JPH1081576A - Production of inorganic porous material - Google Patents

Production of inorganic porous material

Info

Publication number
JPH1081576A
JPH1081576A JP9213367A JP21336797A JPH1081576A JP H1081576 A JPH1081576 A JP H1081576A JP 9213367 A JP9213367 A JP 9213367A JP 21336797 A JP21336797 A JP 21336797A JP H1081576 A JPH1081576 A JP H1081576A
Authority
JP
Japan
Prior art keywords
inorganic porous
sludge
raw material
porous body
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9213367A
Other languages
Japanese (ja)
Inventor
Itsuhito Kato
逸人 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP9213367A priority Critical patent/JPH1081576A/en
Publication of JPH1081576A publication Critical patent/JPH1081576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Glanulating (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an inorganic porous material having a high porosity and excellent in strength by forming granules using a raw material which is discharged from a foundry as sludge waste and has a specific ignition loss, heating the obtained granules at a specified temperature and baking them. SOLUTION: Sludge material is obtained by filtering sludge waste discharged from a foundry and containing also domestic wastewater and appropriately drying the residue. The obtained sludge material containing silica and alumina as main components and having an ignition loss of >=20% by weight is used as a raw material. The material is mixed with water in such a manner so that the water content becomes preferably 10-30%. Subsequently, granules or blocks are produced from the mixture, and the granules or blocks are heated up to >=80 deg.C and baked.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は細孔をもつ無機多孔
質体の製造方法に関する。
The present invention relates to a method for producing an inorganic porous body having pores.

【0002】[0002]

【従来の技術】鋳物工場から廃棄物として排出された粉
塵には、細孔形成材として機能し得る多量のカーボンが
含まれていることに着目し、粉塵を利用して無機多孔質
体を製造する技術が近年提案されている(新潟工業技術
センター:1992年、NO.21研究報告)。
2. Description of the Related Art Focusing on the fact that dust discharged from a foundry as waste contains a large amount of carbon that can function as a pore-forming material, an inorganic porous material is produced using the dust. The following technology has been proposed in recent years (Niigata Industrial Technology Center: 1992, No. 21 Research Report).

【0003】この技術によれば、鋳物工場から廃棄物と
して排出された粉塵を原料として用い、原料を湿式混練
した後に押出成形で連続押出体を成形する。その後、連
続押出体をカッターで所定の長さに切断し、これにより
直径1mm程度の円柱形状の粒状体を形成する。その粒
状体を乾燥し、高温領域で焼成して無機多孔質体を得
る。この技術は、廃棄していた粉塵を有効利用できるた
め、近年、有望視されている。
According to this technique, dust extruded as waste from a foundry is used as a raw material, the raw material is wet-kneaded, and then a continuous extruded body is formed by extrusion. Thereafter, the continuous extruded body is cut into a predetermined length by a cutter, thereby forming a columnar granular body having a diameter of about 1 mm. The granular material is dried and fired in a high temperature region to obtain an inorganic porous material. This technology has recently been regarded as promising because it can effectively use the dust that has been discarded.

【0004】[0004]

【発明が解決しようとする課題】上記した技術に係る無
機多孔質体によれば、低気孔率であれば高強度が得ら
れ、高気孔率であれば低強度となる傾向がある。即ち、
高強度と高気孔率とは相反する傾向がある。更に上記し
た従来技術によれば、前述した様に押出成形で連続押出
体を成形した後に、連続押出体をカッターで所定の長さ
に切断し、円柱形状の粒状体を形成し、その粒状体を乾
燥、焼成している。そのため切断の際に、粒状体の切断
面において『切断垂れ』が発生し易い。これが局部的に
突出してエッジ部分となるおそれがある。この様な無機
多孔質体では焼成したとしても、エッジ部分が破損し易
く、強度特性が必ずしも充分ではないと考えられる。
According to the inorganic porous material according to the above-mentioned technology, high strength tends to be obtained if the porosity is low, and low strength tends to be obtained if the porosity is high. That is,
High strength and high porosity tend to conflict. Further, according to the above-described conventional technique, after forming a continuous extruded body by extrusion molding as described above, the continuous extruded body is cut into a predetermined length by a cutter to form a columnar granular body, and the granular body is formed. Is dried and fired. Therefore, at the time of cutting, "cut sagging" is likely to occur on the cut surface of the granular material. This may protrude locally and become an edge portion. Even if such an inorganic porous body is fired, it is considered that the edge portion is easily damaged and the strength characteristics are not always sufficient.

【0005】本発明は上記した実情に鑑みなされたもの
であり、各請求項は、気孔率を高く維持しつつ強度を確
保するのに有利な無機多孔質体の製造方法を提供するこ
とを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a method for producing an inorganic porous body which is advantageous for securing strength while maintaining a high porosity. And

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

(1)鋳物工場から汚泥廃棄物は微小なコロイド粒子を
含む割合が多く、したがって粒径が細かい微粒子が多く
含まれている。更に汚泥廃棄物には、通常の粉塵廃棄物
よりも、焼成で焼失して気孔を構成する有機物質も多く
含まれている。本発明者はこのことに着目し、汚泥廃棄
物から形成した汚泥材を原料とすれば、焼成した無機多
孔質体の気孔率を高めに維持しつつ強度を高め得ること
に着目し、請求項1に係る無機多孔質体の製造方法を本
発明者は開発した。
(1) Sludge waste from a foundry contains a large proportion of fine colloid particles, and thus contains many fine particles having a small particle diameter. Further, the sludge waste contains more organic substances that are burned off by burning and form pores, compared to ordinary dust waste. The present inventor has paid attention to this point, and has noticed that if a sludge material formed from sludge waste is used as a raw material, strength can be increased while maintaining a high porosity of a fired inorganic porous body. The present inventor has developed a method for producing an inorganic porous body according to No. 1.

【0007】更に本発明者は、前記した従来技術と同様
に鋳物工場から排出される粉塵廃棄物を原料としたとし
ても、連続押出体をカッタで切断して粒状体を得る方式
ではなく、原料と攪拌羽根との摩擦を利用して粒状体を
造粒する方式を採用すれば、エッジ状の突出部分が低減
し、無機多孔質体の気孔率を確保しつつ強度を高め得る
ことに着目し、請求項2に係る無機多孔質体の製造方法
を本発明者は開発した。
Further, the inventor of the present invention has proposed that, even if dust waste discharged from a foundry is used as a raw material in the same manner as in the prior art, the continuous extruded body is not cut by a cutter to obtain granules, By adopting a method of granulating the granular material by using the friction between the blade and the stirring blade, attention is paid to the fact that the edge-shaped protrusions can be reduced and the strength can be increased while securing the porosity of the inorganic porous material. The present inventors have developed a method for producing an inorganic porous material according to claim 2.

【0008】(2)即ち、請求項1に係る無機多孔質体
の製造方法は、鋳物工場から汚泥廃棄物として排出され
たシリカ、アルミナを含む汚泥材を主要成分とすると共
に強熱減量が重量比で20%以上の原料を用い、水と原
料とを混合した混合物から粒状体または塊状体を得る工
程と、粒状体または塊状体を800℃以上に加熱して、
焼成し、無機多孔質体を得る工程とを順に実施すること
を特徴とする。
(2) That is, in the method for producing an inorganic porous material according to the first aspect, a sludge material containing silica and alumina discharged from a foundry as sludge waste is used as a main component, and ignition loss is reduced by weight. A step of obtaining granules or aggregates from a mixture of water and raw materials using a raw material having a ratio of 20% or more, and heating the granules or aggregates to 800 ° C. or higher,
And baking to obtain an inorganic porous body.

【0009】請求項2に係る無機多孔質体の製造方法
は、鋳物工場から粉塵廃棄物として排出されたシリカ、
アルミナを含む粉塵を主要成分とすると共に強熱減量が
重量比で10%以上の原料を用い、水と原料とを混合し
た混合物を攪拌羽根を用いて攪拌し、非円柱状の粒状体
を造粒する造粒工程と、粒状体を800℃以上に加熱し
て、焼成し、無機多孔質体を得る焼成工程とを順に実施
することを特徴とするものである。
The method for producing an inorganic porous material according to claim 2 is characterized in that silica discharged from a foundry as dust waste,
Using a raw material whose main component is dust containing alumina and whose ignition loss is 10% or more by weight, a mixture of water and the raw material is stirred using a stirring blade to form a non-cylindrical granular material. The method is characterized in that a granulating step of granulating and a firing step of heating the granular body to 800 ° C. or higher and firing to obtain an inorganic porous body are sequentially performed.

【0010】請求項3に係る無機多孔質体の製造方法
は、請求項1または請求項2において、原料は炭素系粉
末を含み、炭素系粉末の平均粒径は、請求項1の汚泥材
を構成する粒子の平均粒径、または、請求項3の粉塵を
構成する粒子の平均粒径よりも大きいことを特徴とする
ものである。強熱減量とは、焼成の際の高熱で焼失する
減量をいい、主として焼成の高熱で焼失する有機物質の
量を意味する。強熱減量は水を対象としない。 (3)請求項1に係る方法によれば、前述したように鋳
物工場から汚泥廃棄物は微小なコロイド粒子を含む割合
が多く、したがって粒径が細かい微粒子が多く含まれて
いる。粒径が細かいほど焼成時の結合力が高まるため、
汚泥廃棄物として排出された汚泥材を主要成分とする原
料を用いれば、無機多孔質体の強度が確保される。
According to a third aspect of the present invention, in the method for producing an inorganic porous material according to the first or second aspect, the raw material contains a carbon-based powder, and the average particle diameter of the carbon-based powder is the same as that of the first aspect. The average particle size of the constituent particles or the average particle size of the particles forming the dust of claim 3 is larger than the average particle size. Ignition loss refers to weight loss that is burned off by high heat during firing, and mainly means the amount of organic substances that are burned off by high heat during firing. Ignition loss does not cover water. (3) According to the method of the first aspect, as described above, the sludge waste from the foundry has a large proportion containing fine colloid particles, and therefore contains many fine particles having a small particle diameter. The smaller the particle size, the higher the bonding strength during firing,
If a raw material containing sludge discharged as sludge waste as a main component is used, the strength of the inorganic porous body is ensured.

【0011】更に汚泥廃棄物には、通常の粉塵廃棄物よ
りも、焼成で焼失し気孔を構成する有機物質も多く含ま
れているため、強熱減量が重量比で20%以上とされ、
無機多孔質体の気孔率が確保される。請求項1に係る製
造方法によれば、粒状体を形成する場合には、水と原料
とを混合した混合物を攪拌羽根で攪拌することにより攪
拌羽根と原料との摩擦を利用して粒状体を形成しても良
いし、或いは、混合物から成形した連続押出体をカッタ
ーで所定の長さの切断して粒状体を形成しても良い。前
者の場合には、『切断垂れ』に起因するエッジ部分の発
生は少なく、そのため無機多孔質体の気孔率を確保しつ
つ強度を確保するのに一層有利となる。
Further, the sludge waste contains more organic substances which are burned out by burning and form pores, as compared with ordinary dust waste, so that the ignition loss is set to 20% or more by weight.
The porosity of the inorganic porous body is ensured. According to the manufacturing method of the first aspect, when forming the granular material, the mixture of water and the raw material is stirred by the stirring blade, thereby utilizing the friction between the stirring blade and the raw material. It may be formed, or a continuous extruded body formed from the mixture may be cut into a predetermined length by a cutter to form a granular body. In the former case, the occurrence of edge portions due to "cutting sag" is small, and therefore, it is more advantageous to secure strength while securing porosity of the inorganic porous body.

【0012】請求項1に係る製造方法で製造された無機
多孔質体は、重量比でシリカ50%以上、アルミナ20
%以上含み、気孔率が40%以上である構成にできる。
そのため、気孔率を高めに維持しつつ強度を確保するの
に有利である。この様な無機多孔質体は、気孔率が高く
保水性を有する。更に強度も確保され、耐破損性も高
い。アルミナ成分が多いためと考えられる。なお本明細
書では%は特に断らない限り重量比に基づく。
The inorganic porous material produced by the production method according to the first aspect is characterized in that a weight ratio of silica is 50% or more and alumina is 20% or more.
% And a porosity of 40% or more.
Therefore, it is advantageous to secure strength while maintaining a high porosity. Such an inorganic porous body has a high porosity and water retention. Furthermore, strength is secured and breakage resistance is high. This is probably because the alumina component is large. In this specification,% is based on weight ratio unless otherwise specified.

【0013】請求項2に係る方法によれば、原料と攪拌
羽根との摩擦を利用して粒状体を造粒する方式を採用し
ており、粒状体においてエッジ状の突出部分が低減す
る。請求項3に係る方法によれば、原料は炭素系粉末を
含み、この炭素系粉末は焼成の際に気孔形成機能を奏す
る。炭素系粉末の平均粒径は、汚泥材を構成する粒子の
平均粒径、または、粉塵を構成する粒子の平均粒径より
も大きいため、無機多孔質体の気孔率、気泡サイズが確
保される。
According to the second aspect of the present invention, a method is employed in which the granular material is granulated by utilizing the friction between the raw material and the stirring blade, and the edge-shaped protruding portion of the granular material is reduced. According to the method of the third aspect, the raw material includes a carbon-based powder, and the carbon-based powder has a pore-forming function during firing. Since the average particle diameter of the carbon-based powder is larger than the average particle diameter of the particles constituting the sludge material or the average particle diameter of the particles constituting the dust, the porosity and the bubble size of the inorganic porous body are secured. .

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施形態1)実施形態1では、鋳鉄を製造する鋳物工
場から汚泥廃棄物として排出された汚泥材を原料として
用いる。実施形態1で用いる汚泥材は、鋳物工場の排水
貯溜所に溜まっている汚泥廃棄物をフィルタプレスで濾
過したものを、日光や加熱処理で適宜乾燥したケーキ状
の乾燥汚泥材である。
(Embodiment 1) In Embodiment 1, sludge discharged from a foundry for producing cast iron as sludge waste is used as a raw material. The sludge material used in the first embodiment is a cake-shaped dry sludge material obtained by filtering sludge waste collected in a drainage storage of a foundry by a filter press and drying it appropriately by sunlight or heat treatment.

【0015】汚泥材を構成する汚泥廃棄物には、鋳物工
場の生産ラインから排出された粉塵を含む水の泥、鋳物
工場の生活排水(トイレの排水、食堂の排水を含む)の
泥などが混在しており、従って焼成温度で焼失する有機
物質が多く含まれている。よって強熱減量が大きい。実
施形態1で用いる汚泥材を構成する粒子の粒径分布の一
例を図1に示す。図1の横軸は汚泥材を構成する粒子の
粒径を示し、縦軸は相対粒子量(wt%)を示す。図1
から理解できる様に汚泥材を構成する粒子の粒径として
は、メディアン径が3.365μm、モード径が3.1
76μmであった。この様に汚泥材を構成する粒子は微
小になり易い。なおメディアン径とは中央値の径を意味
する。モード径とは最多値の径を意味する。
The sludge waste constituting the sludge material includes mud of water containing dust discharged from a production line of a foundry, mud of domestic wastewater (including wastewater from toilets and canteens) of a foundry. It contains a large amount of organic substances that are mixed and therefore burnt off at the firing temperature. Therefore, the ignition loss is large. FIG. 1 shows an example of the particle size distribution of the particles constituting the sludge material used in the first embodiment. The horizontal axis in FIG. 1 shows the particle diameter of the particles constituting the sludge material, and the vertical axis shows the relative particle amount (wt%). FIG.
As can be understood from FIG. 5, the particle diameter of the particles constituting the sludge material is 3.365 μm in median diameter and 3.1 in mode diameter.
It was 76 μm. Thus, the particles constituting the sludge material tend to be minute. The median diameter means the diameter of the median. The mode diameter means the maximum value diameter.

【0016】この汚泥材はシリカを50%以上、アルミ
ナを20%以上含む。殊にこの汚泥材はアルミナが20
%以上であり、アルミナ含有量が高く高強度の無機多孔
質体を製造するのに有利であった。そして上記したケー
キ状の汚泥材を乾燥した後に、細かく破砕した。更に、
破砕した汚泥材を、図3(A)に模式的に示す混練機1
0に収容し、水10〜30%となる様に水を適宜混合
し、混練機10で混練し、混合物とした。ここで水10
〜30%とは、原料である汚泥材と水との混合物を10
0%としたとき、水を10〜30%含む割合である。こ
のように乾燥汚泥材に水を加える方式を採用すれば、混
合物の水分含有量を適切に調整でき、ひいては造粒性が
適切に確保される。この意味でも、汚泥材は乾燥汚泥材
を採用することが好ましい。
This sludge material contains 50% or more of silica and 20% or more of alumina. In particular, this sludge material has 20 alumina.
% Or more, which was advantageous for producing a high-strength inorganic porous body having a high alumina content. After drying the above-mentioned cake-like sludge material, it was crushed finely. Furthermore,
The kneader 1 schematically shows the crushed sludge material in FIG.
0, and water was appropriately mixed so as to be 10 to 30% of water, and kneaded with a kneader 10 to obtain a mixture. Where water 10
~ 30% means that the mixture of sludge and water as raw materials is 10%.
When it is 0%, it is a ratio containing 10 to 30% of water. If the method of adding water to the dried sludge material is employed in this manner, the water content of the mixture can be appropriately adjusted, and the granulation property can be appropriately secured. In this sense, it is preferable to use a dry sludge material as the sludge material.

【0017】図3に示す混練機10は、原料を収容する
と共に矢印X1方向に回転する有底形状の容器11と、
矢印X2方向に回転可能に装備された回転軸12と、回
転軸12を回転させるモータ13と、容器11内に位置
して回転軸13に装備された多数個の攪拌羽根14とを
備えている。容器11は水平線に対して傾斜している。
A kneader 10 shown in FIG. 3 has a bottomed container 11 which accommodates raw materials and rotates in the direction of arrow X1.
The rotating shaft 12 is provided so as to be rotatable in the direction of the arrow X2, a motor 13 for rotating the rotating shaft 12, and a number of stirring blades 14 provided in the rotating shaft 13 in the container 11. . The container 11 is inclined with respect to the horizontal line.

【0018】攪拌羽根14の模式図を図3(B)に示
す。図3(B)に示す様に攪拌羽根14は板状羽根部1
4iを備えている。板状羽根部14iの回転により、板
状羽根部14iの下で原料が転がり次第に造粒され、粒
状の粒状体Wに成長する。板状羽根部14iは容器11
の底面に対して傾斜しているので、ある程度固まった粒
が成長核となり、容器11の底面に堆積している原料に
押し付けられ、粒状体Wの造粒化が進行すると考えられ
る。実施形態1では、直径が例えば1〜20mmとなる
様に造粒し、生状態の粒状体Wを形成する。粒状体Wの
サイズを20mm以上、30mm以上にすることも可能
である。
FIG. 3B is a schematic view of the stirring blade 14. As shown in FIG. 3 (B), the stirring blade 14 is a plate-like blade portion 1.
4i. Due to the rotation of the plate-like blades 14i, the raw material rolls under the plate-like blades 14i, and is gradually granulated to grow into granular granular materials W. The plate-like blade portion 14i is the container 11
It is considered that the particles hardened to some extent become growth nuclei and are pressed against the raw material deposited on the bottom surface of the container 11 and the granulation of the granular material W proceeds. In the first embodiment, granulation is performed so that the diameter becomes, for example, 1 to 20 mm, and a granular material W in a raw state is formed. It is also possible to set the size of the granular material W to 20 mm or more, or 30 mm or more.

【0019】なお一般的には、造粒の際の粒径を小さく
するには造粒時間を短くすれば良い。粒径を大きくする
には造粒時間を長くすれば良い。上記の様にした形成し
た粒状体Wを140℃に60分間加熱保持して乾燥処理
し、粒状体Wの水分を除去する。更に、乾燥した後の粒
状体Wを1000℃で大気中で30分間以上焼成し、こ
れにより無機多孔質体を形成する。図4に模式的に示す
様に、無機多孔質体Waは、楕円形状を呈する粒状であ
る。
Generally, in order to reduce the particle size during granulation, the granulation time may be shortened. To increase the particle size, the granulation time may be extended. The granular material W formed as described above is heated and held at 140 ° C. for 60 minutes to perform a drying treatment, thereby removing moisture from the granular material W. Further, the dried granular material W is fired in the air at 1000 ° C. for 30 minutes or more, thereby forming an inorganic porous material. As schematically shown in FIG. 4, the inorganic porous body Wa has an elliptical granular shape.

【0020】なお焼成温度が高すぎると、過剰の液相が
生じ、強度の向上には有利であるものの、気孔率が低下
する傾向となるので好ましくない。実施形態1に係る原
料の強熱減量は20%を越えている。強熱減量とは、乾
燥により水分を除去した後の状態を基準とし、焼成の際
の高温加熱により減量した割合を意味する。本実施形態
では強熱減量は、試料を140℃で60分間乾燥させて
水分を除去した後、試料の重量を計量し(W1)、更に
焼成した後で試料の重量を計量(W2)し、その差の重
量をΔWとし、強熱減量={(ΔW/W1)×100}
%に基づいて求めた。
If the firing temperature is too high, an excessive liquid phase is generated, which is advantageous for improving the strength, but is not preferable because the porosity tends to decrease. The ignition loss of the raw material according to Embodiment 1 exceeds 20%. Ignition loss means a ratio of weight loss by high-temperature heating at the time of baking, based on a state after removing water by drying. In the present embodiment, the ignition loss is determined by drying the sample at 140 ° C. for 60 minutes to remove water, weighing the sample (W1), and further weighing the sample after calcination (W2), The weight of the difference is defined as ΔW, and the ignition loss = {(ΔW / W1) × 100}.
%.

【0021】汚泥材には、焼成時の加熱で焼失する有機
成分が多く含まれており、従って強熱減量が大きい。汚
泥材では、採取場所に応じて強熱減量の値は相違し易
い。従って強熱減量が20%以上の原料、25%以上の
原料、30%以上の原料、35%以上の原料を採用する
こともできる。上記した焼成後の無機多孔質体の気孔率
を測定したところ、50%以上、60%以上、65%以
上の気孔率が得られた。原料の強熱減量が大きいため、
細孔量が増加したものと考えられる。特に汚泥材を構成
する汚泥廃棄物には、高温加熱で焼失する有機物質が多
くなりがちの生活排水も含まれているため、気孔率は確
保され易い。
[0021] The sludge material contains a large amount of organic components which are burned off by heating during firing, and thus have a large ignition loss. In sludge, the value of ignition loss is likely to differ depending on the sampling location. Therefore, it is possible to employ a raw material having a loss on ignition of 20% or more, a raw material of 25% or more, a raw material of 30% or more, and a raw material of 35% or more. When the porosity of the inorganic porous body after the above-mentioned firing was measured, a porosity of 50% or more, 60% or more, and 65% or more was obtained. Because the ignition loss of raw materials is large,
It is considered that the amount of pores increased. In particular, the sludge waste constituting the sludge material contains domestic wastewater, which tends to increase the amount of organic substances that are burned off by high-temperature heating, so that the porosity is easily secured.

【0022】なお気孔率は体積比に基づく、つまり
{(無機多孔質粒体の細孔の体積/無機多孔質粒体の見
掛け体積)×100}%を意味する。実施形態1で用い
る汚泥材の焼成前後の組成を一例を、その強熱減量、そ
の汚泥材で形成した無機多孔質体の気孔率と共に表1に
示す。
The porosity is based on the volume ratio, that is, {(volume of pores of inorganic porous particles / apparent volume of inorganic porous particles) × 100}%. An example of the composition of the sludge material used in the first embodiment before and after firing is shown in Table 1 together with the ignition loss and the porosity of the inorganic porous body formed from the sludge material.

【0023】[0023]

【表1】 なお表1に示す組成分析はけい光X線分析で行い、組成
割合には焼成前、焼成後も強熱減量に相当する分を含め
ていない。後述の表についても同様である。
[Table 1] The composition analysis shown in Table 1 was performed by X-ray fluorescence analysis, and the composition ratio did not include the amount corresponding to the loss on ignition before and after firing. The same applies to the tables described later.

【0024】更に表2は、採取日を異ならせて同一場所
で採取した汚泥材について、焼成前後の組成を、その強
熱減量、その汚泥材で形成した無機多孔質体の気孔率と
共に示す。表2から理解できる様に、この汚泥材ではア
ルミナは20%以上含まれており、焼成後の無機多孔質
体の強度を確保するのに有利である。更に汚泥材の強熱
減量は22%以上と高く、焼成後の無機多孔質体の気孔
率を確保するのに有利である。ちなみに表2から理解で
きる様に気孔率は48%以上である。
Further, Table 2 shows the composition of sludge collected at the same place on different collection dates, before and after firing, together with the loss on ignition and the porosity of the inorganic porous material formed from the sludge. As can be understood from Table 2, this sludge material contains 20% or more of alumina, which is advantageous for securing the strength of the inorganic porous body after firing. Further, the loss on ignition of the sludge material is as high as 22% or more, which is advantageous for securing the porosity of the inorganic porous body after firing. Incidentally, as can be understood from Table 2, the porosity is 48% or more.

【0025】[0025]

【表2】 なお実施形態1によれば、焼成温度は原料の如何によっ
て適宜選択するが、無機多孔質体の気孔率を高めるには
液相の生成を抑えることが好ましく、一方、無機多孔質
体の強度を高めるには液相の生成を期待することもでき
る。しかし気孔率を高めるには液相が生じない焼成温
度、或いは、液相が生じたとしても極微量である焼成温
度が好ましい。この様な事情を考慮し、原料の種類に応
じて、焼成温度の上限は1000℃、1050℃、11
00℃、1200℃にでき、下限は800℃、850
℃、900℃、950℃にできる。他の実施形態に係る
焼成温度ついても同様のことが言える。
[Table 2] According to the first embodiment, the firing temperature is appropriately selected depending on the type of the raw material. However, in order to increase the porosity of the inorganic porous body, it is preferable to suppress the generation of a liquid phase. To increase it, one can expect the formation of a liquid phase. However, in order to increase the porosity, a baking temperature at which a liquid phase does not occur, or a baking temperature at which a liquid phase occurs even if it is very small is preferable. In consideration of such circumstances, the upper limit of the sintering temperature is 1000 ° C., 1050 ° C., 11
00 ° C, 1200 ° C, lower limit 800 ° C, 850
° C, 900 ° C, and 950 ° C. The same can be said for the firing temperature according to other embodiments.

【0026】この実施形態1では、粒状体を形成してい
るが、これに限らず塊状体を形成しても良い。 (実施形態2)実施形態2は基本的には実施形態1と同
じ構成である。但し、実施形態1では石炭粉を含まない
汚泥材を原料としていたが、実施形態2では炭素系粉末
としての石炭粉を含む汚泥材を原料としている点が異な
る。
In the first embodiment, the granular material is formed. However, the present invention is not limited to this. (Embodiment 2) Embodiment 2 has basically the same configuration as Embodiment 1. However, the first embodiment uses a sludge material not containing coal powder as a raw material, but the second embodiment differs in that a sludge material containing coal powder as a carbon-based powder is used as a raw material.

【0027】実施形態2によれば、有機成分が含まれが
ちの汚泥材の他に、焼成に伴い焼失する石炭粉が混合さ
れているため、原料の強熱減量が更に増加し易い。従っ
て原料の強熱減量が24%、30%を越えることもあ
る。汚泥材や石炭粉の種類によっては、35%を越える
ことも、往々にしてある。この様に強熱減量が大きい原
料を用いれば、無機多孔質体の気孔率が大きく確保さ
れ、原料の種類によっては気孔率が40%、45%、5
0%、60%、65%を越えることも期待できる。
According to the second embodiment, in addition to the sludge which tends to contain organic components, the coal powder which is burned off during firing is mixed, so that the ignition loss of the raw material is more likely to further increase. Accordingly, the ignition loss of the raw material may exceed 24% or 30%. Depending on the type of sludge and coal powder, it often exceeds 35%. When a raw material having a large ignition loss is used in this manner, a large porosity of the inorganic porous body is secured, and depending on the type of the raw material, the porosity is 40%, 45%, or 5%.
Exceeding 0%, 60% and 65% can also be expected.

【0028】実施形態2では、無機多孔質体の気孔率を
確保するため、石炭粉の平均粒径は汚泥材の粒子の平均
粒径よりも大きい。 (実施形態3)この実施形態3は基本的には前記した実
施形態1と同じである。但し、鋳鉄を製造する鋳物工場
の集塵装置から粉塵廃棄物として排出される粉塵を、原
料として用いた点が異なる。
In the second embodiment, the average particle size of the coal powder is larger than the average particle size of the sludge material in order to secure the porosity of the inorganic porous body. (Embodiment 3) Embodiment 3 is basically the same as Embodiment 1 described above. However, the difference is that dust discharged as dust waste from a dust collector of a foundry for producing cast iron is used as a raw material.

【0029】本実施形態で用いた粉塵の粒子の粒径分布
の一例を図2に示す。図2の横軸は粉塵の粒子の粒径を
示し、縦軸は相対粒子量(wt%)を示す。図2から理
解できる様に、粉塵の粒子の粒径のメディアン径は7.
652μm、モード径は13.711μmであった。汚
泥材を対象とする図1と、粉塵を対象とする図2との比
較から理解できる様に、粉塵の粒子の粒径は汚泥材の粒
子よりも大きく、具体的には10μm以上のものが多か
った。
FIG. 2 shows an example of the particle size distribution of the dust particles used in the present embodiment. The horizontal axis in FIG. 2 indicates the particle size of the dust particles, and the vertical axis indicates the relative particle amount (wt%). As can be understood from FIG. 2, the median diameter of the particle size of the dust particles is 7.
The diameter was 652 μm and the mode diameter was 13.711 μm. As can be understood from a comparison between FIG. 1 for sludge and FIG. 2 for dust, the particle size of the dust particles is larger than that of the sludge material. There were many.

【0030】この粉塵は、シリカを50%以上、アルミ
ナを10%以上含む。実施形態3で用いる焼成前の粉塵
の組成の一例を、強熱減量、粉塵で形成した無機多孔質
体の気孔率と共に表3に示す。表3から理解できる様
に、この実施形態の粉塵では、アルミナ量、強熱減量が
汚泥材に比較して少ない。高温の溶湯が鋳込まれた鋳型
を構成する鋳物砂の粉塵であるため、強熱減量が汚泥材
に比較して少ないものと考えられる。
This dust contains 50% or more of silica and 10% or more of alumina. An example of the composition of the dust before firing used in Embodiment 3 is shown in Table 3 together with the ignition loss and the porosity of the inorganic porous body formed by the dust. As can be understood from Table 3, in the dust of this embodiment, the amount of alumina and the ignition loss are smaller than those of the sludge. It is considered that the ignition loss is smaller than that of the sludge material because it is dust of the molding sand constituting the mold into which the high-temperature molten metal is cast.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【実施例】 実施例1、実施例2 実施例1では、石炭粉を含まない汚泥材を原料とし、前
記した実施形態1の手順に基づいて無機多孔質体を形成
する。実施例1で用いた汚泥材の粒子の粒径分布は図1
と同様である。原料である汚泥材の組成、強熱減量等は
表1と同様である。また焼成温度は1000℃、焼成時
間は120分である。無機多孔質体の気孔率は51%で
ある。
Example 1 and Example 2 In Example 1, an inorganic porous body is formed based on the procedure of Embodiment 1 described above, using a sludge material not containing coal powder as a raw material. The particle size distribution of the sludge particles used in Example 1 is shown in FIG.
Is the same as The composition of the sludge material as the raw material, the ignition loss, and the like are the same as in Table 1. The firing temperature is 1000 ° C. and the firing time is 120 minutes. The porosity of the inorganic porous body is 51%.

【0033】実施例2では、石炭粉を含む汚泥材を原料
とし、前記した実施形態2に基づいて無機多孔質体を形
成する。原料の割合は、重量比で汚泥材10に対して石
炭粉1の割合とし、水分20%となる様に混合物を調整
する。石炭粉の粒度は、後述する様に図5(B)の特性
線K3で示す。特性線K3から理解できるように、0.
4〜100μm程度のサイズの石炭粉が採用されてい
る。この石炭粉の最頻度域は15〜30μm程度であ
る。
In the second embodiment, a sludge material containing coal powder is used as a raw material to form an inorganic porous body based on the second embodiment. The ratio of the raw materials is the ratio of the coal powder 1 to the sludge material 10 by weight, and the mixture is adjusted so that the water content is 20%. The particle size of the coal powder is indicated by a characteristic line K3 in FIG. As can be understood from the characteristic line K3, 0.
Coal powder having a size of about 4 to 100 μm is employed. The most frequent range of this coal powder is about 15 to 30 μm.

【0034】実施例2に係る汚泥材の粒子の粒径分布は
基本的には実施例1と同様である。原料である汚泥材の
組成、強熱減量等は実施例1と同様である。また焼成温
度は1000℃、焼成時間は120分である。無機多孔
質体の気孔率は実施例1よりも多く、67%である。上
記の様に形成した実施例1、実施例2に係る焼成後の無
機多孔質体の細孔をそれぞれ測定した。測定は、水銀圧
入式のporosimeter(島津−マイクロメリテ
ィックス社)を用い、水銀に試験片を浸しつつ圧力をか
け、試験片内に進入した水銀の量と圧力とを測定するこ
とにより細孔分布を求めた。測定結果を図5(A)
(B)に示す。
The particle size distribution of the sludge particles according to the second embodiment is basically the same as that of the first embodiment. The composition of the sludge material as the raw material, the ignition loss, and the like are the same as in Example 1. The firing temperature is 1000 ° C. and the firing time is 120 minutes. The porosity of the inorganic porous body is larger than that of Example 1 and is 67%. The pores of the fired inorganic porous materials according to Example 1 and Example 2 formed as described above were measured. The measurement is performed by using a mercury intrusion type porosimeter (Shimadzu-Micromeritics), applying pressure while immersing the test piece in mercury, and measuring the amount and pressure of mercury entering the test piece. The distribution was determined. Fig. 5 (A) shows the measurement results.
It is shown in (B).

【0035】図5(A)の横軸は無機多孔質体の細孔直
径を示し、図5(A)の縦軸は細孔容積を示す。図5
(A)の特性線H1は、石炭粉を含まない汚泥材を原料
とする実施例1に係る無機多孔質体において、細孔直径
の小さい側から順に累積した細孔容積を示す。図5
(A)の特性線H2は、石炭粉を含む汚泥材を原料とす
る実施例2に係る無機多孔質体において、細孔直径の小
さい側から順に累積した細孔容積を示す。
The horizontal axis of FIG. 5A shows the pore diameter of the inorganic porous material, and the vertical axis of FIG. 5A shows the pore volume. FIG.
The characteristic line H1 of (A) indicates the pore volume accumulated in the inorganic porous body according to Example 1 using a sludge material not containing coal powder as a raw material in order from the side having the smaller pore diameter. FIG.
The characteristic line H2 of (A) shows the pore volume accumulated in the inorganic porous body according to Example 2 using a sludge material containing coal powder as a raw material in ascending order of the pore diameter.

【0036】図5(B)の横軸は無機多孔質体の細孔直
径及び石炭粉粒径を示し、縦軸の左側は図5(A)の特
性線を微分した値、つまり図5(A)の特性線の傾きを
示し、縦軸の右側は石炭粉粒度比率を示す。図5(B)
の特性線K1は、石炭粉を含まない汚泥材を原料とする
実施例1に係る無機多孔質体の細孔の粒径分布を示す。
特性線K1に示す様に、実施例1に係る無機多孔質体に
よれば、0.04〜13μm程度の各サイズの細孔が生
成しており、細孔の直径の最頻度域は3〜4μmであ
る。
The horizontal axis of FIG. 5B shows the pore diameter of the inorganic porous material and the particle size of the coal powder, and the left side of the vertical axis shows the value obtained by differentiating the characteristic line of FIG. A) shows the slope of the characteristic line, and the right side of the vertical axis shows the coal powder particle size ratio. FIG. 5 (B)
The characteristic line K1 indicates the particle size distribution of the pores of the inorganic porous body according to Example 1 using a sludge material not containing coal powder as a raw material.
As shown by the characteristic line K1, according to the inorganic porous material of Example 1, pores of each size of about 0.04 to 13 μm are generated, and the most frequent range of pore diameters is 3 to 4 μm.

【0037】更に図5(B)の特性線K2は、石炭粉を
含む汚泥材を原料とした実施例2の無機多孔質体の細孔
の粒径分布を示す。特性線K2に示す様に、実施例2で
は細孔の直径は3〜4μmが最頻度域である。実施例1
の細孔直径と実施例2の細孔直径とが同レベルになるの
は、焼成に伴う無機多孔質体の収縮の影響と考えられ
る。しかも特性線K2は、特性線K1よりもピーク値が
高い。
Further, the characteristic line K2 in FIG. 5B shows the particle size distribution of the pores of the inorganic porous material of Example 2 using the sludge containing coal powder as a raw material. As shown by the characteristic line K2, in Example 2, the diameter of the pores is 3 to 4 μm in the most frequent range. Example 1
The reason why the pore diameter of Example 2 and the pore diameter of Example 2 become the same level is considered to be the effect of shrinkage of the inorganic porous material due to firing. Moreover, the characteristic line K2 has a higher peak value than the characteristic line K1.

【0038】なお図5(B)の点線で示す特性線K3
は、実施例2において原料に混ぜた石炭粉の粒径分布を
示す。特性線K2と特性線K3との比較から理解できる
様に、石炭粉の粒径よりも、その石炭粉を含む原料で形
成した無機多孔質体の細孔直径の方がかなり小さいこと
がわかる。焼成に伴う無機多孔質体の収縮の影響と考え
られる。 実施例3、実施例4 実施例3では、活性炭を含まない汚泥材を原料とし、実
施形態1に基づいて無機多孔質体を形成する。実施例3
に係る汚泥材の粒子の粒径分布は基本的には図1と同様
である。原料である汚泥材の組成、強熱減量等は表1と
同様である。また焼成温度は1000℃、焼成時間は1
20分である。無機多孔質体の気孔率は51%である。
The characteristic line K3 indicated by the dotted line in FIG.
Shows the particle size distribution of the coal powder mixed with the raw material in Example 2. As can be understood from the comparison between the characteristic lines K2 and K3, it is understood that the pore diameter of the inorganic porous body formed from the raw material containing the coal powder is much smaller than the particle diameter of the coal powder. This is considered to be due to the effect of shrinkage of the inorganic porous material due to firing. Example 3 and Example 4 In Example 3, an inorganic porous body was formed based on Embodiment 1 using a sludge material not containing activated carbon as a raw material. Example 3
The particle size distribution of the particles of the sludge material according to the above is basically the same as in FIG. The composition of the sludge material as the raw material, the ignition loss, and the like are the same as in Table 1. The firing temperature is 1000 ° C. and the firing time is 1
20 minutes. The porosity of the inorganic porous body is 51%.

【0039】実施例4では、石炭粉に代えて活性炭を採
用し、活性炭を含む汚泥材を原料とし、実施形態2に基
づいて無機多孔質体を形成する。原料の割合は、重量比
で汚泥材10に対して活性炭1の割合とし、水分20%
となる様に混合物を調整する。活性炭の粒度は、後述す
る様に図6(B)の特性線P3で示す。特性線P3に示
すように0.4〜100μm程度のサイズの活性炭が採
用されている。
In the fourth embodiment, activated carbon is employed in place of coal powder, and a sludge material containing activated carbon is used as a raw material to form an inorganic porous body based on the second embodiment. The ratio of the raw materials is the ratio of activated carbon 1 to sludge 10 by weight, and the water content is 20%.
Adjust the mixture so that The particle size of the activated carbon is shown by a characteristic line P3 in FIG. As shown by the characteristic line P3, activated carbon having a size of about 0.4 to 100 μm is employed.

【0040】実施例4に係る汚泥材の粒子の粒径分布は
図1と同様である。原料である汚泥材の組成、強熱減量
等は表1と同様である。また焼成温度は1000℃、焼
成時間は120分である。無機多孔質体の気孔率は69
%である。実施例3、実施例4に係る焼成後の無機多孔
質体の細孔を前述同様に測定した。試験結果を図6
(A)(B)に示す。図6(A)の縦軸、横軸は図5
(A)の縦軸、横軸にそれぞれ対応する。図6(B)の
縦軸、横軸は図5(B)の縦軸、横軸にそれぞれ対応す
る。
The particle size distribution of the sludge particles according to Example 4 is the same as in FIG. The composition of the sludge material as the raw material, the ignition loss, and the like are the same as in Table 1. The firing temperature is 1000 ° C. and the firing time is 120 minutes. The porosity of the inorganic porous material is 69
%. The pores of the fired inorganic porous materials according to Examples 3 and 4 were measured in the same manner as described above. Fig. 6 shows the test results.
(A) and (B) show. The vertical axis and the horizontal axis of FIG.
The vertical axis and the horizontal axis of FIG. The vertical and horizontal axes in FIG. 6B correspond to the vertical and horizontal axes in FIG. 5B, respectively.

【0041】図6(A)の特性線M1は、活性炭を含ま
ない汚泥材を原料とする実施例3に係る無機多孔質体に
おいて、細孔直径の小さい側から累積した細孔容積を示
す。図6(A)の特性線M2は、活性炭を含む汚泥材を
原料とする実施例4に係る無機多孔質体において、細孔
直径の小さい側から累積した細孔容積を示す。図6
(B)の特性線P1は、活性炭を含まない汚泥材を原料
とする焼成後の無機多孔質体の細孔の粒径分布を示し、
図5(B)の特性線K1と実質的に同じである。特性線
P1に示す様に、活性炭を含まない原料で形成した焼成
後の無機多孔質体によれば、1〜5μm程度の細孔が多
く、細孔の直径の最頻度域は3〜4μmである。
The characteristic line M1 in FIG. 6 (A) shows the pore volume accumulated from the smaller pore diameter side in the inorganic porous material according to Example 3 using a sludge material not containing activated carbon as a raw material. A characteristic line M2 in FIG. 6 (A) shows the pore volume accumulated from the smaller pore diameter side in the inorganic porous material according to Example 4 using a sludge material containing activated carbon as a raw material. FIG.
The characteristic line P1 in (B) shows the particle size distribution of the pores of the fired inorganic porous material using a sludge material not containing activated carbon as a raw material,
This is substantially the same as the characteristic line K1 in FIG. As shown by the characteristic line P1, according to the fired inorganic porous body formed of a raw material containing no activated carbon, there are many pores of about 1 to 5 μm, and the most frequent range of the diameter of the pores is 3 to 4 μm. is there.

【0042】図6(B)の特性線P2は、活性炭を含む
汚泥材を原料とする焼成後の無機多孔質体の細孔の粒径
分布を示す。特性線P2に示す様に、活性炭を含む原料
で形成した実施例4に係る無機多孔質体によれば、0.
5〜2.5μm程度の細孔が多く、細孔の直径の最頻度
域は1〜2μmである。一方、図6(B)の点線の特性
線P3は、実施例4で用いた活性炭の粒度分布を示す。
特性線P3に示す様に活性炭の粒径は3〜10μmが最
頻度域である。特性線P2と特性線P3との比較から理
解できる様に、活性炭の平均粒径よりも、無機多孔質体
の細孔の平均直径の方が小さいことがわかる。焼成に伴
う無機多孔質体の収縮の影響と考えられる。 実施例5 実施例5によれば、石炭粉や活性炭を含まない粉塵を原
料とし、実施形態3に基づいて無機多孔質体を形成す
る。実施例5に係る粉塵の粒子の粒径分布は図2と同様
である。原料である粉塵の組成、強熱減量等は、表3の
NO.2Aと実質的に同じである。また焼成温度は10
00℃、焼成時間は120分である。無機多孔質体の気
孔率は42%である。
The characteristic line P2 in FIG. 6 (B) shows the particle size distribution of the pores of the inorganic porous material after firing using sludge containing activated carbon as a raw material. As shown by the characteristic line P2, according to the inorganic porous body of Example 4 formed of a raw material containing activated carbon, the content of the inorganic porous material was set to 0.1.
There are many pores of about 5 to 2.5 μm, and the most frequent pore diameter range is 1 to 2 μm. On the other hand, a dotted characteristic line P3 in FIG. 6B shows the particle size distribution of the activated carbon used in Example 4.
As shown by the characteristic line P3, the most frequent range of the particle size of the activated carbon is 3 to 10 μm. As can be understood from the comparison between the characteristic lines P2 and P3, it is understood that the average diameter of the pores of the inorganic porous material is smaller than the average particle size of the activated carbon. This is considered to be due to the effect of shrinkage of the inorganic porous material due to firing. Example 5 According to Example 5, an inorganic porous body is formed based on Embodiment 3 by using dust containing no coal powder or activated carbon as a raw material. The particle size distribution of the dust particles according to Example 5 is the same as that in FIG. The composition of the dust as a raw material, the ignition loss, and the like are shown in Table 3 as NO. Substantially the same as 2A. The firing temperature is 10
00 ° C., baking time is 120 minutes. The porosity of the inorganic porous body is 42%.

【0043】そして、焼成後の無機多孔質体の細孔を前
述同様に測定した。試験結果を図7(A)(B)に示
す。図7(A)の縦軸、横軸は図5(A)の縦軸、横軸
にそれぞれ対応する。図7(B)の縦軸、横軸は図5
(B)の縦軸、横軸にそれぞれ対応する。図7(A)の
特性線S1は、実施例5に係る無機多孔質体において、
細孔直径の小さい側から順に累積した細孔容積を示す。
図7(B)の特性線T1は特性線S1を微分したもので
あり、焼成後の無機多孔質体の細孔の粒径分布を示す。
特性線T1に示す様に、無機多孔質体の細孔直径は0.
01〜200μm程度にわたっているが、最頻度域は1
0〜25μmである。
Then, the pores of the fired inorganic porous material were measured in the same manner as described above. The test results are shown in FIGS. The vertical and horizontal axes in FIG. 7A correspond to the vertical and horizontal axes in FIG. 5A, respectively. The vertical axis and the horizontal axis of FIG.
The ordinate and the abscissa of (B) correspond respectively. The characteristic line S1 in FIG. 7A indicates that in the inorganic porous material according to Example 5,
The pore volume accumulated from the side with the smallest pore diameter is shown.
The characteristic line T1 in FIG. 7B is obtained by differentiating the characteristic line S1 and shows the particle size distribution of the pores of the inorganic porous body after firing.
As shown by the characteristic line T1, the pore diameter of the inorganic porous material is 0.1 mm.
It ranges from about 01 to 200 μm, but the most frequent area is 1
0 to 25 μm.

【0044】汚泥材を対象とする図1と、粉塵を対象と
する図2との比較から理解できる様に、粉塵の粒子の平
均粒径は汚泥材の粒子の平均粒径よりもかなり大きいた
め、細孔直径が大きくなったものと考えられる。 強度試験 焼成後の無機多孔質体の強度についても試験した。この
強度試験では、昇降可能な水平テーブルの上面に無機多
孔質体(目標直径:2mm)を載せ、その水平テーブル
を低速度で上昇させることにより、水平テーブル上方の
加圧ケージ体に無機多孔質体を押しつけ、無機多孔質体
が破砕したときの荷重で強度で評価した。
As can be understood from a comparison between FIG. 1 for sludge and FIG. 2 for dust, the average particle size of the dust particles is considerably larger than the average particle size of the sludge particles. It is considered that the pore diameter became larger. Strength test The strength of the inorganic porous body after firing was also tested. In this strength test, an inorganic porous body (target diameter: 2 mm) is placed on the upper surface of a vertically movable horizontal table, and the horizontal table is raised at a low speed, so that the inorganic porous body is placed on the pressure cage above the horizontal table. The body was pressed and the strength was evaluated by the load when the inorganic porous body was crushed.

【0045】この強度試験では、石炭粉を含まない汚泥
材を原料とする無機多孔質体を試料A(実施例1に相
当)とし、石炭粉を含まない粉塵を原料とする無機多孔
質体を試料B(実施例5に相当)とし、石炭粉を混ぜた
汚泥材を原料とする無機多孔質体を試料C(実施例2に
相当)とした。更に、比較例として、けいそう土を実施
例1と同様な手順で造粒して焼成(焼成温度:1000
℃、焼成時間:120分)した無機多孔質体を形成し、
これを試料Dとした。試料Dについても同様に強度試験
を行った。
In this strength test, the sample A (corresponding to Example 1) was made of an inorganic porous material made of a sludge material not containing coal powder, and an inorganic porous material made of dust containing no coal powder was used as a sample. Sample B (corresponding to Example 5) was used, and an inorganic porous body using sludge mixed with coal powder as a raw material was used as Sample C (corresponding to Example 2). Further, as a comparative example, diatomaceous earth was granulated in the same procedure as in Example 1 and fired (firing temperature: 1000).
C., firing time: 120 minutes) to form an inorganic porous body,
This was designated as Sample D. Sample D was also subjected to the same strength test.

【0046】更に上記した試料A〜試料Dについて、無
機多孔質体が乾燥状態である場合と、無機多孔質体を2
4時間水中で湿らせた場合とに分けて強度試験を行っ
た。後者は、土壌改良材として用いれば保水状態となる
ことを考慮するものである。試験結果を図8に示す。図
8では●、■等のように黒で塗り潰した印は、湿らせた
状態を示す。○、□等のように白抜きの印は、乾燥した
状態を示す。サンプル数Nはそれぞれ12個とした。
Further, regarding the samples A to D described above, the case where the inorganic porous body was in a dry state and the case where the inorganic porous body was
A strength test was performed separately for the case where the sample was moistened in water for 4 hours. The latter considers that a water-retaining state will be attained if used as a soil conditioner. The test results are shown in FIG. In FIG. 8, black marks such as ● and Δ indicate a wet state. A white mark such as 、 or □ indicates a dry state. The number N of samples was 12 each.

【0047】図8から理解できる様に、本発明品に係る
試料Aの平均強度、試料Bの平均強度、試料Cの平均強
度は高い。一方、本発明品に係る試料A、試料B、試料
Cに比べて、比較例に係る試料Dの平均強度は低い。こ
れは、比較例に係る試料Dでは、けいそう土はアルミナ
含有量が少ないためと考えられる。更に、本発明品のう
ちでも、汚泥材を原料とする試料A、試料Cと、粉塵を
原料とする試料Bとを比較すると、試料Bよりも試料
A、試料Cは平均強度が高いという特性をもつ。その理
由は、表1と表2との比較から理解できる様に粉塵に比
較して汚泥材の方がアルミナ含有量が高いため、更に、
原料となる汚泥材を構成する粒子の方が微小であるため
と考えられる。
As can be understood from FIG. 8, the average strength of sample A, the average strength of sample B, and the average strength of sample C according to the present invention are high. On the other hand, the average strength of the sample D according to the comparative example is lower than that of the samples A, B, and C according to the present invention. This is considered to be because diatomaceous earth in Sample D according to Comparative Example had a low alumina content. Further, among the products of the present invention, when comparing Samples A and C using sludge as a raw material and Sample B using dust as a raw material, Sample A and Sample C have higher average strength than Sample B. With. The reason is that, as can be understood from the comparison between Table 1 and Table 2, the sludge material has a higher alumina content than the dust,
It is considered that the particles constituting the sludge material as the raw material are finer.

【0048】無機多孔質体の目標直径サイズを4mm、
6mm、10mmとした場合についても同様に強度試験
を行った。目標直径サイズを20mm以上とした場合に
ついても同様に試験を行った。これらの場合においても
同様に、アルミナ含有量が高く粒子粒径が小さな汚泥材
を原料とした試料の方が、粉塵を原料とする試料よりも
高い平均強度となる特性が得られた。
The target diameter size of the inorganic porous material is 4 mm,
The strength test was similarly performed for the cases of 6 mm and 10 mm. The same test was performed when the target diameter size was set to 20 mm or more. In these cases as well, similarly, a sample obtained by using a sludge material having a high alumina content and a small particle diameter as a raw material had a higher average strength than a sample obtained using dust as a raw material.

【0049】(付記)上記した実施例から次の技術的思
想も把握できる。 ○請求項1において製造された無機多孔質体は、細孔を
もつ粒状をなし、重量比でシリカ50%以上、アルミナ
20%以上含み、体積比で気孔率が40%以上であるこ
とを特徴とする。 ○汚泥材には重量比でシリカが50〜70%、アルミナ
が18%〜30%含まれている請求項1に記載の製造方
法。この場合にはアルミナ含有量が高く、高強度の無機
多孔質体を得るのに有利である。
(Supplementary Note) The following technical idea can be understood from the above-described embodiment. The inorganic porous body produced in claim 1 is in the form of granules having pores, contains 50% or more of silica by weight, 20% or more of alumina, and has a porosity of 40% or more by volume. And The method according to claim 1, wherein the sludge material contains 50 to 70% of silica and 18% to 30% of alumina by weight. In this case, the alumina content is high, which is advantageous for obtaining a high-strength inorganic porous body.

【0050】[0050]

【発明の効果】請求項1に係る製造方法によれば、前述
したように、焼成の際の熱で焼失し易い有機物質が多く
なりがちの汚泥材を原料の主要成分として利用している
ため、原料の強熱減量を重量比で20%以上にでき、焼
成後の無機多孔質体の気孔率が確保される。強熱減量に
対応する部分が焼失して実質的に細孔となるからであ
る。従って土中に埋設される土壌改良材として用いた場
合には、保水性が向上し易い。
According to the manufacturing method of the first aspect, as described above, the sludge material, which tends to increase the amount of organic substances which are easily burned off by heat during firing, is used as the main component of the raw material. In addition, the ignition loss of the raw material can be made 20% or more by weight ratio, and the porosity of the inorganic porous body after firing is secured. This is because the portion corresponding to the loss on ignition is burned out and becomes substantially pores. Therefore, when used as a soil improvement material buried in the soil, water retention is likely to be improved.

【0051】更に請求項1に係る製造方法によれば、原
料として、鋳物工場から汚泥廃棄物として排出されたシ
リカ、アルミナを含む汚泥材を用いている。汚泥材に含
まれるシリカ、アルミナは微粒子状のものが多いため、
焼成性が向上する。よって、無機多孔質体の気孔率を高
めに維持しつつ焼成強度を向上させるのに有利である。
よって無機多孔質体の耐破損性が向上し、長寿命化を図
り得る。従って土中に埋設される土壌改良材として用い
た場合には、強度特性が一層向上する。また塊状体の場
合には、ブロックとして用いれば、ブロックの耐久性を
確保できる。
Further, according to the manufacturing method of the first aspect, a sludge material containing silica and alumina discharged from a foundry as sludge waste is used as a raw material. Silica and alumina contained in sludge are often in the form of fine particles.
The firing property is improved. Therefore, it is advantageous to improve the firing strength while maintaining the porosity of the inorganic porous body high.
Therefore, the breakage resistance of the inorganic porous body is improved, and the life can be extended. Therefore, when used as a soil improving material buried in the soil, the strength characteristics are further improved. In the case of a block, if it is used as a block, the durability of the block can be ensured.

【0052】請求項2に係る製造方法によれば、鋳物工
場から粉塵廃棄物として排出された粉塵で、かつ強熱減
量が重量比で10%以上のものを用いるため、無機多孔
質体の強度を確保しつつ気孔率の向上を図るのに有利で
ある。強熱減量に対応する部分が実質的に細孔となるか
らである。更に請求項2に係る製造方法によれば、連続
押出体を所定の長さの円柱形状にカッターで切断して粒
状体を得る従来技術とは異なり、非円柱状の粒状体を造
粒するため、『切断垂れ』に起因するエッジ部分の発生
を抑え得る。そのため無機多孔質体の気孔率を確保しつ
つ強度を確保するのに有利である。
According to the manufacturing method of the present invention, since the dust discharged from the foundry as dust waste and having a loss on ignition of 10% or more by weight is used, the strength of the inorganic porous body is reduced. This is advantageous for improving the porosity while maintaining the porosity. This is because the portion corresponding to the loss on ignition becomes substantially a pore. Furthermore, according to the manufacturing method of the second aspect, unlike a conventional technique in which a continuous extruded body is cut into a columnar shape having a predetermined length by a cutter to obtain a granular body, a non-cylindrical granular body is granulated. , The occurrence of an edge portion caused by “cutting sag” can be suppressed. Therefore, it is advantageous to secure the strength while securing the porosity of the inorganic porous body.

【0053】請求項3に係る製造方法によれば、炭素系
粉末(石炭粉、活性炭、黒鉛粉等)は焼成の際に焼失
し、細孔形成材として機能するので、無機多孔質体の気
孔率が確保され易い。更に原料に混在させる炭素系粉末
の平均粒径は、汚泥材を構成する粒子の平均粒径、また
は、粉塵を構成する粒子の平均粒径よりも大きい。その
ため、焼成後の無機多孔質体の気孔率の向上に一層有利
である。
According to the manufacturing method of the third aspect, the carbon-based powder (coal powder, activated carbon, graphite powder, etc.) is burned off during firing and functions as a pore-forming material. The rate is easily secured. Further, the average particle size of the carbon-based powder mixed with the raw material is larger than the average particle size of the particles constituting the sludge material or the average particle size of the particles constituting the dust. Therefore, it is more advantageous for improving the porosity of the inorganic porous body after firing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】汚泥材の粒子の粒径分布を示すグラフである。FIG. 1 is a graph showing a particle size distribution of sludge material particles.

【図2】粉塵の粒子の粒径分布を示すグラフである。FIG. 2 is a graph showing a particle size distribution of dust particles.

【図3】造粒する混練機を示す構成図である。FIG. 3 is a configuration diagram showing a kneader for granulating.

【図4】無機多孔質体の代表的な形態を示す斜視図であ
る。
FIG. 4 is a perspective view showing a typical form of an inorganic porous body.

【図5】実施例1、実施例2に係る細孔分布等を示すグ
ラフである。
FIG. 5 is a graph showing pore distribution and the like according to Example 1 and Example 2.

【図6】実施例3、実施例4に係る細孔分布等を示すグ
ラフである。
FIG. 6 is a graph showing pore distribution and the like according to Example 3 and Example 4.

【図7】実施例5に係る細孔分布等を示すグラフであ
る。
FIG. 7 is a graph showing pore distribution and the like according to Example 5.

【図8】無機多孔質体の強度試験の結果を示すグラフで
ある。
FIG. 8 is a graph showing the results of a strength test of an inorganic porous body.

【符号の説明】 図中、10は混練機、12は回転軸、14は攪拌羽根、
14iは板状羽根部を示す。
[Description of References] In the drawing, 10 is a kneader, 12 is a rotating shaft, 14 is a stirring blade,
14i denotes a plate-like blade portion.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鋳物工場から汚泥廃棄物として排出された
シリカ、アルミナを含む汚泥材を主要成分とすると共に
強熱減量が重量比で20%以上の原料を用い、 水と該原料とを混合した混合物から粒状体または塊状体
を得る工程と、 該粒状体または該塊状体を800℃以上に加熱して、焼
成し、無機多孔質体を得る工程とを順に実施することを
特徴とする無機多孔質体の製造方法。
A sludge material containing silica and alumina discharged from a foundry as sludge waste is used as a main component, and a raw material having a loss on ignition of 20% or more by weight is used, and water and the raw material are mixed. A step of obtaining a granular body or an agglomerate from the mixture obtained above, and a step of heating the granular body or the agglomerate to 800 ° C. or higher and firing to obtain an inorganic porous body. A method for producing a porous body.
【請求項2】鋳物工場から粉塵廃棄物として排出された
シリカ、アルミナを含む粉塵を主要成分とすると共に強
熱減量が重量比で10%以上の原料を用い、 水と該原料とを混合した混合物を攪拌羽根を用いて攪拌
し、非円柱状の粒状体を造粒する造粒工程と、 該粒状体を800℃以上に加熱して、焼成し、無機多孔
質体を得る焼成工程とを順に実施することを特徴とする
無機多孔質体の製造方法。
2. A raw material whose main component is dust containing silica and alumina discharged as dust waste from a foundry and whose ignition loss is 10% or more by weight, and water and the raw material are mixed. A granulating step of agitating the mixture using a stirring blade to granulate the non-cylindrical granules; and a baking step of heating the granules to 800 ° C. or higher and calcining to obtain an inorganic porous body. A method for producing an inorganic porous body, which is performed in order.
【請求項3】請求項1または請求項2において、原料は
炭素系粉末を含み、該炭素系粉末の平均粒径は、請求項
1の汚泥材を構成する粒子の平均粒径、または、請求項
2の粉塵を構成する粒子の平均粒径よりも大きいことを
特徴とする無機多孔質体の製造方法。
3. The method according to claim 1, wherein the raw material contains carbon-based powder, and the average particle size of the carbon-based powder is the average particle size of the particles constituting the sludge material according to claim 1. Item 2. A method for producing an inorganic porous material, wherein the average particle size of the particles constituting the dust according to Item 2 is larger than the average particle size.
JP9213367A 1997-08-07 1997-08-07 Production of inorganic porous material Pending JPH1081576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9213367A JPH1081576A (en) 1997-08-07 1997-08-07 Production of inorganic porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9213367A JPH1081576A (en) 1997-08-07 1997-08-07 Production of inorganic porous material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32922095A Division JP2998831B2 (en) 1995-12-18 1995-12-18 Soil conditioner

Publications (1)

Publication Number Publication Date
JPH1081576A true JPH1081576A (en) 1998-03-31

Family

ID=16638018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9213367A Pending JPH1081576A (en) 1997-08-07 1997-08-07 Production of inorganic porous material

Country Status (1)

Country Link
JP (1) JPH1081576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040767A (en) * 2003-07-25 2005-02-17 Aisin Takaoka Ltd Water purification material, its production method, its using method, and water purification material mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040767A (en) * 2003-07-25 2005-02-17 Aisin Takaoka Ltd Water purification material, its production method, its using method, and water purification material mixture

Similar Documents

Publication Publication Date Title
JP4398260B2 (en) Silicon carbide based porous material and method for producing the same
EP1657039B1 (en) Method for manufacturing a ceramic honeycomb filter
EP2617696A1 (en) Porous ceramic sintered body
CN1285335A (en) Process for preparation of foam ceramic spherulite
KR100704221B1 (en) Method for manufacturing silicon carbide based honeycomb structure and silicon carbide based honeycomb structure
KR20130097146A (en) Production method of ceramic honeycomb structure
JP2998831B2 (en) Soil conditioner
CN109277088A (en) A kind of composite activated carbon ultra-filtration element and preparation method
US4880541A (en) Hot filter media
CN106242639B (en) Gush bed mud carbonization haydite and its preparation technology in river lake
CN113231005B (en) Method for preparing porous adsorption material without sintering
JPH1081576A (en) Production of inorganic porous material
WO2010146954A1 (en) Ceramic filter for supporting a catalyst, and manufacturing method therefor
JP4126313B2 (en) block
EP1000914B1 (en) Cordierite ceramic filter
CN113788704B (en) Preparation method of porous ceramic with gradient pore structure
JP2007332700A (en) Pavement block
KR101888829B1 (en) Adsorption carrier using silica fume and calcium hydroxide, and method of manufacturing there of
JP2000044362A (en) Production of inorganic porous material
CN117164353B (en) High-thermal-shock purification VOCs honeycomb ceramic carrier and preparation method and application thereof
CN105294144A (en) Bayer-process red mud spherical lightweight filter material and preparation method thereof
JP2005314218A (en) Method for controlling fine pore characteristics of porous structure
JP4633604B2 (en) Adsorbent production method, adsorbent, adsorbent granule, and adsorbent granule production method
JP2003073181A (en) Method for producing inorganic porous body
CN109331777A (en) Preparation method of recyclable regenerated carbon mesh combined powder non-metallic mineral porous water purification material