JPH1081925A - Copper alloy wire - Google Patents

Copper alloy wire

Info

Publication number
JPH1081925A
JPH1081925A JP23438696A JP23438696A JPH1081925A JP H1081925 A JPH1081925 A JP H1081925A JP 23438696 A JP23438696 A JP 23438696A JP 23438696 A JP23438696 A JP 23438696A JP H1081925 A JPH1081925 A JP H1081925A
Authority
JP
Japan
Prior art keywords
wire
alloy wire
copper alloy
rare earth
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23438696A
Other languages
Japanese (ja)
Inventor
Masateru Ichikawa
雅照 市川
Tsukasa Kono
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP23438696A priority Critical patent/JPH1081925A/en
Publication of JPH1081925A publication Critical patent/JPH1081925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy wire having high strength and high electric conductivity. SOLUTION: The copper alloy wire has a composition containing 0.35-0.45wt.% Sn and further containing rare earth elements by 0.01-2wt.% in total. As these rare earth elements, for example, one or more elements selected from the group consisting of La and Ce can be used. In the case where the copper alloy wire is the one obtained by applying wiredrawing to a rough drawn wire of 25mm diameter at >=65% reduction of area (draft) until a cross sectional area of <=170mm<2> is reached, >=45.0kgf/mm<2> tensile strength and >=70% IACS electric conductivity can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、架線式電車へ給電
するトロリ線等に好適の銅合金線材に関し、特に高強度
であると共に高導電率の銅合金線材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy wire suitable for a trolley wire or the like for supplying power to an overhead wire type electric train, and more particularly to a copper alloy wire having high strength and high conductivity.

【0002】[0002]

【従来の技術】従来より、架線式電車に給電するために
使用されるトロリ線として、硬銅又はCu−Sn合金等
からなる線材が使用されている。近年、電車の高速運行
が要望されており、これに応えるためには、トロリ線の
架線張力を高くすることが必要となってきている。この
ため、従来に比してより一層強度が高いトロリ線用の線
材が要望されている。
2. Description of the Related Art Conventionally, wires made of hard copper or Cu--Sn alloy have been used as trolley wires used to supply power to overhead wire trains. In recent years, high-speed operation of trains has been demanded, and to meet this demand, it has become necessary to increase the overhead wire tension of the trolley wire. Therefore, there is a demand for a wire for a trolley wire having higher strength than before.

【0003】上述のCu−Sn合金線材の場合は、この
線材が固溶強化型の合金線材であるため、Snの添加量
を増加することにより、更に一層高強度な線材となる。
[0003] In the case of the above-mentioned Cu-Sn alloy wire, since this wire is a solid solution strengthened alloy wire, increasing the amount of added Sn results in a wire having even higher strength.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
従来技術には、以下に示す問題点がある。即ち、Cu−
Sn合金線材において、Snの添加量を増加すると、導
電率が低下してしまうという問題点がある。トロリ線は
架線式電車に給電するためのものであるため、導電率の
低下は回避する必要がある。
However, the above-mentioned prior art has the following problems. That is, Cu-
In the Sn alloy wire rod, there is a problem that the conductivity decreases when the added amount of Sn increases. Since the trolley wire is used to supply power to the overhead wire train, it is necessary to avoid a decrease in conductivity.

【0005】例えば、時速300km/時間で走行する
次世代の高速電車(新幹線)の場合は、トロリ線に要求
される引張強さ及び導電率は、夫々、45kgf/mm
2以上及び70%IACS以上となっている。従来のC
u−Sn合金線材(トロリ線)は、そのSn含有量は
0.30重量%となっており、減面率(加工率)を55
%とし、直径が22mmの荒引き線を断面積が170m
2となるまで伸線加工することによって得られるもの
である。このCu−Sn合金線材の引張強さは41kg
/mm2であり、また導電率は76%IACSである。
このCu−Sn合金線材の強度をSnの固溶強化によっ
て向上させる場合は、上述の70%IACS以上の導電
率を確保するために、Cu−Sn合金線材のSn含有量
を0.45重量%以下に抑制することが必要であり、こ
のSn含有量では45kgf/mm2以上の引張強さを
得ることは困難である。
For example, in the case of a next-generation high-speed train (Shinkansen) running at a speed of 300 km / h, the tensile strength and electrical conductivity required for the trolley wire are 45 kgf / mm, respectively.
2 or more and 70% IACS or more. Conventional C
The u-Sn alloy wire (trolley wire) has an Sn content of 0.30% by weight and a reduction in area (working rate) of 55%.
%, And a rough drawn line having a diameter of 22 mm has a sectional area of 170 m.
It is obtained by wire drawing until it reaches m 2 . The tensile strength of this Cu-Sn alloy wire is 41 kg.
/ Mm 2 and conductivity is 76% IACS.
When the strength of the Cu-Sn alloy wire is improved by solid solution strengthening of Sn, the Sn content of the Cu-Sn alloy wire is set to 0.45% by weight in order to secure the above-mentioned electrical conductivity of 70% IACS or more. Therefore, it is difficult to obtain a tensile strength of 45 kgf / mm 2 or more with this Sn content.

【0006】一方、導電率を確保しつつ、強度を向上さ
せるために、Cu線材に析出硬化用の元素を添加し、固
溶している添加元素を析出させて、線材強度を高める方
法が考えられるが、析出硬化させるためには、製造工程
に熱処理工程を付加する必要があり、熱処理が不要な固
溶強化型合金線材に比して、析出硬化型合金線材は生産
コストが増加するという難点がある。
On the other hand, in order to improve the strength while securing the electrical conductivity, a method of adding a precipitation hardening element to a Cu wire and precipitating an additional element in a solid solution to increase the strength of the wire is considered. However, in order to perform precipitation hardening, it is necessary to add a heat treatment step to the manufacturing process, and the precipitation hardening type alloy wire has a disadvantage that the production cost increases compared to the solid solution strengthened type alloy wire which does not require heat treatment. There is.

【0007】Cu−Sn合金線材は、通常伸線加工によ
り形成されるため、伸線加工時の減面率を高くし、加工
硬化を生じさせることによって、強度を向上させること
ができる。しかし、減面率を高くするためには、Cu−
Sn合金線材の初期線径を大きくすることが必要とな
り、このような大径の線材を加工するためには、大規模
な設備が必要となると共に、作業性が低下ししまうとい
う欠点がある。このため、初期線径は、通常、大きいも
ので25mmまでとなっている。一方、トロリ線は、そ
の断面積が110mm2及び170mm2のものが一般的
によく使用されており、前述の直径25mmの荒引き線
を伸線加工してこれらのトロリ線を形成した場合は、減
面率が、夫々、78%及び65%となる。断面積が11
0mm2の場合は減面率が比較的高くなるものの、上述
のように、高速電車に使用されるトロリ線では、断面積
が170mm2であるため、得られる減面率は65%と
小さくなってしまう。このような減面率で、引張強さを
45kgf/mm2以上にすることは困難である。
[0007] Since the Cu-Sn alloy wire is usually formed by wire drawing, the strength can be improved by increasing the area reduction rate during wire drawing and causing work hardening. However, in order to increase the area reduction rate, Cu-
It is necessary to increase the initial wire diameter of the Sn alloy wire. In order to process such a large-diameter wire, a large-scale facility is required and workability is reduced. For this reason, the initial wire diameter is usually as large as 25 mm. On the other hand, trolley wires having a cross-sectional area of 110 mm 2 and 170 mm 2 are generally used in general, and when these trolley wires are formed by drawing the above-described rough drawn wire having a diameter of 25 mm. , And the area reduction rates are 78% and 65%, respectively. 11 cross section
In the case of 0 mm 2 , the area reduction rate is relatively high, but as described above, the trolley wire used for a high-speed train has a cross-sectional area of 170 mm 2 , so the obtained area reduction rate is as small as 65%. Would. It is difficult to make the tensile strength 45 kgf / mm 2 or more at such a reduction in area.

【0008】上述のように、Sn添加による固溶強化、
他の合金元素添加による析出硬化又は伸線加工時の加工
硬化によって、必要な導電率を確保しつつ、所望の強度
を得ることは極めて困難である。
As described above, solid solution strengthening by adding Sn,
It is extremely difficult to obtain a desired strength while securing necessary conductivity by precipitation hardening by addition of another alloy element or work hardening during wire drawing.

【0009】本発明はかかる問題点に鑑みてなされたも
のであって、高強度であると共に高導電率な銅合金線材
を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a copper alloy wire having high strength and high conductivity.

【0010】[0010]

【課題を解決するための手段】本発明に係る銅合金線材
は、Snを0.35乃至0.45重量%含有し、希土類
元素を総量で0.01乃至2重量%含有すること特徴と
する。
The copper alloy wire according to the present invention contains Sn in an amount of 0.35 to 0.45% by weight and a rare earth element in a total amount of 0.01 to 2% by weight. .

【0011】前記希土類元素は、La及びCeからなる
群から選択された1種以上の元素であってもよい。
[0011] The rare earth element may be at least one element selected from the group consisting of La and Ce.

【0012】本発明に係る銅合金線材は、減面率が65
%以上の加工を受けたものであってもよい。
The copper alloy wire according to the present invention has a reduction in area of 65%.
%.

【0013】本発明に係る銅合金線材は、トロリ線に使
用されるものであってもよい。
[0013] The copper alloy wire according to the present invention may be used for a trolley wire.

【0014】[0014]

【発明の実施の形態】本願発明者等は、必要な導電率を
確保しつつ、高強度な銅合金線材を得るために鋭意研究
した結果、Snに加え、希土類元素を所定量添加すれ
ば、強度と導電率とを兼ね備えた銅合金線材が得られる
ことを見出した。これにより、例えば、初期線径が25
mmの荒引き線を伸線加工して、断面積が170mm2
以下の銅合金線材を得た場合(減面率65%以上)は、
導電率を70%IACS以上に維持しつつ、引張強さが
45kgf/mm2以上の銅合金線材を得ることができ
る。このような銅合金製線材はトロリ線用線材として十
分な特性を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present application have conducted intensive studies to obtain a high-strength copper alloy wire while securing the required conductivity. As a result, if a predetermined amount of a rare earth element is added in addition to Sn, It has been found that a copper alloy wire having both strength and electrical conductivity can be obtained. Thereby, for example, the initial wire diameter is 25
mm rough drawn wire, the cross-sectional area is 170mm 2
When the following copper alloy wire is obtained (area reduction rate of 65% or more),
A copper alloy wire having a tensile strength of 45 kgf / mm 2 or more can be obtained while maintaining the electrical conductivity at 70% IACS or more. Such a copper alloy wire has sufficient properties as a wire for a trolley wire.

【0015】以下、本発明における銅合金線材の組成限
定理由について説明する。
Hereinafter, the reasons for limiting the composition of the copper alloy wire according to the present invention will be described.

【0016】Sn(錫):0.35乃至0.45重量% SnはCu合金線材の強度を向上させるのに有効な成分
である。Sn含有量が0.35重量%未満では、十分な
引張強さを得ることができない。一方、Sn含有量が
0.45重量%を超えると、引張強さは向上するもの
の、導電率が低下してしまう。従って、Sn含有量は
0.35乃至0.45重量%とする。
Sn (tin): 0.35 to 0.45% by weight Sn is an effective component for improving the strength of a Cu alloy wire. If the Sn content is less than 0.35% by weight, sufficient tensile strength cannot be obtained. On the other hand, when the Sn content exceeds 0.45% by weight, the tensile strength is improved, but the electrical conductivity is lowered. Therefore, the Sn content is set to 0.35 to 0.45% by weight.

【0017】希土類元素:総量で0.01乃至2重量% 希土類元素は、導電率を維持しつつ、Cu合金線材の強
度を向上させるのに有効な成分である。希土類元素の含
有量が0.01重量%未満では、強度向上が不十分であ
る。一方、希土類元素の含有量が2重量%未満を超える
と、鋳造時に湯流れが低下し、鋳造欠陥を生じ、伸線加
工工程において、割れを生ずるなどの問題が発生しやす
くなる。その結果、Cu合金線材の強度が低下して、十
分な引張強さを得ることが困難となる。従って、希土類
元素の含有量は、総量で0.01乃至2重量%とする。
Rare earth element: 0.01 to 2% by weight in total The rare earth element is a component effective for improving the strength of the Cu alloy wire while maintaining the electrical conductivity. When the content of the rare earth element is less than 0.01% by weight, the strength is not sufficiently improved. On the other hand, when the content of the rare earth element is less than 2% by weight, the flow of the molten metal at the time of casting decreases, casting defects are generated, and problems such as cracks are likely to occur in the wire drawing process. As a result, the strength of the Cu alloy wire is reduced, and it is difficult to obtain a sufficient tensile strength. Therefore, the content of the rare earth element is set to 0.01 to 2% by weight in total.

【0018】このような希土類元素に、例えば、La
(ランタン)及びCe(セリウム)がある。また、発火
合金等に用いられる希土類元素の混合物であるミッシュ
メタル(Ce:40乃至50重量%、La:20乃至4
0重量%、Pr(プラセオジム)(約5%)、Nd(ネ
オジム)(約15%)、その他(数%)からなる)等を
添加してもよい。
Such rare earth elements include, for example, La
(Lanthanum) and Ce (cerium). Further, misch metal (Ce: 40 to 50% by weight, La: 20 to 4%), which is a mixture of rare earth elements used for ignition alloys and the like, is used.
0% by weight, Pr (praseodymium) (about 5%), Nd (neodymium) (about 15%), and others (several%) may be added.

【0019】[0019]

【実施例】以下、本発明の実施例について、その特許請
求の範囲から外れる比較例と比較して説明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples that depart from the scope of the claims.

【0020】実施例1〜6及び比較例1〜10において
は、下記表1に示すワイヤ状の各添加成分を一定速度で
溶銅中に送給しつつ、連続鋳造装置により鋳造して所定
の組成の合金材を得た。得られた各合金材を熱間圧延す
ることにより、直径が25mmの荒引き線を得た。各パ
スの減面率(加工率)を約20%とし、総減面率が65
%となるように、各荒引き線に複数パスの伸線加工を施
し、断面積が170mm2のトロリ線(銅合金線材)を
得た。実施例1〜6及び比較例1〜10における各トロ
リ線の引張強さ、導電率及び伸線工程における割れの有
無等を下記表1に示す。
In Examples 1 to 6 and Comparative Examples 1 to 10, each of the wire-shaped additive components shown in Table 1 below was fed into molten copper at a constant speed, and was cast by a continuous casting apparatus to obtain a predetermined amount. An alloy material having the composition was obtained. By hot rolling each of the obtained alloy materials, a rough drawn wire having a diameter of 25 mm was obtained. The area reduction rate (processing rate) of each pass is about 20%, and the total area reduction rate is 65%.
%, Each rough drawn wire was subjected to multiple passes of wire drawing to obtain a trolley wire (copper alloy wire) having a cross-sectional area of 170 mm 2 . Table 1 below shows the tensile strength, electrical conductivity, and the presence or absence of cracks in the wire drawing process of each of the trolley wires in Examples 1 to 6 and Comparative Examples 1 to 10.

【0021】[0021]

【表1】 [Table 1]

【0022】但し、表1の割れ欄は、伸線工程における
割れであり、○は割れがない場合、×は割れがある場合
である。
However, the crack column in Table 1 is a crack in the wire drawing process, ○ indicates no crack, and X indicates a crack.

【0023】なお、上記表1のミッシュメタルは、Ce
を40乃至50重量%含有し、Laを20乃至40重量
%含有し、残部がY及び/又はErからなる発火合金材
である。
The misch metal in Table 1 is Ce
Is 40 to 50% by weight, La is 20 to 40% by weight, and the balance is Y and / or Er.

【0024】上記表1に示すように、実施例1〜6のト
ロリ線においては、引張強さ及び導電率が、夫々、4
5.0kgf/mm2以上、70%IACS以上と極め
て良好であった。
As shown in Table 1 above, in the trolley wires of Examples 1 to 6, the tensile strength and the electrical conductivity were 4
The results were extremely good at 5.0 kgf / mm 2 or more and 70% IACS or more.

【0025】比較例1、2は、いずれも希土類元素が添
加されていないものである。比較例1では、Sn含有量
が本発明にて規定した範囲内であるため、導電率は7
0.5%IACSと70%IACSを超えたものの、希
土類元素が添加されていないため、引張強さが44.6
kgf/mm2と45.0kgf/mm2未満であった。
比較例2では、Sn含有量が本発明にて規定した範囲よ
り多いため、引張強さが45.3kgf/mm2と大き
いものの、導電率が69.6%IACSと低かった。こ
のように、Snを添加することによって、強度を向上さ
せた場合は、所望の導電率を得ることができない。
In Comparative Examples 1 and 2, no rare earth element was added. In Comparative Example 1, the conductivity was 7 since the Sn content was within the range specified in the present invention.
Although exceeding 0.5% IACS and 70% IACS, the tensile strength is 44.6 because no rare earth element is added.
kgf / mm 2 and less than 45.0 kgf / mm 2 .
In Comparative Example 2, since the Sn content was larger than the range specified in the present invention, the tensile strength was as large as 45.3 kgf / mm 2 , but the electrical conductivity was as low as 69.6% IACS. As described above, when the strength is improved by adding Sn, a desired conductivity cannot be obtained.

【0026】比較例3〜10では、いずれについても希
土類元素が添加されている。比較例3、4では、Sn含
有量が本発明にて規定した範囲より小さいため、引張強
さが44.5kgf/mm2と45kgf/mm2未満で
あった。比較例5では、希土類元素のうち、Laが含有
されているものの、その含有量が0.009重量%と本
発明にて規定した範囲より小さいため、引張強さが4
4.7kgf/mm2と低かった。比較例6では、希土
類元素のうち、Ceが含有されているものの、その含有
量が0.009重量%と本発明にて規定した範囲より小
さいため、引張強さが44.8kgf/mm2と低かっ
た。比較例7では、La含有量が2.5重量%と本発明
にて規定した範囲より多いため、伸線工程で割れを生
じ、引張強さが49.6kgf/mm2と低くなると共
に、導電率も70%の確保が困難となった。比較例8も
同様に、Ce含有量が2.2重量%と本発明にて規定し
た範囲より多いため、割れの発生などにより引張強さが
49.1kgf/mm2で導電率が68.9%と目標特
性を下回る結果となった。
In each of Comparative Examples 3 to 10, a rare earth element was added. In Comparative Examples 3 and 4, since the Sn content is less than the range specified in the present invention, the tensile strength was less than 44.5kgf / mm 2 and 45 kgf / mm 2. In Comparative Example 5, although La was contained among the rare earth elements, the content was 0.009% by weight, which was smaller than the range specified in the present invention, so that the tensile strength was 4%.
It was as low as 4.7 kgf / mm 2 . In Comparative Example 6, among the rare earth elements, Ce was contained, but the content was 0.009% by weight, which was smaller than the range specified in the present invention, so that the tensile strength was 44.8 kgf / mm 2 . It was low. In Comparative Example 7, since the La content was 2.5% by weight, which was larger than the range specified in the present invention, cracks occurred in the wire drawing step, the tensile strength was reduced to 49.6 kgf / mm 2, and the conductivity was low. It was difficult to secure a rate of 70%. Similarly, in Comparative Example 8, since the Ce content was 2.2% by weight, which was larger than the range specified in the present invention, the tensile strength was 49.1 kgf / mm 2 and the electrical conductivity was 68.9 due to the occurrence of cracks. %, Which is lower than the target characteristic.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
Snに加え希土類元素が所定量添加されているので、高
強度であると共に高導電率な銅合金線材を得ることがで
きる。
As described above, according to the present invention,
Since the rare earth element is added in a predetermined amount in addition to Sn, a copper alloy wire having high strength and high conductivity can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Snを0.35乃至0.45重量%含有
し、希土類元素を総量で0.01乃至2重量%含有する
こと特徴とする銅合金線材。
1. A copper alloy wire comprising 0.35 to 0.45% by weight of Sn and 0.01 to 2% by weight of a rare earth element in total.
【請求項2】 前記希土類元素は、La及びCeからな
る群から選択された1種以上の元素であることを特徴と
する請求項1に記載の銅合金線材。
2. The copper alloy wire according to claim 1, wherein the rare earth element is at least one element selected from the group consisting of La and Ce.
【請求項3】 減面率が65%以上の加工を受けたもの
であることを特徴とする請求項1又は2に記載の銅合金
線材。
3. The copper alloy wire according to claim 1, wherein the copper alloy wire has been processed to have a reduction in area of 65% or more.
【請求項4】 トロリ線に使用されるものであることを
特徴とする請求項1乃至3のいずれか1項に記載の銅合
金線材。
4. The copper alloy wire according to claim 1, which is used for a trolley wire.
JP23438696A 1996-09-04 1996-09-04 Copper alloy wire Pending JPH1081925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23438696A JPH1081925A (en) 1996-09-04 1996-09-04 Copper alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23438696A JPH1081925A (en) 1996-09-04 1996-09-04 Copper alloy wire

Publications (1)

Publication Number Publication Date
JPH1081925A true JPH1081925A (en) 1998-03-31

Family

ID=16970194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23438696A Pending JPH1081925A (en) 1996-09-04 1996-09-04 Copper alloy wire

Country Status (1)

Country Link
JP (1) JPH1081925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444291B1 (en) * 2002-05-23 2004-08-12 창덕금속 주식회사 High strength phosphorous copper with fine grain structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444291B1 (en) * 2002-05-23 2004-08-12 창덕금속 주식회사 High strength phosphorous copper with fine grain structure

Similar Documents

Publication Publication Date Title
JP5147040B2 (en) Method for producing copper alloy conductor
JP4479510B2 (en) Copper alloy conductor, trolley wire / cable using the same, and method for producing copper alloy conductor
JP6678579B2 (en) Aluminum alloy wire and method for manufacturing aluminum alloy wire
JP2008112620A (en) Electric wire conductor and its manufacturing method
JP2007023305A (en) Conductor element wire for electric wire for automobile, and its manufacturing method
JP2004137551A (en) Method for manufacturing copper alloy conductor for train wire, and copper alloy conductor for train wire
JP2005126790A (en) Copper alloy material, method of producing copper alloy conductor using the same, copper alloy conductor obtained by the method, and cable using the same
EP0964069B1 (en) Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
JPH1081925A (en) Copper alloy wire
JP6635732B2 (en) Method for manufacturing aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using the same
JPH1180861A (en) High strength and high conductivity copper alloy wire rod and its production
JP4140471B2 (en) Copper refining method
JP4214394B2 (en) Abrasion-resistant trolley wire and its manufacturing method
JP6473465B2 (en) Aluminum alloy conductor wire and method for manufacturing the same
JPH1096036A (en) High strength and high conductivity copper alloy wire rod
JP2006176833A (en) Aluminum alloy for conduction, and aluminum alloy wire for conduction and method for producing the same
JP4140470B2 (en) Copper refining method
JP6853872B2 (en) Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this
JPH11350093A (en) Manufacture of heat resistant aluminum alloy conducting wire
JPH1080789A (en) Welding wire for co2 gas shielded arc welding and its manufacture
JP6388504B2 (en) Wire drawing material and trolley wire using the same
JP2018083973A (en) Method of producing copper alloy member
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JP2684307B2 (en) Highly efficient method for preventing Al2O3 aggregation in molten steel
JP2500143B2 (en) Copper alloy member with both conductivity and strength

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A02