JP2000044362A - Production of inorganic porous material - Google Patents

Production of inorganic porous material

Info

Publication number
JP2000044362A
JP2000044362A JP10211607A JP21160798A JP2000044362A JP 2000044362 A JP2000044362 A JP 2000044362A JP 10211607 A JP10211607 A JP 10211607A JP 21160798 A JP21160798 A JP 21160798A JP 2000044362 A JP2000044362 A JP 2000044362A
Authority
JP
Japan
Prior art keywords
foundry
molding sand
inorganic porous
porous body
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10211607A
Other languages
Japanese (ja)
Inventor
Akihiro Nishiyama
秋浩 西山
Hiroyasu Yamamoto
裕康 山本
Katsuya Tamai
克弥 玉井
Hitoshi Yoshimi
仁志 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP10211607A priority Critical patent/JP2000044362A/en
Publication of JP2000044362A publication Critical patent/JP2000044362A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers

Abstract

PROBLEM TO BE SOLVED: To obtain an inorganic porous material having a large cation exchange capacity by using molding sand discharged from a foundry and containing bentonite in a specific amount as a main raw material, forming a granular or massive material from the molding sand and subsequently calcining the formed granular or massive material at a specific temperature. SOLUTION: A raw material which consists mainly of molding sand discharged from a foundry and contains bentonite contained in the molding sand in an amount of >=5 wt.% based on the molding sand is used, subjected to the adjustment of water content and then processed to form a granular or massive material having a granule diameter of about l-20 mm. The formed granular or massive material is naturally or thermally dried and subsequently calcined at 400-600 deg.C for 2-5 hr to obtain the inorganic porous material having a large strength and a cation exchange capacity of >=10 me/100 g. A proper raw material includes waste sludge comprising the mixture of dirt containing molding sand discharged from the production line of a foundry with the dirt of the domestic waste water of the foundry, etc., and waste dust such as collected dust discharged from the foundry.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土壌改良材、植物
用人工土壌として優れた無機多孔質体の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an inorganic porous material which is excellent as a soil improving material and an artificial soil for plants.

【0002】[0002]

【従来の技術】従来より、無機多孔質体の製造方法とし
て、鋳物工場から排出される使用済み鋳物砂由来の微粉
砂に水を加えて混練し成形した成形物を焼成する方法が
知られている(特開平8−59365号公報)。
2. Description of the Related Art Conventionally, as a method for producing an inorganic porous body, there has been known a method in which water is added to kneaded fine sand derived from used foundry sand discharged from a foundry, kneaded and molded, and a molded product is fired. (JP-A-8-59365).

【0003】[0003]

【発明が解決しようとする課題】上記従来の無機多孔質
体の製造方法では、鋳物工場から排出される使用済み鋳
物砂由来の微粉砂として、生砂型より発生する微粉砂、
又は生砂型より発生する微粉砂に有機砂型より発生する
微粉砂を少量添加した混合微粉砂が用いられ、これらの
微粉砂を水と混練して成形し、自然乾燥あるいは熱など
により強制乾燥した後、好ましくは600〜1100
℃、特に好ましくは800〜1000℃で所定時間焼成
して無機多孔質体を形成している。しかし、本発明者ら
がこのようにして得られる無機多孔質体の性質を調査研
究したところ、該無機多孔質体では、植物養分を保持す
る容量を示す陽イオン交換容量(CEC)が小さいこと
が明らかとなった。そこで、本発明は、陽イオン交換容
量の大きな無機多孔質体を得ることのできる無機多孔質
体の製造方法を提供することを課題とする。
In the above-mentioned conventional method for producing an inorganic porous material, fine sand generated from a green sand mold is used as fine sand derived from used foundry sand discharged from a foundry.
Alternatively, a mixed fine powder sand obtained by adding a small amount of fine sand generated from an organic sand mold to fine sand generated from a raw sand mold is used, and these fine sands are kneaded with water, molded, and air-dried or forcibly dried by heat or the like. , Preferably 600 to 1100
C., particularly preferably 800 to 1000.degree. C. for a predetermined time to form an inorganic porous body. However, the present inventors have investigated and studied the properties of the inorganic porous material thus obtained, and found that the inorganic porous material has a small cation exchange capacity (CEC) indicating a capacity to retain plant nutrients. Became clear. Therefore, an object of the present invention is to provide a method for producing an inorganic porous body that can obtain an inorganic porous body having a large cation exchange capacity.

【0004】[0004]

【課題を解決するための手段】上記課題を解決すべく鋭
意検討したところ、本発明者らは、鋳物工場から排出さ
れた生砂型より発生する微粉砂には粘結剤として使用さ
れるベントナイトが含まれ、該ベントナイトは大きな陽
イオン交換容量を有しているが、ベントナイトの陽イオ
ン交換容量は加熱により低減し、600℃以上に加熱さ
れると著しく小さくなることを見出した。係る知見に基
づき、本発明者らは、ベントナイトを含む鋳物砂から粒
状体又は塊状体を形成し、該粒状体又は塊状体を400
℃以上600℃未満に加熱して焼成することにより、陽
イオン交換容量の大きな無機多孔質体を得ることができ
た。本発明は、鋳物工場から排出された鋳物砂を主要成
分とし、かつ該鋳物砂中に含まれるベントナイト量が該
鋳物砂の5重量%以上である原料から、粒状体又は塊状
体を形成し、該粒状体又は該塊状体を400℃以上60
0℃未満に加熱して焼成することを特徴とする。
The present inventors have made intensive studies to solve the above-mentioned problems. As a result, the present inventors found that bentonite used as a binder was added to fine sand generated from green sand mold discharged from a foundry. Contained, the bentonite has a large cation exchange capacity, but it has been found that the cation exchange capacity of bentonite is reduced by heating, and becomes significantly smaller when heated to 600 ° C. or more. Based on such findings, the present inventors have formed granules or aggregates from molding sand containing bentonite, and
By heating the mixture to a temperature of not less than 600 ° C. and less than 600 ° C., it was possible to obtain an inorganic porous material having a large cation exchange capacity. The present invention forms a granular material or an agglomerate from a raw material whose main component is foundry sand discharged from a foundry, and the amount of bentonite contained in the foundry sand is 5% by weight or more of the foundry sand, The granular material or the massive material is heated at 400 ° C. or more to 60 ° C.
It is characterized by heating to less than 0 ° C. and firing.

【0005】鋳物砂中に含まれるベントナイト量が該鋳
物砂の5重量%以上の原料を用いるのは、ベントナイト
量が5重量%より少ないと、得られる無機多孔質体の陽
イオン交換容量が小さくなるためである。なお、無機多
孔質体の陽イオン交換容量をより大きくする観点から、
該鋳物砂中のベントナイト量は10重量%以上であるこ
とが望ましい。加熱温度を400℃以上600℃未満と
したのは、400℃より低い加熱温度では無機多孔質体
としての強度が小さくなり形態保持性が悪くなるためで
あり、600℃以上の加熱温度では無機多孔質体の陽イ
オン交換容量が小さくなるためである。本発明では、上
記原料から形成した粒状体又は塊状体を焼成すると、強
度が大きく、かつ陽イオン交換容量が10 me/10
0g以上の無機多孔質体が得られる。
When the amount of bentonite contained in the foundry sand is 5% by weight or more of the foundry sand, if the amount of bentonite is less than 5% by weight, the cation exchange capacity of the obtained inorganic porous material is small. It is because it becomes. From the viewpoint of increasing the cation exchange capacity of the inorganic porous body,
The amount of bentonite in the foundry sand is desirably 10% by weight or more. The reason why the heating temperature is set to 400 ° C. or higher and lower than 600 ° C. is that at a heating temperature lower than 400 ° C., the strength as an inorganic porous body is reduced and the shape retention is deteriorated. This is because the cation exchange capacity of the porous body is reduced. In the present invention, when the granular or lump formed from the above raw materials is fired, the strength is high and the cation exchange capacity is 10 me / 10
An inorganic porous body of 0 g or more is obtained.

【0006】[0006]

【発明の実施の形態】鋳物工場から排出された鋳物砂を
主要成分とし、かつ該鋳物砂中に含まれるベントナイト
量が該鋳物砂の5重量%以上である原料としては、鋳物
工場の生産ラインから排出された鋳物砂を含む泥に鋳物
工場の生活排水(トイレの水、食堂の排水を含む)の泥
などが混在した汚泥廃棄物や、鋳物工場から排出された
集塵ダスト等の粉塵廃棄物を使用することができる。原
料から粒状体又は塊状体を形成する際は、該原料の水分
量が多い場合は脱水し、該原料の水分量が少ない場合は
該原料と水とを混合し、該原料が所定の形状を保持する
ことができる程度に該原料の水分量を調整する。該粒状
体又は該塊状体は、好ましくは自然乾燥あるいは熱など
により強制乾燥した後に加熱し焼成する。無機多孔質体
の加熱時間は、無機多孔質体を加熱する温度及び無機多
孔質体の大きさにより異なるが、粒径が1〜20mmの
場合、400℃近傍で加熱する場合は3〜5時間、60
0℃近傍で加熱する場合は、2〜4時間とすることが望
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As a raw material whose main component is foundry sand discharged from a foundry and the amount of bentonite contained in the foundry sand is 5% by weight or more of the foundry sand, a production line of the foundry is used. Dust disposal such as sludge waste containing casting sand discharged from the factory mixed with mud of household wastewater (including toilet water and canteen wastewater), and dust collected from the foundry Things can be used. When forming a granular material or a lump from the raw material, if the water content of the raw material is large, dewater the material, and if the water content of the raw material is small, mix the raw material and water, and the raw material has a predetermined shape. The water content of the raw material is adjusted to such an extent that it can be held. The granules or the lump are preferably air-dried or forcibly dried by heat or the like and then heated and fired. The heating time of the inorganic porous body depends on the temperature at which the inorganic porous body is heated and the size of the inorganic porous body. , 60
When heating at around 0 ° C., it is desirable to set it to 2 to 4 hours.

【0007】[0007]

【実施例】以下、本発明の実施例を説明する。第1実施
例として、原料にケーキ状の汚泥材を用いた場合につい
て説明する。該汚泥材は、鋳鉄を製造する鋳物工場の廃
水貯溜所に溜まっている汚泥廃棄物をフィルタプレスで
ろ過したものを、日光や加熱処理で適宜乾燥してケーキ
状に形成したものである。該汚泥材中には、鋳物工場の
生産ラインから排出された粉塵成分が85重量%含ま
れ、鋳物工場の生活排水(トイレの水、食堂の排水を含
む)から排出された有機成分が15重量%含まれてい
る。粉塵成分の95重量%は鋳物砂であり、鋳物砂中に
は、該鋳物砂の10重量%のベントナイトが含まれてい
る。
Embodiments of the present invention will be described below. As a first embodiment, a case where a cake-like sludge material is used as a raw material will be described. The sludge material is obtained by filtering sludge waste collected in a wastewater reservoir of a foundry for manufacturing cast iron with a filter press and drying it appropriately by sunlight or heat treatment to form a cake. The sludge contains 85% by weight of dust components discharged from the production line of the foundry, and 15% of organic components discharged from domestic wastewater (including toilet water and canteen wastewater) of the foundry. %include. 95% by weight of the dust component is foundry sand, and the foundry sand contains bentonite at 10% by weight of the foundry sand.

【0008】該汚泥材を乾燥した後、細かく粉砕し、粉
砕した汚泥材を混練機に収容し、水を適宜添加して混練
した。次いで、攪拌羽根を備えた造粒容器中に混練材を
投入し、該攪拌羽根をモータで回転させて粒状体を造粒
する。粒状体の粒径は、造粒時間を調整することにより
任意に設定することが可能であるが、本実施例では、平
均粒径が3mmの粒状体を造粒した。
After drying the sludge material, it was finely pulverized, and the pulverized sludge material was accommodated in a kneader, and kneaded by appropriately adding water. Next, the kneading material is charged into a granulation container provided with stirring blades, and the stirring blades are rotated by a motor to granulate the granular material. The particle size of the granules can be arbitrarily set by adjusting the granulation time. In this example, granules having an average particle size of 3 mm were granulated.

【0009】次いで、該粒状体を110℃に60分間加
熱保持して乾燥処理し、該粒状体の水分を除去し、乾燥
した該粒状体をロータリーキルン中で加熱し、焼成し
た。実施例焼成条件を3段階で変化させ、比較例焼成条
件を2段階で変化させた。実施例焼成条件1では、ロー
タリーキルンの出口温度を500℃として4時間焼成
し、実施例焼成条件2では該出口温度を600℃として
3時間焼成し、実施例焼成条件3では該出口温度を68
0℃として3時間焼成し、比較例焼成条件1では、該出
口温度を450℃として4時間焼成し、比較例焼成条件
2では該出口温度を750℃として3時間焼成した。実
施例焼成条件1で得られた実施例多孔質体1と、実施例
焼成条件2で得られた実施例多孔質体2と、実施例焼成
条件3で得られた実施例多孔質体3と、比較例焼成条件
1で得られた比較例多孔質体1と比較例焼成条件2で得
られた比較例多孔質体2について、各多孔質体がロータ
リーキルンから排出される際の温度、すなわち各多孔質
体の実際の加熱温度と、強度と、気孔率と、陽イオン交
換容量(CEC)とを測定した。各多孔質体の加熱温度
は、各多孔質体がロータリーキルン出口から排出される
際の温度を赤外温度計により測定した。強度は、昇降可
能な水平テーブルの上面に無機多孔質体(目標直径3m
m)を載せ、その水平テーブルを低速度で上昇させるこ
とにより、水平テーブル上方の加圧ケージ体に無機多孔
質体を押し付け、無機多孔質体が粉砕した時の荷重を測
定した。気孔率は水銀ポロシメータで測定し、陽イオン
交換容量はショーレンベルガー法(「土壌標準分析・測
定法」P150〜154、土壌標準分析・測定法委員会
編、博友社)で測定した。結果を表1に示す。
Next, the granules were heated at 110 ° C. for 60 minutes and dried to remove water from the granules, and the dried granules were heated in a rotary kiln and fired. The firing conditions of the example were changed in three stages, and the firing conditions of the comparative example were changed in two stages. In the firing condition of Example 1, the rotary kiln was fired for 4 hours at an outlet temperature of 500 ° C. In the firing condition of Example 2, the outlet temperature was 600 ° C. for 3 hours, and in the firing condition of Example 3, the outlet temperature was 68 hours.
Firing was performed at 0 ° C. for 3 hours. Under Comparative Example firing conditions 1, the outlet temperature was 450 ° C., and firing was performed for 4 hours. Under Comparative Example firing conditions 2, the outlet temperature was set at 750 ° C., and firing was performed for 3 hours. Example porous body 1 obtained under example firing condition 1, example porous body 2 obtained under example firing condition 2, and example porous body 3 obtained under example firing condition 3. For the comparative example porous body 1 obtained under the comparative example firing condition 1 and the comparative example porous body 2 obtained under the comparative example firing condition 2, the temperature at which each porous body was discharged from the rotary kiln, The actual heating temperature, strength, porosity, and cation exchange capacity (CEC) of the porous body were measured. As for the heating temperature of each porous body, the temperature at which each porous body was discharged from the rotary kiln outlet was measured by an infrared thermometer. The strength of the inorganic porous material (target diameter 3m)
m) was placed thereon, and the horizontal table was raised at a low speed, whereby the inorganic porous body was pressed against the pressurized cage body above the horizontal table, and the load when the inorganic porous body was crushed was measured. The porosity was measured by a mercury porosimeter, and the cation exchange capacity was measured by the Schollenberger method (“Soil Standard Analysis and Measurement Method”, pp. 150-154, edited by Soil Standard Analysis and Measurement Method Committee, Hiroyusha). Table 1 shows the results.

【0010】[0010]

【表1】 [Table 1]

【0011】表1から明らかなように、気孔率はいずれ
も30%以上あり、無機多孔質体としての通気性及び保
水性は確保されるが、加熱温度が375℃であった比較
例多孔質体1では、陽イオン交換容量は大きいが強度が
小さく、加熱温度が647℃であった比較例多孔質体2
は陽イオン交換容量が著しく小さかった。
As is clear from Table 1, the porosity is 30% or more in each case, and the permeability and water retention as an inorganic porous body are ensured. In the body 1, the comparative example porous body 2 having a large cation exchange capacity but a small strength and a heating temperature of 647 ° C.
Had significantly smaller cation exchange capacity.

【0012】第2実施例として、原料に鋳物工場の集塵
装置から排出される粉塵を用いた場合について説明す
る。該粉塵は、微細な鋳物砂からなり、鋳物砂中に15
重量%のベントナイトが含まれている。
As a second embodiment, a case where dust discharged from a dust collector of a foundry is used as a raw material will be described. The dust consists of fine foundry sand, and 15
Contains bentonite by weight.

【0013】該粉塵を混練機に収容し、水を適宜添加し
て混練した後、該混練材を攪拌羽根を備えた造粒容器中
に投入し、次いで該攪拌羽根をモータで回転させて平均
粒径3mmの粒状体を造粒した。
[0013] The dust is stored in a kneader, water is added as needed, and the mixture is kneaded. The kneaded material is put into a granulation vessel equipped with stirring blades, and then the stirring blades are rotated by a motor to make an average. Granules having a particle size of 3 mm were granulated.

【0014】次いで、該粒状体を110℃に60分間加
熱保持して乾燥処理し、該粒状体の水分を除去し、乾燥
した該粒状体をロータリーキルン中で加熱し、焼成し
た。焼成条件は、第1実施例の焼成条件と同様、実施例
焼成条件を3段階で変化させ、比較例焼成条件を2段階
で変化させた。実施例焼成条件4では、ロータリーキル
ンの出口温度を500℃として4時間焼成し、実施例焼
成条件5では該出口温度を600℃として3時間焼成
し、実施例焼成条件6では該出口温度を680℃として
3時間焼成し、比較例焼成条件3では、該出口温度を4
50℃として4時間焼成し、比較例焼成条件4では該出
口温度を750℃として3時間焼成した。実施例焼成条
件4で得られた実施例多孔質体4と、実施例焼成条件5
で得られた実施例多孔質体5と、実施例焼成条件6で得
られた実施例多孔質体6と、比較例焼成条件3で得られ
た比較例多孔質体3と比較例焼成条件4で得られた比較
例多孔質体4について、各多孔質体がロータリーキルン
から排出される際の温度、すなわち各多孔質体の実際の
加熱温度と、強度と、気孔率と、陽イオン交換容量(C
EC)とを測定した。各測定方法は、実施例1の場合と
同じである。結果を表2に示す。
Next, the granules were dried by heating at 110 ° C. for 60 minutes to remove moisture from the granules, and the dried granules were heated in a rotary kiln and fired. The firing conditions were the same as the firing conditions of the first embodiment, and the firing conditions of the example were changed in three stages, and the firing conditions of the comparative example were changed in two stages. In Example firing condition 4, the rotary kiln was fired for 4 hours at an outlet temperature of 500 ° C., in Example firing condition 5, the outlet temperature was 600 ° C. for 3 hours, and in Example firing condition 6, the outlet temperature was 680 ° C. In the firing condition 3 of the comparative example, the outlet temperature was set at 4
Firing was performed at 50 ° C. for 4 hours, and under the firing conditions of Comparative Example 4, the outlet temperature was set to 750 ° C. for 3 hours. Example porous body 4 obtained under Example firing condition 4 and Example firing condition 5
Example porous body 5 obtained in Example 1, Example porous body 6 obtained in Example firing condition 6, Comparative example porous body 3 obtained in Comparative example firing condition 3, and Comparative example firing condition 4 In the comparative example porous body 4 obtained in the above, the temperature at which each porous body is discharged from the rotary kiln, that is, the actual heating temperature, strength, porosity, and cation exchange capacity of each porous body ( C
EC). Each measuring method is the same as that in the first embodiment. Table 2 shows the results.

【0015】[0015]

【表2】 [Table 2]

【0016】表2から明らかなように、気孔率はいずれ
も30%以上あり、無機多孔質体としての通気性及び保
水性は確保されるが、第1実施例の場合と同様、加熱温
度が381℃であった比較例多孔質体3では、陽イオン
交換容量は大きいが強度が小さく、加熱温度が638℃
であった比較例多孔質体4は陽イオン交換容量が著しく
小さかった。
As is clear from Table 2, the porosity is 30% or more in each case, and the air permeability and the water retention as the inorganic porous body are ensured. In Comparative Example Porous Material 3 at 381 ° C., the cation exchange capacity was large but the strength was small, and the heating temperature was 638 ° C.
Comparative example porous body 4 had a significantly small cation exchange capacity.

【0017】[0017]

【発明の効果】本発明によれば、鋳物工場から排出され
た鋳物砂を主要成分とし、かつ該鋳物砂中に含まれるベ
ントナイト量が該鋳物砂の5重量%以上である原料か
ら、粒状体又は塊状体を形成し、該粒状体又は該塊状体
を400℃以上600℃未満に加熱して焼成するので、
得られた無機多孔質体の陽イオン交換容量が10me/
100g以上になるため、黒ボク土や褐色森林土と同等
程度の陽イオン交換容量となり、土壌中に混合した場合
に、混合土壌の陽イオン交換容量を高く保ち、かつ通気
性等を向上させることができ、植物の育成を良好に促進
することができる。
According to the present invention, a granular material is prepared from a raw material containing a molding sand discharged from a foundry as a main component and having a bentonite content of 5% by weight or more of the foundry sand. Or forming a lump, and baking the particle or lump by heating it to 400 ° C. or more and less than 600 ° C.
The cation exchange capacity of the obtained inorganic porous material is 10 me /
Since it is 100 g or more, it has a cation exchange capacity equivalent to that of Ando soil and brown forest soil, and when mixed in soil, keeps the cation exchange capacity of the mixed soil high and improves air permeability etc. And promote the growth of plants.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉見 仁志 愛知県豊田市高丘新町天王1番地 アイシ ン高丘株式会社内 Fターム(参考) 4G019 GA04 4H026 AA01 AB04  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hitoshi Yoshimi 1 No. 1 Tenno, Takaokashinmachi, Toyota City, Aichi Prefecture F-term in Aisin Takaoka Co., Ltd. 4G019 GA04 4H026 AA01 AB04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋳物工場から排出された鋳物砂を主要成分
とし、かつ該鋳物砂中に含まれるベントナイト量が該鋳
物砂の5重量%以上である原料から、粒状体又は塊状体
を形成し、該粒状体又は該塊状体を400℃以上600
℃未満に加熱して焼成することを特徴とする無機多孔質
体の製造方法。
1. A method of forming a granular or agglomerate from a raw material containing a foundry sand discharged from a foundry as a main component and having an amount of bentonite in the foundry sand of 5% by weight or more of the foundry sand. , The granular material or the massive material is heated at 400 ° C. or more to 600 ° C.
A method for producing an inorganic porous body, characterized in that the inorganic porous body is heated to a temperature of less than ° C and fired.
JP10211607A 1998-07-27 1998-07-27 Production of inorganic porous material Pending JP2000044362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10211607A JP2000044362A (en) 1998-07-27 1998-07-27 Production of inorganic porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10211607A JP2000044362A (en) 1998-07-27 1998-07-27 Production of inorganic porous material

Publications (1)

Publication Number Publication Date
JP2000044362A true JP2000044362A (en) 2000-02-15

Family

ID=16608573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10211607A Pending JP2000044362A (en) 1998-07-27 1998-07-27 Production of inorganic porous material

Country Status (1)

Country Link
JP (1) JP2000044362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010016633A (en) * 2000-12-30 2001-03-05 유한웅 Method for manufacturing a porous sinter-ceramic
JP2002080267A (en) * 2000-09-08 2002-03-19 Yoshiteru Matsubara Porous ceramic and its manufacturing method
JP2002080284A (en) * 2000-09-06 2002-03-19 Aisin Takaoka Ltd Inorganic porous body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080284A (en) * 2000-09-06 2002-03-19 Aisin Takaoka Ltd Inorganic porous body
JP2002080267A (en) * 2000-09-08 2002-03-19 Yoshiteru Matsubara Porous ceramic and its manufacturing method
JP4489919B2 (en) * 2000-09-08 2010-06-23 善輝 松原 Method for producing porous ceramics
KR20010016633A (en) * 2000-12-30 2001-03-05 유한웅 Method for manufacturing a porous sinter-ceramic

Similar Documents

Publication Publication Date Title
KR101941319B1 (en) Phosphate fertilizer and method for producing phosphate fertilizer
KR101794362B1 (en) Ore fine agglomerate to be used in sintering process and production process of ore fines agglomerate
JP2007306844A (en) Method for producing greening material using waste material, and greening material
JP6021199B2 (en) Method for producing phosphate fertilizer
CN103100639A (en) Method for preparing high-gas-permeability casting molding sand
CN103100645A (en) Method for preparing casting molding sand by using slag
CN110204354A (en) A kind of preparation of quick dephosphorization ceramic particle sorbent material
CN109277088A (en) A kind of composite activated carbon ultra-filtration element and preparation method
CN103100641A (en) Method for preparing casting molding sand by doping phosphorus slag
CN108794052B (en) Sludge shale heat-preservation microporous brick and preparation method thereof
JP5719464B1 (en) Ware making method and ware
JP6391142B2 (en) Method for producing phosphate fertilizer
JP2000044362A (en) Production of inorganic porous material
JP2013014492A (en) Silicic acid phosphate fertilizer, and method for producing the same
CN103100648A (en) Method of doping plant ash to manufacture foundry sand
KR102462814B1 (en) Water Purification Agents and Water Purification Methods
JP2998831B2 (en) Soil conditioner
JP5954777B2 (en) Method for producing phosphate fertilizer
JP5188640B2 (en) Phosphate fertilizer and method for producing the same
CN103100644A (en) Method for preparing casting molding sand by using municipal sludge
CN103100640A (en) Method for preparing casting molding sand by doping river sand
CN106747612A (en) A kind of preparation method of the alum sludge base porous ceramic grain of the paper powder that adulterates
KR100278140B1 (en) Method for producing granular strontium carbonate using strontium-containing binder
JP2004321036A (en) Granular culture soil
RU2216385C2 (en) Method of production of granulated filtering material