を用い本発明実施例と同一設定条件、同
一測定条件で試験された。また、従来例1は食塩無添加
の水を用い、そのため、電極間印加電圧を30Vに増大
した。それでも、電解分解中の電流は4Aと少なく、酸
性水生成量0.3l/分、アルカリ水生成量1.7l/
分であった。
Table 1 shows a list of test data of Examples 1 and 2 of the present invention described above and Comparative Examples 1 and 2.
Each of the conventional examples 1 and 2 uses a 1-mm-thick titanium base material and an electrode provided with a 1-μm-thick platinum-only plating layer. Conventional example 2 is the same as the embodiment of the present invention.
The test was performed using the same setting conditions and the same measurement conditions as in the example of the present invention using 07% saline. Further, in Conventional Example 1, water containing no salt was used, and therefore, the voltage applied between the electrodes was increased to 30V. Nevertheless, the current during electrolytic decomposition was as small as 4 A, the amount of acidic water produced was 0.3 l / min, and the amount of alkaline water produced was 1.7 l / min.
Minutes.

【0018】この試験データによれば、陽極側より排出
されるオゾンガス濃度について、本発明実施例と同一条
件の従来例2の測定値が200ppm以上と測定可能範
囲を超えていたのに対し、本発明実施例においては0.
7ppm、0.5ppmと、1/300ないし1/40
0に激減していることが認められる。また、酸性水取出
管7に取り出される酸性水の水中オゾン濃度について、
従来例では0.723mg/Lのオゾンが検出されてい
たのに対し、本発明実施例によれば、実施例1,2とも
に0mg/Lであってオゾンが全く検出されなかった。
According to the test data, the measured value of the conventional example 2 under the same conditions as in the embodiment of the present invention was 200 ppm or more, which is more than the measurable range, with respect to the concentration of ozone gas discharged from the anode side. In the embodiment of the present invention, 0.
7 ppm, 0.5 ppm, 1/300 to 1/40
It can be seen that it has dropped sharply to zero. Further, regarding the ozone concentration of the acidic water in the water extracted to the acidic water extraction pipe 7,
While 0.723 mg / L of ozone was detected in the conventional example, according to the embodiment of the present invention, both of Examples 1 and 2 were 0 mg / L and no ozone was detected.

【0019】次に、本発明により得られる強酸性水の殺
菌力評価の重要な指標とされる酸化還元電位の保持力に
ついて試験を行った。表1によれば従来例の測定値11
93mV,1165mVに対し本発明実施例1171m
V,1170mVと有意差は認められなかった。しか
し、アミノ酸を多く含む有機物、醤油を生成させた強酸
性水中に添加したときの酸化還元電位の変化を測定した
ところ、図3に示すデータが得られた。このデータによ
れば、有機物の添加量の増加に対し酸化還元電位(m
V)の単調な減小が認められた。そこで、殺菌限界値と
考えられる酸化還元電位1050mVまで低下する有機
物の添付量を対比すると、従来例1が100ppm、従
来例2が215ppmであるのに対し実施例1では42
0ppmまで伸長し、殺菌力保持能力の格段に強いこと
が実証された。
Next, a test was conducted on the ability to maintain the oxidation-reduction potential, which is an important index for evaluating the sterilizing power of the strongly acidic water obtained by the present invention. According to Table 1, the measured value 11 of the conventional example is shown.
Example 1171m of the present invention for 93mV and 1165mV
V, 1170 mV, no significant difference was observed. However, when the change in the oxidation-reduction potential when the organic substance containing a large amount of amino acid and soy sauce were added to the strongly acidic water was measured, the data shown in FIG. 3 was obtained. According to this data, the oxidation-reduction potential (m
A monotonous decrease in V) was observed. Then, when comparing the attached amount of the organic substance lowered to the oxidation-reduction potential 1050 mV which is considered to be the sterilization limit value, Conventional Example 1 is 100 ppm and Conventional Example 2 is 215 ppm, whereas Example 1 is 42 ppm.
It extended to 0 ppm, demonstrating that the bactericidal power retention ability was extremely strong.

【0020】上記した各試験データからも明らかなよう
に、本発明によれば、毒性の強いオゾンの発生をほぼ完
全に抑えて安全性が飛躍的に向上し、しかも、強い殺菌
力の持続性にすぐれ、医療、食品分野における殺菌、除
菌、洗浄、漂白、脱臭などの用途に有用な機能水が低コ
ストで得られる。
As is clear from the above test data, according to the present invention, the generation of highly toxic ozone is almost completely suppressed, the safety is drastically improved, and the sustainability of the strong bactericidal activity is further improved. This makes it possible to obtain at low cost functional water useful for applications such as sterilization, disinfection, washing, bleaching, and deodorization in the medical and food fields.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明が適用される電解槽を示す縦断面図
である。
FIG. 1 is a longitudinal sectional view showing an electrolytic cell to which the present invention is applied.

【図2】は、本発明実施例の電極構造を模式的に示す図
である。
FIG. 2 is a view schematically showing an electrode structure according to an embodiment of the present invention.

【図3】は、本発明の効果の説明図である。FIG. 3 is an explanatory diagram of an effect of the present invention.

【符号の説明】[Explanation of symbols]

10・・・・チタン(基材) 11・・・・白金めっき層 12・・・・イリジュームめっき層 13・・・・複合めっき層 10 ··· titanium (base material) 11 ··· platinum plating layer 12 ··· iridium plating layer 13 ··· composite plating layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水を電気分解する電極構造が、基材とな
るチタンの表面に白金めっきが施され、その表面にイリ
ジュームまたはそれと均等な貴金属めっきが施されてい
ることを特徴とする電解槽。
1. An electrode structure for electrolyzing water, wherein platinum is applied to a surface of titanium as a base material, and iridium or a noble metal plating equivalent thereto is applied to the surface. Tank.
【請求項2】 水を電気分解する電極構造が、基材とな
るチタンの表面に、白金とイリジュームまたはそれと均
等な貴金属との複合めっきが施されていることを特徴と
する電解槽。
2. An electrolytic cell having an electrode structure for electrolyzing water, wherein a composite plating of platinum and iridium or a noble metal equivalent thereto is applied to the surface of titanium as a base material.
JP8153912A 1996-06-14 1996-06-14 Electrolytic cell Pending JPH108281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8153912A JPH108281A (en) 1996-06-14 1996-06-14 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8153912A JPH108281A (en) 1996-06-14 1996-06-14 Electrolytic cell

Publications (1)

Publication Number Publication Date
JPH108281A true JPH108281A (en) 1998-01-13

Family

ID=15572827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8153912A Pending JPH108281A (en) 1996-06-14 1996-06-14 Electrolytic cell

Country Status (1)

Country Link
JP (1) JPH108281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375934B1 (en) * 2000-06-29 2003-03-10 주식회사 지인테크놀로지 Electrode for disinfecting microbes from the water
CN102666932A (en) * 2009-12-25 2012-09-12 旭化成化学株式会社 Negative electrode, electrolytic cell for electrolysis of alkali metal chloride, and method for producing negative electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375934B1 (en) * 2000-06-29 2003-03-10 주식회사 지인테크놀로지 Electrode for disinfecting microbes from the water
CN102666932A (en) * 2009-12-25 2012-09-12 旭化成化学株式会社 Negative electrode, electrolytic cell for electrolysis of alkali metal chloride, and method for producing negative electrode

Similar Documents

Publication Publication Date Title
JP3181796B2 (en) Electrolyzed water production equipment
JP3181795B2 (en) Electrolyzed water production equipment
US3616355A (en) Method of generating enhanced biocidal activity in the electroylsis of chlorine containing solutions and the resulting solutions
US9090980B2 (en) System for electrochemical generation of hypochlorite
CN104418409A (en) Strongly-alkaline (acidic) electrolytic water generation device
JPH07505441A (en) Electrolyzer for generating germicidal solutions with high ozone content
KR100794106B1 (en) Electrolyzor for generating hypochlorous acid, apparatus and method for generating hypochlorous acid by use the same
JP2017014587A (en) Electrolytic apparatus and electrolytic ozone water production apparatus
EP0133920A1 (en) Automatically controlled system for sanitizing water bodies
TW201522715A (en) Electrolytic cell equipped with concentric electrode pairs
Ghalwa et al. Generation of sodium hypochlorite (NaOCl) from sodium chloride solution using C/PbO 2 and Pb/PbO 2 electrodes
JP2000226680A (en) Production of sterilizing electrolytic water and device therefor
JP3819860B2 (en) Ozone generator
JPH108281A (en) Electrolytic cell
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
KR101079689B1 (en) Mixed Metal Oxide Electrode For Making Sterilized Water With Hypochlorous Acid And Manufacturing Method Thereof
KR102513010B1 (en) Method of forming sterilizing water
JP2007252963A (en) Electrolytic water producer
JPH0428438B2 (en)
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
CN111422955A (en) Device and method for preparing hypochlorous acid water
Goldin et al. Indirect electrochemical synthesis of active oxygen in dilute sulfate solutions
KR20160008683A (en) Small device for producing electro-analysised water
JPH11319831A (en) Production of electrolytic function water and its apparatus
KR20220151859A (en) Non-diaphragm neutral sterilizing water generating apparatus