JPH1079249A - Manufacture of hydrogen storage alloy for electrode - Google Patents

Manufacture of hydrogen storage alloy for electrode

Info

Publication number
JPH1079249A
JPH1079249A JP8253790A JP25379096A JPH1079249A JP H1079249 A JPH1079249 A JP H1079249A JP 8253790 A JP8253790 A JP 8253790A JP 25379096 A JP25379096 A JP 25379096A JP H1079249 A JPH1079249 A JP H1079249A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
value
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8253790A
Other languages
Japanese (ja)
Other versions
JP3316394B2 (en
Inventor
Mitsunori Tokuda
光紀 徳田
Nobuyuki Higashiyama
信幸 東山
Yoshinori Matsuura
義典 松浦
Mamoru Kimoto
衛 木本
Mitsuzo Nogami
光造 野上
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25379096A priority Critical patent/JP3316394B2/en
Publication of JPH1079249A publication Critical patent/JPH1079249A/en
Application granted granted Critical
Publication of JP3316394B2 publication Critical patent/JP3316394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent charging efficiency in the initial stage from being deteriorated, by specifying a pH value in the treatment of hydrogen storage alloy in acidic solution. SOLUTION: Hydrogen storage alloy is immersed into acidic solution whose initial pH value is 2 or less. Therefore, a layer of oxide on the alloy surface is removed, rare earth elements of Mn, Al having the high ionization tendency in alloy are dissolved, a number of active parts having many Ni compounds appear on the front surface side, and dissolved ion is deposit on the surface of alloy. When pH of acidic solution reaches the specified value in the range of 3 to 5, alloy is taken out and washed in water, and ion deposited on the surface is removed. When alloy is immersed into acidic solution having a pH value equal to a predetermined value, oxide remaining on the alloy front surface is dissolved, a number of active parts having many Ni compounds appear on the alloy front surface. As a result, hydrogen gas is sufficiently absorbed to alloy from the initial stage, and charging efficiency is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、密閉型ニッケル
−水素二次電池の負極材料として用いる電極用水素吸蔵
合金の製造方法に係り、特に、密閉型ニッケル−水素二
次電池を使用する初期における負極を活性化させて、初
期充電時における充電効率を改善する点に特徴を有する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy for an electrode used as a negative electrode material for a sealed nickel-hydrogen secondary battery, and more particularly to a method for manufacturing a sealed nickel-hydrogen secondary battery in the early stage of using the same. It is characterized in that the negative electrode is activated to improve the charging efficiency at the time of initial charging.

【0002】[0002]

【従来の技術】従来、二次電池としては、ニッケル−カ
ドミウム蓄電池や鉛蓄電池等の二次電池が広く利用され
ていたが、近年、携帯電話やノート型パソコン等の携帯
機器の発達とともに高容量かつ高性能な電池が要求され
るようになった。そこで、高エネルギー密度を有し、安
全性に優れた密閉型のニッケル−水素二次電池が注目さ
れ、その研究・開発が行なわれている。
2. Description of the Related Art Conventionally, secondary batteries such as nickel-cadmium storage batteries and lead storage batteries have been widely used as secondary batteries, but in recent years, with the development of mobile devices such as mobile phones and notebook computers, high capacity batteries have been developed. And high performance batteries have been required. Therefore, a sealed nickel-hydrogen secondary battery having a high energy density and excellent safety has attracted attention, and research and development thereof have been performed.

【0003】ここで、密閉型のニッケル−水素二次電池
は、水素吸蔵合金の水素の吸蔵・放出反応を利用した二
次電池であり、一般に水素吸蔵合金からなる負極と、ニ
ッケル正極と、アルカリ電解液と、セパレータとから構
成されており、また、この負極に用いる水素吸蔵合金と
しては、希土類系元素(ランタン,セリウム,プラセオ
ジム,ネオジム等)の混合物であるミッシュメタル(M
m)とNi,Mn,Al等の金属元素からなるCuCa
5 構造を有するAB5 型の水素吸蔵合金が多く利用され
ている。
[0003] Here, a sealed nickel-hydrogen secondary battery is a secondary battery that utilizes a hydrogen storage / release reaction of a hydrogen storage alloy, and generally includes a negative electrode made of a hydrogen storage alloy, a nickel positive electrode, and an alkali positive electrode. The hydrogen storage alloy used for the negative electrode is composed of a mixture of rare earth elements (lanthanum, cerium, praseodymium, neodymium, etc.).
m) and CuCa composed of metal elements such as Ni, Mn, and Al
AB 5 type hydrogen storage alloys having five structures are widely used.

【0004】しかし、上記のような水素吸蔵合金は、自
然酸化等によってその表面に酸化物や水酸化物の層が形
成され、この酸化物や水酸化物の層によって水素吸蔵合
金における水素ガスの吸収能力が低下し、このような水
素吸蔵合金を負極に使用した初期において、水素ガスが
十分に吸収されず、充電効率が低下するという問題があ
った。
[0004] However, in the above-mentioned hydrogen storage alloy, an oxide or hydroxide layer is formed on the surface by natural oxidation or the like, and the hydrogen gas in the hydrogen storage alloy is formed by the oxide or hydroxide layer. There has been a problem that the absorption capacity is reduced, and in the initial stage of using such a hydrogen storage alloy for the negative electrode, the hydrogen gas is not sufficiently absorbed, and the charging efficiency is reduced.

【0005】そこで、近年においては、例えば、特開平
6−88150号公報に示されるように、酸性溶液中に
水素吸蔵合金を浸漬させて、水素吸蔵合金の表面に形成
された酸化物や水酸化物の層を除去する方法が提案され
た。
In recent years, for example, as disclosed in JP-A-6-88150, an oxide or hydroxide formed on the surface of a hydrogen storage alloy is immersed in an acidic solution. Methods have been proposed for removing layers of objects.

【0006】ここで、このように酸性溶液中に水素吸蔵
合金を浸漬させると、この水素吸蔵合金の表面に形成さ
れた酸化物や水酸化物の層がある程度除去されて、水素
吸蔵合金の表面に活性な部位が出現してくるが、この反
応と同時に、酸性溶液中に溶解したイオン等が水素吸蔵
合金の表面に吸着し、酸性溶液におけるpHの上昇に伴
って上記のようにイオン等が水素吸蔵合金の表面に酸化
物等の状態で析出し、これにより水素吸蔵合金の表面に
おける活性な部位が減少し、この水素吸蔵合金を負極に
使用した初期において、依然として水素ガスが十分に吸
収されず、充電効率が低下するという問題があった。
Here, when the hydrogen storage alloy is immersed in the acidic solution as described above, the oxide and hydroxide layers formed on the surface of the hydrogen storage alloy are removed to some extent, and the surface of the hydrogen storage alloy is removed. At the same time as this reaction, ions and the like dissolved in the acidic solution are adsorbed on the surface of the hydrogen storage alloy, and as the pH in the acidic solution rises, ions and the like are generated as described above. Precipitates in the form of oxides and the like on the surface of the hydrogen storage alloy, thereby reducing active sites on the surface of the hydrogen storage alloy.In the initial stage of using this hydrogen storage alloy for the negative electrode, hydrogen gas is still sufficiently absorbed. However, there is a problem that the charging efficiency is reduced.

【0007】[0007]

【発明が解決しようとする課題】この発明は、密閉型ニ
ッケル−水素二次電池の負極に使用する水素吸蔵合金に
おける上記のような問題を解決することを課題とするも
のであり、水素吸蔵合金を負極に使用した初期から水素
ガスが十分に吸収されて、初期における充電効率が低下
するということがない電極用水素吸蔵合金の製造方法を
提供することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems in a hydrogen storage alloy used for a negative electrode of a sealed nickel-hydrogen secondary battery. An object of the present invention is to provide a method for producing a hydrogen storage alloy for an electrode, in which hydrogen gas is sufficiently absorbed from the initial stage of using a negative electrode as a negative electrode and the initial charging efficiency does not decrease.

【0008】[0008]

【課題を解決するための手段】この発明における電極用
水素吸蔵合金の製造方法においては、上記のような課題
を解決するため、水素吸蔵合金を初期のpH値が2以下
の酸性溶液に浸漬し、この酸性溶液のpH値が3〜5の
範囲内の所定のpH値になった時点で上記の水素吸蔵合
金に付着したイオンを除去した後、この水素吸蔵合金を
上記の所定のpH値と同じpH値の酸性溶液に浸漬し、
その後、この水素吸蔵合金を水洗し乾燥させるようにし
たのである。
In the method for producing a hydrogen storage alloy for an electrode according to the present invention, in order to solve the above-mentioned problems, the hydrogen storage alloy is immersed in an acidic solution having an initial pH value of 2 or less. When the pH value of the acidic solution reaches a predetermined pH value in the range of 3 to 5, after removing the ions attached to the hydrogen storage alloy, the hydrogen storage alloy is brought into the predetermined pH value. Immerse in an acidic solution of the same pH value,
Thereafter, the hydrogen storage alloy was washed with water and dried.

【0009】ここで、この発明のように水素吸蔵合金を
初期のpH値が2以下の酸性溶液に浸漬させると、この
水素吸蔵合金の表面における酸化物や水酸化物の層が除
去されると共に、水素吸蔵合金中におけるイオン化傾向
の高い希土類元素やMnやAl等が溶解されて、Ni成
分の多い組成を有する活性な部位が表面側に多く出現す
る一方、溶解されたイオンが水素吸蔵合金の表面に付着
したり、一部が酸化物等となって水素吸蔵合金の表面に
形成される。
Here, when the hydrogen storage alloy is immersed in an acidic solution having an initial pH value of 2 or less as in the present invention, the oxide and hydroxide layers on the surface of the hydrogen storage alloy are removed and In the hydrogen storage alloy, the highly ionizable rare earth elements, Mn, Al, and the like in the hydrogen storage alloy are dissolved, and many active sites having a composition with a large amount of Ni components appear on the surface side, while the dissolved ions form the hydrogen storage alloy. It adheres to the surface or is partially formed as an oxide on the surface of the hydrogen storage alloy.

【0010】そして、この酸性溶液のpH値が3〜5の
範囲における所定のpH値になった時点で、この酸性溶
液に水を添加したり、水素吸蔵合金取り出して水洗する
等により、水素吸蔵合金の表面に付着したイオンが除去
し、次いで、この水素吸蔵合金を上記の所定のpH値と
おける同じpH値の酸性溶液に浸漬させると、この水素
吸蔵合金の表面に残っている酸化物等が溶解されて、N
i成分の多い組成を有する活性な部位が多く水素吸蔵合
金の表面に出現するようになると考えられる。
[0010] When the pH value of the acidic solution reaches a predetermined pH value in the range of 3 to 5, water is added to the acidic solution, or the hydrogen absorbing alloy is taken out and washed with water, for example. When the ions adhering to the surface of the alloy are removed, and then this hydrogen storage alloy is immersed in an acidic solution having the same pH value as the above-mentioned predetermined pH value, oxides and the like remaining on the surface of the hydrogen storage alloy are removed. Is dissolved and N
It is considered that many active sites having a composition with a large amount of the i component appear on the surface of the hydrogen storage alloy.

【0011】そして、このように水素吸蔵合金の表面に
Ni成分の多い組成を有する活性な部位が多く出現する
ことにより、水素吸蔵合金を負極に使用した初期から、
水素ガスがこの水素吸蔵合金に十分に吸収されて、初期
における充電効率が向上する。
[0011] Since many active sites having a composition containing a large amount of Ni components appear on the surface of the hydrogen storage alloy as described above, the hydrogen storage alloy can be used for the negative electrode from the beginning.
Hydrogen gas is sufficiently absorbed by the hydrogen storage alloy, and the initial charging efficiency is improved.

【0012】ここで、水素吸蔵合金を浸漬させる初期の
酸性溶液のpH値が2以下になるようにしたのは、この
pH値が2より大きいと、水素吸蔵合金中における希土
類元素やMnやAl等を十分に溶解させて、Ni成分の
多い組成を有する活性な部位を多く水素吸蔵合金の表面
に出現させることができなくなるためであるが、この酸
性溶液のpH値が低くなり過ぎると、水素吸蔵合金にお
けるNi等も溶解して活性な部位が低下する等、水素吸
蔵合金の表面状態が悪くなるため、好ましくは、初期の
酸性溶液のpH値を1〜1.5の範囲になるようにす
る。
Here, the pH value of the initial acidic solution in which the hydrogen storage alloy is immersed is adjusted to be 2 or less. If the pH value is larger than 2, rare-earth elements, Mn, and Al in the hydrogen storage alloy are used. This is because it is not possible to sufficiently dissolve the compound and the like, and many active sites having a composition containing a large amount of Ni components cannot appear on the surface of the hydrogen storage alloy. Ni and the like in the storage alloy are also dissolved and active sites are reduced, and the surface state of the hydrogen storage alloy is deteriorated. Therefore, the pH value of the initial acidic solution is preferably in the range of 1 to 1.5. I do.

【0013】また、水素吸蔵合金の表面に付着したイオ
ンを除去する際における酸性溶液のpH値を3〜5の範
囲にしたのは、このpH値が3より低い段階で行なう
と、水素吸蔵合金の表面における酸化物や水酸化物の層
の除去や、水素吸蔵合金中における希土類元素やMnや
Al等の溶解が十分に行なわれない一方、このpH値が
5より高い段階で行なうと、溶解されたイオンが水素吸
蔵合金の表面に多く付着して酸化物等の状態になり、次
の処理によってもこれを十分に除去することができなく
なるためであり、好ましくは、水素吸蔵合金の表面に付
着したイオンを除去する際における酸性溶液のpH値を
3〜4の範囲にする。
The reason why the pH value of the acidic solution is set in the range of 3 to 5 when removing the ions attached to the surface of the hydrogen storage alloy is that when the pH value is lower than 3, the hydrogen storage alloy While the removal of oxide and hydroxide layers on the surface of the alloy and the dissolution of rare earth elements, Mn, Al and the like in the hydrogen storage alloy are not sufficiently performed, the dissolution occurs when the pH is higher than 5. This is because a large amount of the ions adhere to the surface of the hydrogen storage alloy and form oxides and the like, which cannot be sufficiently removed by the next treatment. The pH value of the acidic solution at the time of removing the adhered ions is adjusted to a range of 3 to 4.

【0014】さらに、上記のように所定のpH値おいて
イオンを除去させた水素吸蔵合金をこのpH値と同じp
H値の酸性溶液に浸漬させるるようにしたのは、所定の
pH値より低いpH値の酸性溶液に浸漬させると、前記
のように水素吸蔵合金中における希土類元素やMnやA
l等が溶解されて、そのイオン等が水素吸蔵合金の表面
に付着して水素吸蔵合金の表面における活性な部位が減
少する一方、所定のpH値より高いpH値の酸性溶液に
浸漬させると、水素吸蔵合金の表面に残っている酸化物
等を十分に除去することができなくなり、水素吸蔵合金
の表面に出現するNi成分の多い組成を有する活性な部
位が減少するためである。
Further, as described above, the hydrogen-absorbing alloy from which ions have been removed at a predetermined pH value is replaced with the same p value as this pH value.
The immersion in the acidic solution having an H value is such that when immersed in an acidic solution having a pH value lower than a predetermined pH value, the rare earth element, Mn, and A in the hydrogen storage alloy as described above are used.
1 and the like are dissolved, the ions and the like adhere to the surface of the hydrogen storage alloy and active sites on the surface of the hydrogen storage alloy decrease, while immersing in an acidic solution having a pH value higher than a predetermined pH value, This is because oxides and the like remaining on the surface of the hydrogen storage alloy cannot be sufficiently removed, and active sites having a composition containing a large amount of Ni components appearing on the surface of the hydrogen storage alloy decrease.

【0015】[0015]

【実施例】以下に、この発明の実施例に係る電極用水素
吸蔵合金の製造方法について具体的に説明すると共に、
この発明の実施例の方法によって製造された電極用水素
吸蔵合金を用いた場合に初期の充電効率が向上されるこ
とを比較例を挙げて明らかにする。なお、この発明にお
ける電極用水素吸蔵合金の製造方法は、特に下記の実施
例に示したものに限定されるものでなく、その要旨を変
更しない範囲において適宜変更して実施できるものであ
る。
EXAMPLES Hereinafter, a method for producing a hydrogen storage alloy for an electrode according to an example of the present invention will be specifically described,
Comparative examples show that the initial charging efficiency is improved when the hydrogen storage alloy for an electrode manufactured by the method of the embodiment of the present invention is used. The method for producing a hydrogen storage alloy for an electrode according to the present invention is not particularly limited to those described in the following examples, but can be carried out by appropriately changing the scope of the invention without changing its gist.

【0016】(実施例1〜5)これらの実施例において
は、La,Ce,Pr,Smの少なくとも一種を含むミ
ッシュメタル(Mm)とNiとCoとAlとMnとを、
MmNi3.2 Co1.0Al0.2 Mn0.6 の組成比になる
ように秤量して混合し、これらをアーク溶解炉を用いて
合金化した後、これを機械的に粉砕させて水素吸蔵合金
粉末を得た。
(Embodiments 1 to 5) In these embodiments, a misch metal (Mm) containing at least one of La, Ce, Pr and Sm, Ni, Co, Al and Mn are used.
MnNi 3.2 Co 1.0 Al 0.2 Mn 0.6 were weighed and mixed so as to have a composition ratio, and these were alloyed using an arc melting furnace, and then mechanically pulverized to obtain a hydrogen storage alloy powder.

【0017】そして、これらの実施例においては、上記
の水素吸蔵合金粉末を、初期のpHが1.0の塩酸酸性
溶液(一次処理溶液)中に重量比で水素吸蔵合金:一次
処理溶液=1:2となるように添加し、この一次処理溶
液のpHが、下記の表1に示すように2.0〜5.0の
範囲の所定のpH値になった時点で、それぞれ一次処理
溶液に対してその10倍の重量の水を添加して各一次処
理溶液を希釈し、一次処理溶液中に溶解しているイオン
を拡散させた後、すぐに水素吸蔵合金粉末を取り出し、
各水素吸蔵合金粉末をそれぞれ10倍の重量の水で2回
洗浄し、さらにアルコールで洗浄した後、各水素吸蔵合
金粉末を乾燥させた。
In these examples, the above hydrogen storage alloy powder was placed in a hydrochloric acid acidic solution (primary treatment solution) having an initial pH of 1.0 at a weight ratio of hydrogen storage alloy: primary treatment solution = 1. : 2 and when the pH of the primary treatment solution reaches a predetermined pH value in the range of 2.0 to 5.0 as shown in Table 1 below, the primary treatment solution is added to each of the primary treatment solutions. After adding 10 times the weight of water to dilute each primary treatment solution and diffuse ions dissolved in the primary treatment solution, immediately take out the hydrogen storage alloy powder,
Each hydrogen storage alloy powder was washed twice with 10 times the weight of water, and further washed with alcohol, and then each hydrogen storage alloy powder was dried.

【0018】その後、乾燥させた各水素吸蔵合金粉末
を、それぞれ水を添加した時点における所定pHと同じ
pHになった塩酸酸性溶液(二次処理溶液)中に重量比
で水素吸蔵合金:二次処理溶液=1:2となるように添
加し、それぞれ二次処理溶液のpHが7になった時点で
反応を終了させ、その後、各二次処理溶液に対してその
10倍の重量の水を添加した後、各二次処理溶液中から
それぞれ水素吸蔵合金粉末を取り出し、各水素吸蔵合金
粉末をそれぞれ10倍の重量の水で2回洗浄し、さらに
アルコールで洗浄した後、各水素吸蔵合金粉末を乾燥さ
せた。その後、上記の各水素吸蔵合金粉末を分級して、
下記の表1に示すように平均粒径が80μm程度になっ
た各水素吸蔵合金粉末を得、これを密閉型ニッケル−水
素二次電池の負極材料として用いるようにした。
Thereafter, each of the dried hydrogen storage alloy powders is put into a hydrochloric acid acidic solution (secondary treatment solution) having the same pH as the predetermined pH at the time of adding the water, by weight ratio of the hydrogen storage alloy: secondary. Treatment solutions = 1: 2 were added, and the reaction was terminated when the pH of the secondary treatment solutions reached 7, and then 10 times the weight of water was added to each secondary treatment solution. After the addition, the hydrogen-absorbing alloy powder was taken out from each of the secondary treatment solutions, and each hydrogen-absorbing alloy powder was washed twice with 10 times the weight of water, and further washed with alcohol. Was dried. Then, classify each of the above hydrogen storage alloy powders,
As shown in Table 1 below, each hydrogen storage alloy powder having an average particle size of about 80 μm was obtained, and this was used as a negative electrode material of a sealed nickel-hydrogen secondary battery.

【0019】そして、上記の各水素吸蔵合金粉末に、そ
れぞれ0.5重量%のポリエチレンオキサイドと水とを
加えてスラリーを調製し、各スラリーをそれぞれパンチ
ングメタルからなる集電体に塗布し、これを所定のサイ
ズに切断して、実施例1〜5の水素吸蔵合金を用いた各
水素吸蔵合金電極を作製した。
Then, 0.5% by weight of polyethylene oxide and water are added to each of the above hydrogen storage alloy powders to prepare slurries, and each of the slurries is applied to a current collector made of punching metal. Was cut into a predetermined size to produce each hydrogen storage alloy electrode using the hydrogen storage alloy of Examples 1 to 5.

【0020】一方、正極としては、水酸化ニッケル粉末
にメチルセルロースを含有した水溶液を加えてペースト
にし、このペーストをニッケルの発泡メタルに充填さ
せ、これを乾燥させて所定の大きさに成形したものを用
いるようにした。
On the other hand, a positive electrode is prepared by adding an aqueous solution containing methylcellulose to nickel hydroxide powder to form a paste, filling the paste in a nickel foam metal, drying the paste, and molding it into a predetermined size. It was used.

【0021】そして、図1に示すように、上記の正極1
と負極2との間にそれぞれナイロン不織布で構成された
セパレータ3を介在させ、これらをスパイラル状に巻い
て電池缶4内に収容させた後、この電池缶4内に30%
のKOHのアルカリ電解液を注液し、この電池缶4に絶
縁パッキン8を介して正極外部端子6を取り付けて封口
し、正極1を正極リード5を介して正極外部端子6に接
続させる一方、負極2を負極リード7を介して電池缶4
に接続させて、それぞれ容量が1000mAhになった
各密閉型ニッケル−水素二次電池を作製した。
Then, as shown in FIG.
A separator 3 made of a non-woven nylon fabric is interposed between the battery and the negative electrode 2. The separator 3 is wound in a spiral shape and accommodated in the battery can 4.
The positive electrode 1 is connected to the positive electrode external terminal 6 through the positive electrode lead 5 by injecting an alkaline electrolyte of KOH, attaching the positive electrode external terminal 6 to the battery can 4 via the insulating packing 8 and sealing the positive electrode 1. The negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7.
To produce sealed nickel-hydrogen secondary batteries each having a capacity of 1000 mAh.

【0022】(比較例1〜7)比較例1においては、上
記の実施例1〜5の場合と同様にして、MmNi3.2
1.0 Al0.2 Mn0.6 の組成比になるように合金化さ
せたものを機械的に粉砕して水素吸蔵合金粉末を得、こ
の水素吸蔵合金粉末を分級して、下記の表1に示すよう
に平均粒径が80μm程度になった水素吸蔵合金粉末を
負極材料に用いるようにし、酸性溶液による表面処理は
行なわないようにした。
Comparative Examples 1 to 7 In Comparative Example 1, MmNi 3.2 C was used in the same manner as in Examples 1 to 5 described above.
o 1.0 Al 0.2 Mn 0.6 The alloyed alloy having a composition ratio of 0.6 was mechanically pulverized to obtain a hydrogen storage alloy powder, and the hydrogen storage alloy powder was classified, as shown in Table 1 below. The hydrogen storage alloy powder having an average particle size of about 80 μm was used for the negative electrode material, and the surface treatment with the acidic solution was not performed.

【0023】比較例2においては、上記のようにMmN
3.2 Co1.0 Al0.2 Mn0.6 の組成比になるように
合金化させたものを機械的に粉砕した後、この水素吸蔵
合金粉末を初期のpHが1.0の塩酸酸性溶液(一次処
理溶液)中に浸漬させ、この酸性溶液のpHに7になっ
た時点で水素吸蔵合金粉末を取り出し、この水素吸蔵合
金粉末を前記のように水で2回洗浄し、さらにアルコー
ルで洗浄した後、この水素吸蔵合金粉末を乾燥させて分
級し、下記の表1に示すように、平均粒径が80μm程
度になった水素吸蔵合金粉末を負極材料に用いるように
し、二次処理溶液による表面処理は行なわないようにし
た。
In Comparative Example 2, MmN
After mechanically pulverizing the alloyed alloy to have a composition ratio of i 3.2 Co 1.0 Al 0.2 Mn 0.6 , the hydrogen storage alloy powder was initially acidified with a hydrochloric acid solution having a pH of 1.0 (primary treatment solution). When the pH of the acidic solution reaches 7, the hydrogen-absorbing alloy powder is taken out, and the hydrogen-absorbing alloy powder is washed twice with water as described above, and further washed with alcohol. The occlusion alloy powder is dried and classified, and as shown in Table 1 below, a hydrogen occlusion alloy powder having an average particle size of about 80 μm is used for the negative electrode material, and the surface treatment with the secondary treatment solution is not performed. I did it.

【0024】比較例3〜5においては、上記のようにM
mNi3.2 Co1.0 Al0.2 Mn0.6 の組成比になるよ
うに合金化させたものを機械的に粉砕した後、この水素
吸蔵合金粉末を初期のpHが1.0の塩酸酸性溶液(一
次処理溶液)中に浸漬させ、下記の表1に示すように、
比較例3では一次処理溶液のpHが2.0になった時点
で、比較例4では一次処理溶液のpHが2.5になった
時点で、比較例5では一次処理溶液がpH6.0になっ
た時点で、それぞれ上記の実施例の場合と同様に、この
一次処理溶液に対して水を添加して希釈させ、すぐに水
素吸蔵合金粉末を取り出し、各水素吸蔵合金粉末を前記
のように水で2回洗浄し、さらにアルコールで洗浄して
乾燥させた。その後、各水素吸蔵合金粉末を、それぞれ
水を添加した時点におけるpH値と同じpHになった二
次処理溶液中に浸漬させ、その後は、上記の実施例の場
合と同様にして、下記の表1に示すように、平均粒径が
80μm程度になった各水素吸蔵合金粉末を得、これを
負極材料として用いるようにした。
In Comparative Examples 3 to 5, M
MNI 3.2 Co 1.0 Al 0.2 was mechanically pulverized one obtained by alloying to obtain the composition ratio of Mn 0.6, initial pH of the hydrogen-absorbing alloy powder of 1.0 hydrochloric acid solution (primary process solution) Immersed in, as shown in Table 1 below,
In Comparative Example 3, when the pH of the primary treatment solution became 2.0, in Comparative Example 4, when the pH of the primary treatment solution became 2.5, and in Comparative Example 5, the primary treatment solution became pH 6.0. At this point, water was added to this primary treatment solution to dilute it, and the hydrogen storage alloy powder was immediately taken out, and each hydrogen storage alloy powder was removed as described above. Washed twice with water, further washed with alcohol and dried. Thereafter, each hydrogen storage alloy powder was immersed in a secondary treatment solution having the same pH value as that at the time when water was added, and thereafter, in the same manner as in the above example, the following table was used. As shown in FIG. 1, each hydrogen storage alloy powder having an average particle size of about 80 μm was obtained and used as a negative electrode material.

【0025】また、比較例6,7においては、上記のよ
うに水素吸蔵合金粉末を初期のpHが1.0の一次処理
溶液中に浸漬させ、下記の表1に示すように、それぞれ
一次処理溶液のpHが4.0になった時点で、上記の場
合と同様に、この一次処理溶液に対して水を添加して希
釈させ、すぐに水素吸蔵合金粉末を取り出し、各水素吸
蔵合金粉末を前記のように水で2回洗浄し、さらにアル
コールで洗浄して乾燥させた。その後、上記の水素吸蔵
合金粉末を、下記の表1に示すように、それぞれ水を添
加した時点のpH4.0とは異なるpHの二次処理溶液
中に浸漬させるようにし、比較例6ではpHが3.0の
二次処理溶液中に、比較例6ではpHが5.0の二次処
理溶液中に浸漬させ、その後は、上記の実施例の場合と
同様にして、下記の表1に示すように、平均粒径が80
μm程度になった各水素吸蔵合金粉末を得、これを負極
材料として用いるようにした。
In Comparative Examples 6 and 7, the hydrogen-absorbing alloy powder was immersed in a primary treatment solution having an initial pH of 1.0 as described above. When the pH of the solution reaches 4.0, water is added to the primary treatment solution to dilute the solution, and the hydrogen storage alloy powder is immediately taken out. Washed twice with water as above, then washed with alcohol and dried. Then, as shown in Table 1 below, the hydrogen storage alloy powder was immersed in a secondary treatment solution having a pH different from pH 4.0 at the time when water was added. Is immersed in a secondary processing solution having a pH of 3.0 in Comparative Example 6, and then in a secondary processing solution having a pH of 5.0 in Comparative Example 6. As shown, the average particle size is 80
Each hydrogen storage alloy powder having a size of about μm was obtained, and this was used as a negative electrode material.

【0026】そして、上記のように作製した比較例1〜
5の各水素吸蔵合金粉末を用い、上記の実施例と同様に
して各密閉型ニッケル−水素二次電池を作製した。
Then, Comparative Examples 1 to 5 prepared as described above were used.
Each sealed nickel-hydrogen secondary battery was produced in the same manner as in the above example, using each hydrogen storage alloy powder of No. 5.

【0027】次に、実施例1〜5及び比較例1〜4の各
水素吸蔵合金粉末を用いて作製した初期の各密閉型ニッ
ケル−水素二次電池において、各電池缶の底部に孔を開
けて圧力センサーを接続し、500mA(0.5C)の
定電流で30分間充電した場合における各電池内部の圧
力上昇量(atm)を調べ、その結果を下記の表1に合
わせて示した。なお、このように充電させた場合におけ
る電池の内部圧力の上昇が低いほど、水素が水素吸蔵合
金に効率よく吸収され、充電効率が高くなる。
Next, in each of the initial sealed nickel-hydrogen secondary batteries produced using the hydrogen storage alloy powders of Examples 1 to 5 and Comparative Examples 1 to 4, a hole was formed in the bottom of each battery can. Then, the pressure sensor was connected, and the amount of pressure rise (atm) inside each battery when charged at a constant current of 500 mA (0.5 C) for 30 minutes was examined. The results are shown in Table 1 below. It should be noted that the lower the rise in internal pressure of the battery when charged in this way, the more efficiently hydrogen is absorbed by the hydrogen storage alloy, and the higher the charging efficiency.

【0028】[0028]

【表1】 [Table 1]

【0029】この結果、この発明の条件を満たすように
して一次処理溶液と二次処理溶液とで処理した実施例1
〜5の水素吸蔵合金を使用した密閉型ニッケル−水素二
次電池は、これらの処理を行なわなかった比較例1の水
素吸蔵合金を使用したものや、二次処理溶液による処理
を行なわなかった比較例2の水素吸蔵合金を使用したも
のや、一次処理溶液に水を添加させる際のpHの値が3
〜5の範囲外のpHで処理した比較例3〜5の水素吸蔵
合金を使用したものや、一次処理において水を添加させ
た際のpH値と異なるpHの二次処理溶液で処理した比
較例6,7の水素吸蔵合金を使用したものに比べて、電
池の内部圧力の上昇が低くなっており、水素が水素吸蔵
合金に効率よく吸収されて充電効率が高くなっていた。
As a result, Example 1 in which the primary processing solution and the secondary processing solution were used to satisfy the conditions of the present invention.
The sealed nickel-hydrogen secondary batteries using the hydrogen storage alloys of Nos. 1 to 5 were those using the hydrogen storage alloy of Comparative Example 1 in which these treatments were not performed and those in which the treatment with the secondary treatment solution was not performed. In the case where the hydrogen storage alloy of Example 2 was used or the pH value when water was added to the primary treatment solution was 3
Comparative Examples treated with a pH outside the range of ~ 5, those using the hydrogen storage alloys of 3-5, and Comparative Examples treated with a secondary treatment solution having a pH different from the pH value when water was added in the primary treatment The increase in the internal pressure of the battery was lower than that using the hydrogen storage alloy of No. 6, 7, and hydrogen was efficiently absorbed by the hydrogen storage alloy, and the charging efficiency was high.

【0030】(実施例6〜9及び比較例8,9)実施例
6〜9及び比較例8,9においては、水素吸蔵合金粉末
を初期に浸漬させる塩酸酸性溶液(一次処理溶液)のp
Hを上記の実施例1〜5の場合とは変更させて、初期の
pHが0.5の一次処理溶液を用いるようにした。
(Examples 6 to 9 and Comparative Examples 8 and 9) In Examples 6 to 9 and Comparative Examples 8 and 9, the pH of the hydrochloric acid solution (primary treatment solution) in which the hydrogen storage alloy powder was initially immersed was used.
H was changed from that of Examples 1 to 5 above, and a primary treatment solution having an initial pH of 0.5 was used.

【0031】そして、実施例6〜9においては、この一
次処理溶液に水素吸蔵合金粉末を浸漬させ、この一次処
理溶液のpHが下記の表2に示すように3.0〜5.0
の範囲の所定のpH値になった時点で水を添加させ、そ
の後は、実施例1〜5の場合と同様にして処理を行なっ
て各水素吸蔵合金粉末を得、これを負極材料に用いて密
閉型ニッケル−水素二次電池を作製した。
In Examples 6 to 9, the hydrogen storage alloy powder was immersed in the primary treatment solution, and the pH of the primary treatment solution was 3.0 to 5.0 as shown in Table 2 below.
Water was added at the time when the pH reached a predetermined value in the range described above, and thereafter, the same treatment as in Examples 1 to 5 was performed to obtain each hydrogen storage alloy powder, and this was used as a negative electrode material. A sealed nickel-hydrogen secondary battery was produced.

【0032】一方、比較例8においては、上記の一次処
理溶液に水素吸蔵合金粉末を浸漬させ、上記の比較例2
の場合と同様に、この酸性溶液のpHに7になった時点
で水素吸蔵合金粉末を取り出して処理し、二次処理液に
よる表面処理は行なわないようにした。そして、この水
素吸蔵合金粉末を負極材料に用いて密閉型ニッケル−水
素二次電池を作製した。
On the other hand, in Comparative Example 8, the hydrogen-absorbing alloy powder was immersed in the primary treatment solution.
As in the case of the above, when the pH of the acidic solution reached 7, the hydrogen storage alloy powder was taken out and treated, so that the surface treatment with the secondary treatment liquid was not performed. Then, a sealed nickel-hydrogen secondary battery was manufactured using the hydrogen storage alloy powder as a negative electrode material.

【0033】また、比較例9においては、上記の一次処
理溶液に水素吸蔵合金粉末を浸漬させ、前記の比較例4
の場合と同様に、一次処理溶液のpHが2.5になった
時点で水を添加して希釈させ、その後は、実施例1〜5
の場合と同様にして処理を行なって各水素吸蔵合金粉末
を得、これを負極材料に用いて密閉型ニッケル−水素二
次電池を作製した。
In Comparative Example 9, the hydrogen storage alloy powder was immersed in the primary treatment solution.
As in the case of the above, when the pH of the primary treatment solution became 2.5, water was added to dilute the solution.
Each of the hydrogen storage alloy powders was obtained in the same manner as in the case of the above, and these were used as a negative electrode material to produce a sealed nickel-hydrogen secondary battery.

【0034】そして、実施例6〜9及び比較例8,9の
各水素吸蔵合金粉末を用いて作製した初期の各密閉型ニ
ッケル−水素二次電池についても、前記の場合と同様に
して各電池内部の圧力上昇量(atm)を調べ、その結
果を下記の表2に合わせて示した。
Each of the sealed nickel-hydrogen secondary batteries produced using the hydrogen-absorbing alloy powders of Examples 6 to 9 and Comparative Examples 8 and 9 was prepared in the same manner as described above. The internal pressure rise (atm) was examined, and the results are shown in Table 2 below.

【0035】[0035]

【表2】 [Table 2]

【0036】この結果、前記の場合と同様に、この発明
の条件を満たすようにして一次処理溶液と二次処理溶液
とで処理した実施例6〜9の水素吸蔵合金を使用した密
閉型ニッケル−水素二次電池は、二次処理溶液による処
理を行なわなかった比較例8の水素吸蔵合金を使用した
ものや、一次処理溶液に水を添加させる際のpHの値が
3〜5より低いpHで処理した比較例9の水素吸蔵合金
を使用したものに比べて、電池の内部圧力の上昇が低く
なっており、水素が水素吸蔵合金に効率よく吸収されて
充電効率が高くなっていた。
As a result, in the same manner as described above, the sealed nickel alloy using the hydrogen storage alloy of Examples 6 to 9 which was treated with the primary treatment solution and the secondary treatment solution so as to satisfy the conditions of the present invention. The hydrogen secondary battery uses the hydrogen storage alloy of Comparative Example 8 in which the treatment with the secondary treatment solution is not performed, and the pH value when water is added to the primary treatment solution is lower than 3 to 5. As compared with the case of using the treated hydrogen storage alloy of Comparative Example 9, the rise of the internal pressure of the battery was lower, and hydrogen was efficiently absorbed by the hydrogen storage alloy, and the charging efficiency was higher.

【0037】(実施例10〜13及び比較例10,1
1)実施例10〜13及び比較例10,11において
は、水素吸蔵合金粉末を初期に浸漬させる塩酸酸性溶液
(一次処理溶液)のpHを実施例1〜5の場合とは変更
させて、初期のpHが1.5の一次処理溶液を用いるよ
うにした。
(Examples 10 to 13 and Comparative Examples 10 and 1
1) In Examples 10 to 13 and Comparative Examples 10 and 11, the pH of the hydrochloric acid acidic solution (primary treatment solution) in which the hydrogen storage alloy powder was initially immersed was changed from that in Examples 1 to 5, The primary treatment solution having a pH of 1.5 was used.

【0038】そして、実施例10〜13においても、こ
の一次処理溶液に水素吸蔵合金粉末を浸漬させ、この一
次処理溶液のpHが下記の表3に示すように3.0〜
5.0の範囲の所定のpH値になった時点で水を添加さ
せ、その後は、実施例1〜5の場合と同様にして処理を
行なって各水素吸蔵合金粉末を得、これを負極材料に用
いて密閉型ニッケル−水素二次電池を作製した。
Also in Examples 10 to 13, the hydrogen storage alloy powder was immersed in the primary treatment solution, and the pH of the primary treatment solution was 3.0 to 3.0 as shown in Table 3 below.
When a predetermined pH value in the range of 5.0 was reached, water was added. Thereafter, the same treatment as in Examples 1 to 5 was performed to obtain each hydrogen storage alloy powder, and this was used as a negative electrode material. To produce a sealed nickel-hydrogen secondary battery.

【0039】一方、比較例10においては、上記の一次
処理溶液に水素吸蔵合金粉末を浸漬させ、前記の比較例
2の場合と同様に、この酸性溶液のpHに7になった時
点で水素吸蔵合金粉末を取り出して処理し、二次処理液
による表面処理は行なわないようにした。そして、この
水素吸蔵合金粉末を負極材料に用いて密閉型ニッケル−
水素二次電池を作製した。
On the other hand, in Comparative Example 10, the hydrogen-absorbing alloy powder was immersed in the primary treatment solution, and when the pH of the acidic solution reached 7 as in Comparative Example 2, the hydrogen-absorbing alloy powder was absorbed. The alloy powder was taken out and treated, and the surface treatment with the secondary treatment liquid was not performed. Then, using this hydrogen storage alloy powder as a negative electrode material, a sealed nickel-
A hydrogen secondary battery was manufactured.

【0040】また、比較例11においては、上記の一次
処理溶液に水素吸蔵合金粉末を浸漬させ、前記の比較例
4の場合と同様に、一次処理溶液のpHが2.5になっ
た時点で水を添加させて希釈し、その後は、実施例1〜
5の場合と同様にして処理を行なって各水素吸蔵合金粉
末を得、これを負極材料に用いて密閉型ニッケル−水素
二次電池を作製した。
In Comparative Example 11, the hydrogen-absorbing alloy powder was immersed in the primary treatment solution, and, as in Comparative Example 4, when the pH of the primary treatment solution reached 2.5. Water was added for dilution, and then, Examples 1 to
Each of the hydrogen-absorbing alloy powders was obtained by performing the same treatment as in the case of No. 5, and a sealed nickel-hydrogen secondary battery was produced using these powders as the negative electrode material.

【0041】そして、実施例10〜13及び比較例1
0,11の各水素吸蔵合金粉末を用いて作製した初期の
各密閉型ニッケル−水素二次電池についても、前記の場
合と同様にして各電池内部の圧力上昇量(atm)を調
べ、その結果を下記の表3に合わせて示した。
Examples 10 to 13 and Comparative Example 1
With respect to the initial sealed nickel-hydrogen secondary batteries prepared using each of the hydrogen storage alloy powders Nos. 0 and 11 as well, the amount of pressure rise (atm) inside each battery was examined in the same manner as described above. Are shown in Table 3 below.

【0042】[0042]

【表3】 [Table 3]

【0043】この結果、前記の場合と同様に、この発明
の条件を満たすようにして一次処理溶液と二次処理溶液
とで処理して実施例10〜13の水素吸蔵合金を使用し
た密閉型ニッケル−水素二次電池は、二次処理溶液によ
る処理を行なわなかった比較例10の水素吸蔵合金を使
用したものや、一次処理溶液に水を添加させる際のpH
の値が3〜5の範囲より低いpHで処理した比較例11
の水素吸蔵合金を使用したものに比べて、電池の内部圧
力の上昇が低くなっており、水素が水素吸蔵合金に効率
よく吸収されて充電効率が高くなっていた。
As a result, similarly to the above case, the sealed nickel using the hydrogen storage alloy of Examples 10 to 13 was treated with the primary treatment solution and the secondary treatment solution so as to satisfy the conditions of the present invention. A hydrogen secondary battery using the hydrogen storage alloy of Comparative Example 10 in which the treatment with the secondary treatment solution was not performed, or a pH value when water was added to the primary treatment solution.
Example 11 treated at a pH lower than the range of 3 to 5
The increase in internal pressure of the battery was lower than that using the hydrogen storage alloy, and hydrogen was efficiently absorbed by the hydrogen storage alloy, resulting in higher charging efficiency.

【0044】(実施例14〜17及び比較例12〜1
4)実施例14〜17及び比較例12〜14において
は、水素吸蔵合金粉末を初期に浸漬させる塩酸酸性溶液
(一次処理溶液)のpHを実施例1〜5の場合とは変更
させ、実施例14〜17及び比較例10,11では、初
期のpHが1.5の一次処理溶液を用い、また比較例1
4では、初期のpH2.5になった一次処理溶液を用い
るようにした。
(Examples 14 to 17 and Comparative Examples 12 to 1)
4) In Examples 14 to 17 and Comparative Examples 12 to 14, the pH of the hydrochloric acid acidic solution (primary treatment solution) in which the hydrogen storage alloy powder was initially immersed was changed from that of Examples 1 to 5, In Examples 14 to 17 and Comparative Examples 10 and 11, the primary treatment solution having an initial pH of 1.5 was used.
In 4, the primary treatment solution having an initial pH of 2.5 was used.

【0045】そして、実施例14〜17においても、上
記の一次処理溶液に水素吸蔵合金粉末を浸漬させ、この
一次処理溶液のpHが下記の表4に示すように3.0〜
5.0の範囲の所定のpH値になった時点で水を添加さ
せ、その後は、実施例1〜5の場合と同様にして処理を
行なって各水素吸蔵合金粉末を得、これを負極材料に用
いて密閉型ニッケル−水素二次電池を作製した。
In Examples 14 to 17, the hydrogen storage alloy powder was immersed in the primary treatment solution, and the pH of the primary treatment solution was 3.0 to 3.0 as shown in Table 4 below.
When a predetermined pH value in the range of 5.0 was reached, water was added. Thereafter, the same treatment as in Examples 1 to 5 was performed to obtain each hydrogen storage alloy powder, and this was used as a negative electrode material. To produce a sealed nickel-hydrogen secondary battery.

【0046】一方、比較例12においては、上記の一次
処理溶液に水素吸蔵合金粉末を浸漬させ、前記の比較例
2の場合と同様に、この酸性溶液のpHに7になった時
点で水素吸蔵合金粉末を取り出して処理し、二次処理液
による表面処理は行なわないようにした。そして、この
水素吸蔵合金粉末を負極材料に用いて密閉型ニッケル−
水素二次電池を作製した。
On the other hand, in Comparative Example 12, the hydrogen-absorbing alloy powder was immersed in the primary treatment solution, and when the pH of the acidic solution reached 7 as in Comparative Example 2, the hydrogen-absorbing alloy powder was absorbed. The alloy powder was taken out and treated, and the surface treatment with the secondary treatment liquid was not performed. Then, using this hydrogen storage alloy powder as a negative electrode material, a sealed nickel-
A hydrogen secondary battery was manufactured.

【0047】また、比較例13においては、上記の一次
処理溶液に水素吸蔵合金粉末を浸漬させ、前記の比較例
4の場合と同様に、一次処理溶液のpHが2.5になっ
た時点で水を添加させて希釈し、その後は、実施例1〜
5の場合と同様にして処理を行なって各水素吸蔵合金粉
末を得、これを負極材料に用いて密閉型ニッケル−水素
二次電池を作製した。
In Comparative Example 13, the hydrogen-absorbing alloy powder was immersed in the primary treatment solution, and when the pH of the primary treatment solution reached 2.5, as in Comparative Example 4. Water was added for dilution, and then, Examples 1 to
Each of the hydrogen-absorbing alloy powders was obtained by performing the same treatment as in the case of No. 5, and a sealed nickel-hydrogen secondary battery was produced using these powders as the negative electrode material.

【0048】また、比較例14においては、上記のよう
に初期のpHが2より高い2.5の一次処理溶液に水素
吸蔵合金粉末を浸漬させ、この一次処理溶液のpHが
4.0になった時点で水を添加させ、その後は、実施例
3の場合と同様にして処理を行なって各水素吸蔵合金粉
末を得、これを負極材料に用いて密閉型ニッケル−水素
二次電池を作製した。
In Comparative Example 14, as described above, the hydrogen storage alloy powder was immersed in the 2.5 primary treatment solution whose initial pH was higher than 2, and the pH of the primary treatment solution became 4.0. At the time, water was added, and thereafter, the same treatment as in Example 3 was performed to obtain each hydrogen storage alloy powder, and these were used as a negative electrode material to produce a sealed nickel-hydrogen secondary battery. .

【0049】そして、実施例14〜17及び比較例12
〜14の各水素吸蔵合金粉末を用いて作製した初期の各
密閉型ニッケル−水素二次電池についても、前記の場合
と同様にして各電池内部の圧力上昇量(atm)を調
べ、その結果を下記の表4に合わせて示した。
Examples 14 to 17 and Comparative Example 12
In each of the initial sealed nickel-hydrogen secondary batteries produced using each of the hydrogen storage alloy powders of Nos. 1 to 14, the pressure rise amount (atm) inside each battery was examined in the same manner as in the above case. The results are shown in Table 4 below.

【0050】[0050]

【表4】 [Table 4]

【0051】この結果、前記の場合と同様に、この発明
の条件を満たすようにして一次処理溶液と二次処理溶液
とで処理した実施例14〜17の水素吸蔵合金を使用し
た密閉型ニッケル−水素二次電池は、二次処理溶液によ
る処理を行なわなかった比較例12の水素吸蔵合金を使
用したものや、一次処理溶液に水を添加させる際のpH
の値が3〜5の範囲より低いpHで処理した比較例13
の水素吸蔵合金を使用したものや、また初期のpHが2
より高いpH2.5の一次処理溶液で処理した比較例1
4の水素吸蔵合金を使用したものに比べて、電池の内部
圧力の上昇が低くなっており、水素が水素吸蔵合金に効
率よく吸収されて充電効率が高くなっていた。
As a result, in the same manner as described above, the sealed nickel alloy using the hydrogen storage alloy of Examples 14 to 17 which was treated with the primary treatment solution and the secondary treatment solution so as to satisfy the conditions of the present invention. The hydrogen secondary battery used the hydrogen storage alloy of Comparative Example 12 in which the treatment with the secondary treatment solution was not performed, or the pH at the time of adding water to the primary treatment solution.
Comparative Example 13 treated with a pH lower than the range of 3 to 5
Using a hydrogen storage alloy, and an initial pH of 2
Comparative Example 1 treated with a higher pH 2.5 primary treatment solution
The increase in the internal pressure of the battery was lower than that of the battery using the hydrogen storage alloy of No. 4, and the hydrogen was efficiently absorbed by the hydrogen storage alloy, and the charging efficiency was high.

【0052】[0052]

【発明の効果】以上詳述したように、この発明における
電極用水素吸蔵合金の製造方法においては、水素吸蔵合
金を初期のpH値が2以下の酸性溶液に浸漬し、この酸
性溶液のpH値が3〜5の範囲内の所定のpH値になっ
た時点で上記の水素吸蔵合金に付着したイオンを除去し
た後、この水素吸蔵合金を上記の所定のpH値と同じp
H値の酸性溶液に浸漬し、その後、この水素吸蔵合金を
水洗し乾燥させるようにしたため、水素吸蔵合金の表面
における酸化物や水酸化物の層が除去されると共に、水
素吸蔵合金の表面にNi成分の多い組成を有する活性な
部位が多く出現するようになった。
As described above in detail, in the method for producing a hydrogen storage alloy for an electrode according to the present invention, the hydrogen storage alloy is immersed in an acidic solution having an initial pH value of 2 or less, and the pH value of the acidic solution is reduced. When the pH reaches a predetermined pH value in the range of 3 to 5, the ions adhering to the hydrogen storage alloy are removed, and then the hydrogen storage alloy is subjected to the same p as the predetermined pH value.
The hydrogen storage alloy was immersed in an acidic solution having an H value, and then the hydrogen storage alloy was washed with water and dried, so that the oxide and hydroxide layers on the surface of the hydrogen storage alloy were removed and the surface of the hydrogen storage alloy was removed. Many active sites having a composition containing a large amount of Ni components have come to appear.

【0053】この結果、この発明の方法によって得られ
た水素吸蔵合金を密閉型ニッケル−水素二次電池の負極
材料として用いた場合、初期の充電時からこの水素吸蔵
合金に水素が十分に吸蔵され、初期充電時から充電効率
のよい密閉型ニッケル−水素二次電池が得られるように
なった。
As a result, when the hydrogen storage alloy obtained by the method of the present invention is used as a negative electrode material of a sealed nickel-hydrogen secondary battery, hydrogen is sufficiently stored in the hydrogen storage alloy from the initial charging. Thus, a sealed nickel-hydrogen secondary battery having good charging efficiency from the time of initial charging can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の各実施例及び各比較例において作製
した水素吸蔵合金を使用した密閉型ニッケル−水素二次
電池の内部構造を示した断面説明図である。
FIG. 1 is an explanatory sectional view showing the internal structure of a sealed nickel-hydrogen secondary battery using a hydrogen storage alloy produced in each of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Mamoru Kimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Kozo Nogami 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 Sanyo Electric Co., Ltd. (72) Inventor Ikuro Yonezu 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio Keihanhondori, Moriguchi City, Osaka 2-5-5 Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を初期のpH値が2以下の
酸性溶液に浸漬し、この酸性溶液のpH値が3〜5の範
囲内の所定のpH値になった時点で上記の水素吸蔵合金
に付着したイオンを除去した後、この水素吸蔵合金を上
記の所定のpH値と同じpH値の酸性溶液に浸漬させ、
その後、この水素吸蔵合金を水洗して乾燥させることを
特徴とする電極用水素吸蔵合金の製造方法。
1. A hydrogen storage alloy is immersed in an acidic solution having an initial pH value of 2 or less, and when the pH value of the acidic solution reaches a predetermined pH value within a range of 3 to 5, the hydrogen storage alloy is absorbed. After removing the ions attached to the alloy, this hydrogen storage alloy is immersed in an acidic solution having the same pH value as the above-mentioned predetermined pH value,
Thereafter, the method for producing a hydrogen storage alloy for an electrode is characterized in that the hydrogen storage alloy is washed with water and dried.
【請求項2】 請求項1に記載した電極用水素吸蔵合金
の製造方法において、水素吸蔵合金を浸漬させる初期の
酸性溶液のpH値を1〜1.5の範囲にしたことを特徴
とする電極用水素吸蔵合金の製造方法。
2. The method for producing a hydrogen storage alloy for an electrode according to claim 1, wherein the pH value of the initial acidic solution in which the hydrogen storage alloy is immersed is in the range of 1 to 1.5. For manufacturing hydrogen storage alloys for automobiles.
【請求項3】 請求項1又は2に記載した電極用水素吸
蔵合金の製造方法において、水素吸蔵合金を浸漬させた
初期の酸性溶液のpH値が3〜4の範囲内の所定のpH
値になった時点で、水素吸蔵合金に付着したイオンを除
去することを特徴とする電極用水素吸蔵合金の製造方
法。
3. The method for producing a hydrogen storage alloy for an electrode according to claim 1, wherein the pH value of the initial acidic solution in which the hydrogen storage alloy is immersed is within a range of 3 to 4.
A method for producing a hydrogen storage alloy for an electrode, comprising removing ions adhering to the hydrogen storage alloy when the value reaches a value.
JP25379096A 1996-09-03 1996-09-03 Method for producing hydrogen storage alloy for electrode Expired - Fee Related JP3316394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25379096A JP3316394B2 (en) 1996-09-03 1996-09-03 Method for producing hydrogen storage alloy for electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25379096A JP3316394B2 (en) 1996-09-03 1996-09-03 Method for producing hydrogen storage alloy for electrode

Publications (2)

Publication Number Publication Date
JPH1079249A true JPH1079249A (en) 1998-03-24
JP3316394B2 JP3316394B2 (en) 2002-08-19

Family

ID=17256193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25379096A Expired - Fee Related JP3316394B2 (en) 1996-09-03 1996-09-03 Method for producing hydrogen storage alloy for electrode

Country Status (1)

Country Link
JP (1) JP3316394B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063597A (en) * 2005-08-30 2007-03-15 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, manufacturing method of the hydrogen storage alloy for alkaline storage battery, and alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063597A (en) * 2005-08-30 2007-03-15 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, manufacturing method of the hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP4663451B2 (en) * 2005-08-30 2011-04-06 三洋電機株式会社 Hydrogen storage alloy for alkaline storage battery, method for producing hydrogen storage alloy for alkaline storage battery, and alkaline storage battery

Also Published As

Publication number Publication date
JP3316394B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JP4678130B2 (en) Sealed nickel metal hydride storage battery and its manufacturing method
JP2002256301A (en) Alloy powder for electrode and production method therefor
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPH097588A (en) Hydrogen absorbing electrode
JP2001266931A (en) Nickel-hydrogen storage battery
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JP3316394B2 (en) Method for producing hydrogen storage alloy for electrode
JP3326197B2 (en) Hydrogen storage alloy electrode and method for producing the same
KR100405016B1 (en) Hydrogen Absorbing Alloy Electrode and Method of Producing the Same
JP3144879B2 (en) Metal-hydrogen alkaline storage battery
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JP3490799B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP4839433B2 (en) Sealed nickel hydride secondary battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3573905B2 (en) Method for producing hydrogen storage alloy electrode
JP3462685B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2003187804A (en) Nickel/hydrogen storage battery
JP3485753B2 (en) Method for producing hydrogen storage alloy electrode
JPH0834100B2 (en) Hydrogen storage alloy electrode
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees