JPH1079262A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH1079262A
JPH1079262A JP8234023A JP23402396A JPH1079262A JP H1079262 A JPH1079262 A JP H1079262A JP 8234023 A JP8234023 A JP 8234023A JP 23402396 A JP23402396 A JP 23402396A JP H1079262 A JPH1079262 A JP H1079262A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
lithium
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8234023A
Other languages
Japanese (ja)
Inventor
Hajime Nishino
肇 西野
Masaki Kitagawa
雅規 北川
Masaya Okochi
正也 大河内
Takashi Takeuchi
崇 竹内
Hide Koshina
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8234023A priority Critical patent/JPH1079262A/en
Publication of JPH1079262A publication Critical patent/JPH1079262A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electric conductivity and charge and discharge characteristics of an electrolyte by adding a predetermined quantity of a specific compound for an electrolyte. SOLUTION: This battery has a positive electrode having a lithium-containing oxide as an active substance, a negative electrode employing a carbon material for absorbing and discharging lithium, and a non-aqueous electrolyte. To this electrolyte, an aromatic compound of 0.1 to 20 volume % having one or more non-covalent electron pairs formed containing different kinds of elements other carbon. By employing such a compound, for example, pyridine or the like, movement resistance of a lithium ion is decreased, and dissociation of the ion pairs is accelerated. As a result, electric conductivity of an electrolyte is improved, and charge and discharge characteristics of a battery can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池において、ハイレート充放電を可能にする技術分野に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technical field of a non-aqueous electrolyte secondary battery capable of high-rate charging and discharging.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のポータブル化,コードレス化が急速に進んでお
り、これらの駆動用電源として小型,軽量で高エネルギ
ー密度を有する二次電池への要求が高くなっている。こ
の中でリチウムを活物質とする負極を用いた非水電解液
二次電池は、とりわけ高電圧,高エネルギー密度を有す
る電池としての期待が大きくなっている。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly advanced, and there is a demand for a small, lightweight, high energy density secondary battery as a power supply for driving these devices. Is getting higher. Among them, a non-aqueous electrolyte secondary battery using a negative electrode containing lithium as an active material has been particularly expected to be a battery having a high voltage and a high energy density.

【0003】上記の電池では、正極活物質にLiCoO
2 ,LiNiO2 ,LiMn24等のリチウムに対して
4V級の電圧を示すリチウム含有金属酸化物が用いら
れ、負極にはリチウムをインターカレート,デインター
カレートできる炭素材料等が用いられている。
In the above battery, LiCoO is used as a positive electrode active material.
2 , LiNiO 2 , LiMn 2 O 4, etc., a lithium-containing metal oxide exhibiting a voltage of 4V class with respect to lithium is used, and a carbon material capable of intercalating and deintercalating lithium is used for a negative electrode. ing.

【0004】これらの二次電池では、高電圧においても
電気分解されないようにするため、非水系の有機溶媒を
用いる必要がある。一般に、有機溶媒は水溶液に比べ比
誘電率が小さいが、比誘電率の大きさは、溶媒中でのイ
オン対の解離し易さに大きく関与しており、この値が大
きければ、多くのイオン対を溶解することができる。
In these secondary batteries, it is necessary to use a non-aqueous organic solvent in order to prevent electrolysis even at a high voltage. In general, an organic solvent has a lower relative dielectric constant than an aqueous solution, but the relative dielectric constant has a large effect on the dissociation of ion pairs in the solvent. The pair can be dissolved.

【0005】しかし、上記のように有機溶媒は比誘電率
が小さく、水溶液に比べるとわずかのイオン対しか溶解
できない。すなわち、非水系の有機電解液は電荷の担い
手であるイオンがわずかしか溶解できないため、電解液
としての電気伝導度は水溶液系に比べ小さくなる。
However, as described above, the organic solvent has a small relative dielectric constant, and can dissolve only a few ion pairs as compared with an aqueous solution. That is, in the non-aqueous organic electrolytic solution, only a small amount of ions that carry electric charges can be dissolved, so that the electric conductivity as the electrolytic solution is smaller than that in the aqueous solution type.

【0006】このため、水溶液系二次電池であるニッケ
ル−カドミウム電池や鉛蓄電池と比較して電解液による
内部抵抗が大きくなり、大電流で放電を行うと過電圧が
大きく容量が低下する原因となる。
For this reason, the internal resistance due to the electrolytic solution becomes larger than that of a nickel-cadmium battery or a lead storage battery which is an aqueous secondary battery, and when a large current is discharged, an overvoltage is large and the capacity is reduced. .

【0007】また、高い比誘電率を有する有機溶媒は一
般に粘度が高く、電解液の粘度は、イオンの移動抵抗に
直接関わるため、電解液の電気伝導度が溶液粘度によっ
てほぼ決定づけられることが多い。
An organic solvent having a high relative dielectric constant generally has a high viscosity, and the viscosity of the electrolytic solution is directly related to the ion migration resistance. Therefore, the electric conductivity of the electrolytic solution is almost determined by the viscosity of the solution. .

【0008】従って、従来の非水電解液二次電池にあっ
ては、低粘度の溶媒を混合して電解液の電気伝導度を最
適化し、大電流における放電特性を確保するようにして
いる。
Therefore, in a conventional non-aqueous electrolyte secondary battery, a low-viscosity solvent is mixed to optimize the electric conductivity of the electrolyte and to secure discharge characteristics at a large current.

【0009】[0009]

【発明が解決しようとする課題】従来の非水系の二次電
池では、上記で説明したように、より高い電気伝導度を
示す有機電解液が熱望されており、低粘度の有機溶媒を
組み合わせて電解液の粘度を下げ、より高い電気伝導度
を獲得してきたが、低粘度の有機溶媒は、比誘電率が低
いため、電解液自身の比誘電率も低下して溶質のイオン
解離が進まず、電解液の伝導度にほとんど関与すること
がなく、添加量に対して電気伝導性の増加が期待できな
いという問題点があった。
As described above, in a conventional non-aqueous secondary battery, an organic electrolyte having a higher electric conductivity is desired, and a low-viscosity organic solvent is used in combination. Although the viscosity of the electrolyte has been lowered and higher electric conductivity has been obtained, the low-viscosity organic solvent has a low relative dielectric constant, so the relative dielectric constant of the electrolyte itself also decreases, and the ionic dissociation of the solute does not proceed. In addition, there is a problem that the conductivity is hardly involved in the conductivity of the electrolytic solution, and the increase in the electrical conductivity cannot be expected with respect to the added amount.

【0010】[0010]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明はリチウム含有酸化物を活物質とする正
極と、リチウムの吸蔵,放出が可能な炭素材料を用いた
負極と、非水電解液とを有する非水電解液二次電池にお
いて、電解液の添加剤として炭素以外の異種元素を含む
ことにより非共有電子対を一つ以上有する芳香族系化合
物、例えばピリジン,ピリミジン,フラン,チオフェン
等を0.1〜20容量%の範囲において添加することと
している。そして、このような芳香族系化合物を添加す
ることにより、電解液の電気伝導度が向上し、電池の内
部抵抗が減少し、効率の良い充放電を行うことができ、
結果として合剤の利用率が改善され、急速充放電が可能
な高容量の非水電解液二次電池を得ることができる。
In order to solve the above problems, the present invention provides a positive electrode using a lithium-containing oxide as an active material, a negative electrode using a carbon material capable of absorbing and releasing lithium, In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, an aromatic compound having at least one lone pair of electrons by including a different element other than carbon as an additive of the electrolyte, for example, pyridine, pyrimidine, Furan, thiophene and the like are added in the range of 0.1 to 20% by volume. By adding such an aromatic compound, the electric conductivity of the electrolytic solution is improved, the internal resistance of the battery is reduced, and efficient charging and discharging can be performed.
As a result, the availability of the mixture is improved, and a high-capacity nonaqueous electrolyte secondary battery capable of rapid charging and discharging can be obtained.

【0011】[0011]

【発明の実施の形態】本発明は、リチウム含有酸化物を
活物質とする正極と、リチウムを吸蔵,放出する炭素材
料を用いた負極と、非水電解液とを有する非水電解液二
次電池において、環内に炭素以外の異種元素を含んで形
成する非共有電子対を一つ以上有する芳香族系化合物を
1〜20容量%非水電解液に添加したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a non-aqueous electrolyte secondary battery having a positive electrode using a lithium-containing oxide as an active material, a negative electrode using a carbon material that absorbs and releases lithium, and a non-aqueous electrolyte. In a battery, an aromatic compound having at least one lone pair of electrons forming a heterogeneous element other than carbon in a ring is added to a 1 to 20% by volume nonaqueous electrolyte.

【0012】さらに、非共有電子対を一つ以上有する芳
香族系化合物としては、ピリジン,ピリミジン, フラン,
チオフェンもしくはそれらの誘導体のいずれかが好ま
しい。
Further, aromatic compounds having at least one lone pair include pyridine, pyrimidine, furan, and the like.
Thiophene or any of their derivatives is preferred.

【0013】電解液の電気伝導性を確保するためには、
電解質を高濃度に溶解する必要があるが、電解液の粘度
を下げるためには、低粘度の溶媒を混入する必要があ
り、低粘度の溶媒は、誘電率が低いため電解液の誘電率
も低くなる。この場合、高濃度で電解質を溶解すると会
合度が高くなるので、濃度に対して電気伝導度の上昇が
期待できなくなる。
In order to ensure the electrical conductivity of the electrolyte,
Although it is necessary to dissolve the electrolyte at a high concentration, it is necessary to mix a low-viscosity solvent in order to lower the viscosity of the electrolyte, and the low-viscosity solvent has a low dielectric constant, so the dielectric constant of the electrolyte is also low. Lower. In this case, when the electrolyte is dissolved at a high concentration, the degree of association increases, so that an increase in the electrical conductivity with respect to the concentration cannot be expected.

【0014】また、リチウムイオンは、原子半径が小さ
いためにエチレンカーボネート等の高極性溶媒により溶
媒和されるので、イオン半径が増大し、イオンの移動度
が落ち、電解液の電気伝導度が低下している。
Since lithium ions are solvated by a highly polar solvent such as ethylene carbonate because of their small atomic radius, the ionic radius increases, the mobility of ions decreases, and the electric conductivity of the electrolyte decreases. doing.

【0015】そこで、炭素以外の異種元素を含むことに
より非共有電子対を一つ以上有する芳香族系化合物を
0.1〜20容量%の範囲において電解液に添加するこ
とにより、以下に説明するように作用する。なお、ここ
では特にピリジンを例にとってその作用について説明す
る。
Therefore, the following description is made by adding an aromatic compound having at least one lone pair of electrons by containing a heterogeneous element other than carbon to the electrolyte in the range of 0.1 to 20% by volume. Act like so. In addition, here, the action will be described by taking pyridine as an example.

【0016】ピリジンは、ヒュッケルの法則による(4
n+2)個の共役π電子の他に2個の非共有電子対を有
し、この2個の非共有電子対がカチオンと結合し、全体
として正に帯電したピリジニュウムイオンを形成する。
Pyridine is determined by Hückel's law (4
It has two lone pairs in addition to (n + 2) conjugated π electrons, and these two lone pairs are combined with cations to form a positively charged pyridinium ion as a whole.

【0017】そのため、ピリジンを電解液に混入する
と、電解液中のカチオンと結合してピリジニュウムイオ
ンが形成され、このピリジニュウムイオンは、リチウム
イオンに比べるとイオン半径が大きくなり、共役電子の
存在のため正の電荷が分散し溶媒和され難くなる。リチ
ウムイオンが、通常2分子以上の溶媒に溶媒和されてい
ることを考えると、ピリジニュウムイオンとなること
で、溶媒和したリチウムイオンに比較して半径が小さく
なり、溶液中でのイオンの移動抵抗が減少する。
Therefore, when pyridine is mixed into the electrolytic solution, it binds to cations in the electrolytic solution to form pyridinium ions, which have a larger ionic radius than lithium ions and have a conjugated electron. , Positive charges are dispersed and solvation becomes difficult. Considering that lithium ions are usually solvated in two or more molecules of a solvent, the pyridinium ion has a smaller radius than the solvated lithium ion, and the ion Movement resistance is reduced.

【0018】また、ピリジンはカチオンと結合して正に
帯電するため、他の求核剤の攻撃を受け難く、非常に安
定であり、なおかつ正極において酸化もされ難くなり、
またリチウムイオンがピリジニュウムイオンとしてトラ
ップされるため、イオン対の解離も促進され、電解液の
電気伝導率も増加するようになる。
Further, since pyridine is positively charged by binding to a cation, it is hardly attacked by other nucleophiles, very stable, and hardly oxidized at the positive electrode.
Further, since lithium ions are trapped as pyridinium ions, dissociation of ion pairs is promoted, and the electric conductivity of the electrolytic solution also increases.

【0019】高い比誘電率を示す溶媒は様々に考え得る
が、本発明では、非共有電子対を持つ共役π電子系に注
目した点に特徴がある。
Although various solvents having a high relative permittivity can be considered, the present invention is characterized by focusing on a conjugated π-electron system having an unshared electron pair.

【0020】すなわち、このような化合物を用いること
により、イオンの移動抵抗を減少させると同時にイオン
対の解離も促進させ、電解液の電気伝導度を向上させる
ことができる。
That is, by using such a compound, it is possible to reduce the ion migration resistance and at the same time promote the dissociation of ion pairs, thereby improving the electric conductivity of the electrolytic solution.

【0021】上記のような作用により、高い電気伝導性
を示す電解液を得て、充放電特性に優れた電池を提供す
ることができる。
By the above-described operation, an electrolyte having high electric conductivity can be obtained, and a battery having excellent charge / discharge characteristics can be provided.

【0022】[0022]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】(実施例1)図1に本実施例で用いた円筒
形渦巻非水電解液二次電池の縦断面図を示す。図におい
て、1は耐有機電解液性のステンレス鋼板を加工した電
池ケース、2は安全弁を設けた封口板、3は絶縁パッキ
ング、4は極板群で、正極板5および負極板6がセパレ
ータ7を介して複数回渦巻状に巻回して形成され、電池
ケース1内に収納されている。そして、上記正極板5か
らは正極リード8が引き出されて封口板2に接続され、
負極板6からは負極リード9が引き出されて電池ケース
1の底部に接続されている。10は絶縁リングで、極板
群4の上下部にそれぞれ設けられている。以下、正極
板,負極板について詳しく説明する。
Example 1 FIG. 1 is a longitudinal sectional view of a cylindrical spiral nonaqueous electrolyte secondary battery used in this example. In the figure, reference numeral 1 denotes a battery case made of a stainless steel sheet having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, 3 denotes an insulating packing, 4 denotes an electrode plate group, and a positive electrode plate 5 and a negative electrode plate 6 are separators 7. And is formed into a spiral shape a plurality of times, and is housed in the battery case 1. Then, the positive electrode lead 8 is pulled out from the positive electrode plate 5 and connected to the sealing plate 2,
A negative electrode lead 9 is pulled out from the negative electrode plate 6 and connected to the bottom of the battery case 1. Reference numeral 10 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively. Hereinafter, the positive electrode plate and the negative electrode plate will be described in detail.

【0024】正極は、Li2CO3 とCo34 とを混合
し、900℃で10時間焼成して合成したLiCoO2
粉末の重量に対して、アセチレンブラック3%,フッ素
樹脂系結着剤7%を混合し、カルボキシメチルセルロー
ス水溶液に懸濁させて正極合剤ペーストとした。この正
極合剤ペーストを、厚さ30μmのアルミ箔に塗工し乾
燥した後、圧延して、厚さ0.18mm,幅37mm,
長さ390mmの正極板5とした。
The positive electrode is LiCoO 2 synthesized by mixing Li 2 CO 3 and Co 3 O 4 and firing at 900 ° C. for 10 hours.
With respect to the weight of the powder, 3% of acetylene black and 7% of a fluororesin-based binder were mixed and suspended in an aqueous solution of carboxymethylcellulose to prepare a positive electrode mixture paste. This positive electrode mixture paste is applied to an aluminum foil having a thickness of 30 μm, dried, and then rolled to a thickness of 0.18 mm, a width of 37 mm,
The positive electrode plate 5 was 390 mm in length.

【0025】負極は、メソフェーズ小球体を2800℃
の高温で黒鉛化したもの(以下、メソフェーズ黒鉛と称
す)を用いた。このメソフェーズ黒鉛の重量に対して、
スチレン/ブタジエンゴム5%を混合した後、カルボキ
シメチルセルロース水溶液に懸濁させてペースト状にし
て負極合剤ペーストとした。そして、この負極合剤ペー
ストを厚さ0.02mmのCu箔の両面に塗工し乾燥し
た後、圧延して、厚さ0.20mm,幅39mm,長さ
420mmの負極板6とした。
The negative electrode was prepared by heating mesophase spheres at 2800 ° C.
(Hereinafter, referred to as mesophase graphite) was used. For the weight of this mesophase graphite,
After mixing 5% of styrene / butadiene rubber, the mixture was suspended in an aqueous solution of carboxymethylcellulose to form a paste to obtain a negative electrode mixture paste. Then, this negative electrode mixture paste was applied to both sides of a Cu foil having a thickness of 0.02 mm, dried, and then rolled to obtain a negative electrode plate 6 having a thickness of 0.20 mm, a width of 39 mm, and a length of 420 mm.

【0026】そして、正極板5にはアルミニウム製の正
極リード8、負極板6にはニッケル製の負極リード9を
それぞれ取り付け、厚さ0.025mm,幅45mm,
長さ950mmのポリプロピレン製セパレータ7を介し
て渦巻状に巻回して極板群4とし、直径17.0mm,
高さ50.0mmの電池ケース1に納入した。電解液に
はエチレンカーボネート(EC)とジエチルカーボネー
ト(DEC)とプロピオン酸メチル(MP)とを30:
50:20の体積比で混合した溶媒に1モル/リットル
のLiPF6 を溶解したものを用い、電解液の添加剤と
して、2容量%のピリジンを用い、これを注液した後、
封口し、実施例の電池Aとした。
A positive electrode lead 8 made of aluminum is mounted on the positive electrode plate 5, and a negative electrode lead 9 made of nickel is mounted on the negative electrode plate 6, each having a thickness of 0.025 mm, a width of 45 mm and a width of 45 mm.
It is spirally wound through a polypropylene separator 7 having a length of 950 mm to form an electrode group 4 having a diameter of 17.0 mm,
Delivered to a battery case 1 with a height of 50.0 mm. Ethylene carbonate (EC), diethyl carbonate (DEC) and methyl propionate (MP) were used as the electrolyte solution.
A solution obtained by dissolving 1 mol / L of LiPF 6 in a solvent mixed at a volume ratio of 50:20 was used, and 2% by volume of pyridine was used as an additive of an electrolytic solution.
The battery was sealed and the battery A of the example was obtained.

【0027】(実施例2)電解液の添加剤として、2容
量%のフランを用いた以外は実施例1の場合と同様の円
筒形渦巻非水電解液二次電池を構成した。これを実施例
の電池Bとした。
Example 2 A cylindrical spiral non-aqueous electrolyte secondary battery was constructed in the same manner as in Example 1 except that 2% by volume of furan was used as an electrolyte additive. This was designated as Battery B of the example.

【0028】(実施例3)電解液の添加剤として、2容
量%のチオフェンを用いた以外は実施例1の場合と同様
の円筒形渦巻非水電解液二次電池を構成した。これを実
施例の電池Cとした。
Example 3 A cylindrical spiral non-aqueous electrolyte secondary battery was constructed in the same manner as in Example 1 except that 2% by volume of thiophene was used as an electrolyte additive. This was designated as Battery C of Example.

【0029】(比較例)添加剤を加えていない電解液を
用いた以外は、実施例1の場合と同様の円筒形渦巻非水
電解液二次電池を構成し、これを比較例の電池Dとし
た。
Comparative Example A cylindrical spiral non-aqueous electrolyte secondary battery similar to that of Example 1 was used except that an electrolytic solution to which no additive was added was used. And

【0030】次に、実施例の電池A,B,Cと比較例の
電池Dとを各5セルずつ用意して、環境温度20℃で、
充電電圧4.1V,充電時間2時間,制限電流500m
Aの定電圧充電を行った充電状態の電池について放電特
性を調べた。
Next, the batteries A, B, and C of the example and the battery D of the comparative example were prepared by 5 cells each,
4.1V charging voltage, 2 hours charging time, 500m limited current
The discharge characteristics of the battery in the charged state where the constant voltage charging of A was performed were examined.

【0031】この充電状態の電池を0.2A,1A,2
Aで放電して容量を測定し、0.2Aでの放電容量を1
00%とした場合、1A,2Aでの放電容量の維持率は
表1に示す通りである。
The batteries in this charged state were charged at 0.2 A, 1 A, 2
A and discharge capacity at 0.2 A, and discharge capacity at 0.2 A is 1
Table 1 shows the maintenance ratio of the discharge capacity at 1A and 2A when the ratio is set to 00%.

【0032】[0032]

【表1】 [Table 1]

【0033】表1から、1A/0.2A,2A/0.2
Aの放電容量の維持率が、それぞれ電池Aは97%,9
5%、電池Bは96%,94%、電池Cは96%,93
%、電池Dは90%,83%であり、明らかに添加剤の
効果があることがわかる。
From Table 1, 1A / 0.2A, 2A / 0.2
The retention rate of the discharge capacity of battery A was 97% and that of battery A was 9%.
5%, battery B 96%, 94%, battery C 96%, 93
% And Battery D are 90% and 83%, which clearly show the effect of the additive.

【0034】また、添加剤の濃度に対する検討を行った
結果、1容量%以上で電池の放電特性の向上に効果が現
れ、15容量%以上では添加剤の効果が現れ難くなり、
20容量%以上では電解液自身の電気伝導率が減少して
逆に放電特性が悪くなり始めるので、0.1〜20容量
%が好ましい。
Further, as a result of studying the concentration of the additive, the effect of improving the discharge characteristics of the battery appears at 1% by volume or more, and the effect of the additive hardly appears at 15% by volume or more.
If the content is 20% by volume or more, the electric conductivity of the electrolytic solution itself decreases, and conversely, the discharge characteristics start to deteriorate. Therefore, 0.1 to 20% by volume is preferable.

【0035】以上のような効果は、ピリジン,フラン,
チオフェンとそれぞれの誘導体、または芳香族系化合物
の中でも環内に炭素以外の異種元素を含むことにより、
非共有電子対を一つ以上有する化合物を電解液に添加す
ることにより期待できる。なお、非共有電子対を一つ以
上有する芳香族系化合物としては、多環性の芳香族系化
合物でも良く、ヒュッケルの法則に従う(4n+2)個
の共役π電子の他に2個の非共有電子対を持つ有機化学
物質が好ましい。
The above effects are obtained by using pyridine, furan,
By including different elements other than carbon in the ring among thiophene and respective derivatives, or aromatic compounds,
This can be expected by adding a compound having one or more lone pairs to the electrolytic solution. The aromatic compound having at least one lone electron pair may be a polycyclic aromatic compound, and in addition to (4n + 2) conjugated π electrons and two lone electrons in accordance with Hückel's law. Paired organic chemicals are preferred.

【0036】[0036]

【発明の効果】本発明は、以上説明したような形態で実
施され、電解液添加剤として炭素以外の異種元素を含む
ことにより非共有電子対を一つ以上有する芳香族系化合
物を0.1〜20容量%の範囲において添加することに
より、電解液の電気伝導率を上げ放電特性の良い電池を
提供できる効果を奏する。
The present invention is embodied in the form as described above, and contains a heterogeneous element other than carbon as an additive for an electrolyte so that an aromatic compound having at least one lone pair of electrons can be obtained. By adding in the range of 20 to 20% by volume, there is an effect that the electric conductivity of the electrolytic solution can be increased and a battery having good discharge characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における円筒形渦巻非水電解液
二次電池の縦断面図
FIG. 1 is a longitudinal sectional view of a cylindrical spiral nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

5 正極板 6 負極板 5 Positive electrode plate 6 Negative electrode plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 崇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Takashi Takeuchi 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有酸化物を活物質とする正極
と、リチウムの吸蔵,放出が可能な炭素材料を用いた負
極と、非水電解液とを有し、非水電解液には、環内に炭
素以外の異種元素を含んで形成する非共有電子対を一つ
以上有する芳香族系化合物を0.1〜20容量%添加し
た非水電解液二次電池。
1. A positive electrode using a lithium-containing oxide as an active material, a negative electrode using a carbon material capable of inserting and extracting lithium, and a non-aqueous electrolyte. A nonaqueous electrolyte secondary battery in which 0.1 to 20% by volume of an aromatic compound having at least one lone pair of electrons formed by including a heterogeneous element other than carbon therein is added.
【請求項2】 非共有電子対を一つ以上有する芳香族系
化合物が、ピリジン,ピリミジン,フラン,チオフェン
もしくはそれらの誘導体の群から選ばれた少なくとも一
つである請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte according to claim 1, wherein the aromatic compound having one or more lone pairs is at least one selected from the group consisting of pyridine, pyrimidine, furan, thiophene, and derivatives thereof. Liquid secondary battery.
JP8234023A 1996-09-04 1996-09-04 Non-aqueous electrolyte secondary battery Pending JPH1079262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8234023A JPH1079262A (en) 1996-09-04 1996-09-04 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8234023A JPH1079262A (en) 1996-09-04 1996-09-04 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1079262A true JPH1079262A (en) 1998-03-24

Family

ID=16964355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8234023A Pending JPH1079262A (en) 1996-09-04 1996-09-04 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1079262A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828175B2 (en) 2002-08-29 2004-12-07 Micron Technology, Inc. Semiconductor component with backside contacts and method of fabrication
JP2006294374A (en) * 2005-04-08 2006-10-26 Sony Corp Electrolyte solution and battery
WO2013094445A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element
JP2014523101A (en) * 2011-07-18 2014-09-08 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery using the same
US11316196B2 (en) 2018-12-21 2022-04-26 Toyota Jidosha Kabushiki Kaisha Lithium-ion battery containing electrolyte including capacity restoration additives and method for restoring capacity of lithium-ion battery
US12051778B2 (en) 2018-12-21 2024-07-30 Toyota Jidosha Kabushiki Kaisha Lithium-ion battery containing electrolyte including capacity restoration additives and method for restoring capacity of lithium-ion battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828175B2 (en) 2002-08-29 2004-12-07 Micron Technology, Inc. Semiconductor component with backside contacts and method of fabrication
US6903442B2 (en) 2002-08-29 2005-06-07 Micron Technology, Inc. Semiconductor component having backside pin contacts
US7078266B2 (en) 2002-08-29 2006-07-18 Micron Technology, Inc. Method for fabricating semiconductor components with thinned substrate, back side contacts and circuit side contacts
US7081665B2 (en) 2002-08-29 2006-07-25 Micron Technology, Inc. Semiconductor component having thinned substrate, backside pin contacts and circuit side contacts
JP2006294374A (en) * 2005-04-08 2006-10-26 Sony Corp Electrolyte solution and battery
JP2014523101A (en) * 2011-07-18 2014-09-08 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery using the same
US9871271B2 (en) 2011-07-18 2018-01-16 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
WO2013094445A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element
US11316196B2 (en) 2018-12-21 2022-04-26 Toyota Jidosha Kabushiki Kaisha Lithium-ion battery containing electrolyte including capacity restoration additives and method for restoring capacity of lithium-ion battery
US12051778B2 (en) 2018-12-21 2024-07-30 Toyota Jidosha Kabushiki Kaisha Lithium-ion battery containing electrolyte including capacity restoration additives and method for restoring capacity of lithium-ion battery

Similar Documents

Publication Publication Date Title
JP2004152743A (en) Positive electrode for lithium sulfur battery, and lithium sulfur battery containing this
JP2004103560A (en) Electrolytic solution for lithium-sulfur battery and lithium-sulfur battery containing electrolytic solution
JPH10312811A (en) Nonaqeous electrolyte secondary battery
JPH05234621A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2007305461A (en) Controlling method of charging or discharging for power storage device
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH07335261A (en) Lithium secondary battery
JPH0520874B2 (en)
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH1079262A (en) Non-aqueous electrolyte secondary battery
JP2005294028A (en) Lithium secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH1167265A (en) Lithium battery
JP4274663B2 (en) Nonaqueous electrolyte secondary battery
JPH0351068B2 (en)
JP2000090970A (en) Lithium secondary battery
JP2007128919A (en) Operation method for nonaqueous electrolyte secondary battery
JP2003187876A (en) Lithium secondary battery
JPH0477426B2 (en)
JPH1131527A (en) Nonaqueous electrolyte secondary battery
JPH09245798A (en) Lithium secondary battery
JPH1055818A (en) Nonaqueous electrolyte secondary battery
JPH0917446A (en) Non-aqueous electrolyte secondary battery
JP4752126B2 (en) Non-aqueous electrolyte secondary battery
JP2004134237A (en) Using method of lithium ion secondary battery