JPH1079244A - Electrode and nonaqueous electrolyte second battery using it - Google Patents

Electrode and nonaqueous electrolyte second battery using it

Info

Publication number
JPH1079244A
JPH1079244A JP8234090A JP23409096A JPH1079244A JP H1079244 A JPH1079244 A JP H1079244A JP 8234090 A JP8234090 A JP 8234090A JP 23409096 A JP23409096 A JP 23409096A JP H1079244 A JPH1079244 A JP H1079244A
Authority
JP
Japan
Prior art keywords
acid
electrode
battery
active material
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8234090A
Other languages
Japanese (ja)
Inventor
Keijiro Takanishi
慶次郎 高西
Yoshio Matsuda
良夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8234090A priority Critical patent/JPH1079244A/en
Publication of JPH1079244A publication Critical patent/JPH1079244A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent paste from gelling by adding neutralized salt of organic acid and/ or inorganic acid to paste containing active materials and binder. SOLUTION: When LiNiO2 is used as an active material and polyvinylidene fluoride is used as binder, paste can easily gel. Paste can be prevented from gelling and good paste can be provided by adding inorganic acid or organic acid when active materials, binder and conductive materials are mixed in solvent. Organic acid having a functional group having strong electron attracting performance, and having relative high acidity is preferable since salt formed by neutralization does not deteriorate performance of the active material. Specifically, trifluoromethane sulfuric acid as strong acid of pH3 or less can be mentioned. Inorganic acid having relative high acidity is preferable for the same reason as the organic acid, and specifically phosphoric acid as strong acid of pH3 or less is selected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極およびそれを
用いた非水電解液系二次電池に関するものである。
The present invention relates to an electrode and a nonaqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】近年、金属リチウムまたはリチウムイオ
ンを吸蔵、放出し得る合金もしくは炭素材料などを負極
材料とし、リチウム- 遷移金属複合酸化物を正極材料と
する非水系電池が、高エネルギー密度を有する電池とし
て注目されている。
2. Description of the Related Art In recent years, non-aqueous batteries using an alloy or a carbon material capable of occluding and releasing lithium metal or lithium ions as a negative electrode material and a lithium-transition metal composite oxide as a positive electrode material have a high energy density. It is attracting attention as a battery.

【0003】上記リチウム- 遷移金属複合酸化物として
LiCoO2 を用いたリチウムイオン二次電池が実用化
されているが、より高い放電容量および原料の低価格、
安定供給といった観点からLiNiO2 が注目を浴びて
いる。しかしながら、正極活物質としてLiNiO2
使用し正極を作製する場合、その結着剤および導電材と
の混合物であるペーストのゲル化が問題となっていた。
ペーストのゲル化とは粘度が増加することによりその流
動性や均一性が失われた状態を指し、ゲル化が極度に進
行した場合は集電体への塗工が不可能となる。たとえ軽
度のゲル化であっても、それは作成した電極シートの抵
抗値等に大きく関与し、その放電容量、電流密度依存性
あるいは低温特性といった電池特性を低下させることに
なるため、ペーストのゲル化を防止することが、電極作
成上解決すべき重大な課題となっていた。
A lithium ion secondary battery using LiCoO 2 as the lithium-transition metal composite oxide has been put to practical use, but has a higher discharge capacity and a lower raw material cost.
LiNiO 2 has attracted attention from the viewpoint of stable supply. However, when producing a positive electrode using LiNiO 2 as the positive electrode active material, gelation of a paste which is a mixture of the binder and the conductive material has been a problem.
Gelation of a paste refers to a state in which fluidity and uniformity are lost due to an increase in viscosity. When gelation proceeds extremely, application to a current collector becomes impossible. Even if the gelation is slight, it greatly affects the resistance value of the prepared electrode sheet, etc., and lowers the battery characteristics such as the discharge capacity, current density dependency and low temperature characteristics. Has been a serious problem to be solved in electrode fabrication.

【0004】[0004]

【発明が解決しようとする課題】本発明は、かかる知見
に基づきなされたものであって、その目的とするところ
は、ゲル化を起こしやすい活物質を用いた場合において
も、良好な電極ペースト及びその製造方法を提供するこ
とにある。
DISCLOSURE OF THE INVENTION The present invention has been made based on such findings, and it is an object of the present invention to provide an excellent electrode paste even when an active material which easily causes gelation is used. It is to provide a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下の構成を有するものである。
SUMMARY OF THE INVENTION The present invention has the following arrangement to solve the above-mentioned problems.

【0006】「(1) 少なくとも電極活物質、結着剤を含
み、かつ、有機酸および/または無機酸の中和塩を含む
ことを特徴とする電極。
"(1) An electrode comprising at least an electrode active material and a binder, and further comprising a neutralized salt of an organic acid and / or an inorganic acid.

【0007】(2) 上記(1) 記載の電極を用いた非水電解
液系二次電池。」
(2) A non-aqueous electrolyte secondary battery using the electrode described in (1). "

【0008】[0008]

【発明の実施の形態】例えば、活物質としてLiNiO
2 を用い、結着剤としてポリフッ化ビニリデンを用いた
場合、このペーストはゲル化しやすい。さらに、LiN
iO2 を水に懸濁させた場合、それがかなり塩基性を示
すことも確認しており、この事実がペーストのゲル化、
すなわちポリフッ化ビニリデンの変成させると推測して
いる。すなわちポリフッ化ビニリデンのようなフッ素系
結着剤において、フッ素基に隣接するプロトンの酸性度
はフッ素基の電子吸引性によりかなり高くなっており、
そのため塩基性条件で容易にこのプロトンの脱離が進行
する。プロトンの脱離した後の炭素上には陰イオンが生
じることになり、これがフッ素基の脱離を促し、結果と
して結着剤分子の主鎖中に二重結合が生じることにな
る。このような主鎖の反応が塩基性の強い活物質表面で
進行し、ポリマーのマクロ的性質である結着性や溶解性
を変成させ、結果としてペーストのゲル化に至るものと
推測している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS For example, LiNiO is used as an active material.
When 2 is used and polyvinylidene fluoride is used as a binder, this paste is easily gelled. Furthermore, LiN
It has also been confirmed that when iO 2 is suspended in water, it shows considerable basicity, and this fact indicates that paste gelation,
That is, it is presumed that polyvinylidene fluoride is denatured. That is, in a fluorine-based binder such as polyvinylidene fluoride, the acidity of a proton adjacent to a fluorine group is considerably higher due to the electron-withdrawing property of the fluorine group,
Therefore, the elimination of the proton proceeds easily under basic conditions. Anions are formed on the carbon after the elimination of protons, which promotes the elimination of fluorine groups, resulting in the formation of double bonds in the main chain of the binder molecule. It is presumed that such a reaction of the main chain proceeds on the surface of the highly basic active material, thereby modifying the macroscopic properties of the polymer such as binding property and solubility, resulting in gelation of the paste. .

【0009】本発明者らはLiNiO2 に限らず、水溶
液もしくは水に懸濁させた状態でpH12以上の塩基性を発
現する物質とフッ素系の結着剤を組み合わせてペースト
を作成した場合、総じて上記のようなペーストのゲル化
が起こることを確認している。
The present inventors are not limited to LiNiO 2 , but when a paste is prepared by combining a substance exhibiting basicity of pH 12 or more and a fluorine-based binder in a state of being suspended in an aqueous solution or water, generally It has been confirmed that gelation of the paste as described above occurs.

【0010】そこで、比較的塩基性の高い電極活物質
と、塩基性条件下で容易に変成する結着剤を組み合わせ
た場合においても、良好なペーストを得る方法を鋭意研
究した結果、本発明者らは、活物質、結着剤および導電
材を溶媒中で混合する際、無機酸や、有機酸を添加する
ことによって上記の課題を解決できることを見出した。
本発明においては、有機酸としては、特に限定されるこ
となく用いられるが、中でも、強力な電子吸引性の官能
基を有する比較的酸性度の高い有機酸は、中和によって
生成した塩が電極活物質の性能を低下させない点で好ま
しい。具体的には、ホスホン酸、スルホン酸、カルボン
酸等の中で、pH3以下の強酸が酸性度が高いという点
で好ましく、トリフロロメタンスルホン酸、トリフロロ
メタンホスホン酸およびトリフロロ酢酸から選ばれる少
なくとも1種を用いることが特に好ましい。
Accordingly, as a result of diligent research on a method of obtaining a good paste even when a relatively basic electrode active material is combined with a binder which is easily denatured under basic conditions, the present inventors have found that Have found that the above problem can be solved by adding an inorganic acid or an organic acid when mixing an active material, a binder and a conductive material in a solvent.
In the present invention, the organic acid is used without any particular limitation. Among them, a relatively high acidity organic acid having a strong electron-withdrawing functional group has a salt generated by neutralization as an electrode. This is preferable in that the performance of the active material is not reduced. Specifically, among phosphonic acids, sulfonic acids, carboxylic acids, and the like, strong acids having a pH of 3 or less are preferable in terms of high acidity, and at least one selected from trifluoromethanesulfonic acid, trifluoromethanephosphonic acid, and trifluoroacetic acid. It is particularly preferred to use one type.

【0011】無機酸としても、限定されることなく用い
られるが、有機酸と同様の理由から、比較的酸性度の高
い無機酸は、中和によって生成した塩が電極活物質の性
能を低下させないて点で好ましい。具体的には、リン
酸、硫酸、ホウ酸などのpH3以下の強酸が酸性度が高
いという点で好ましい。
The inorganic acid can be used without any limitation, but for the same reason as the organic acid, the inorganic acid having a relatively high acidity is such that the salt formed by the neutralization does not lower the performance of the electrode active material. It is preferable in terms of the point. Specifically, strong acids having a pH of 3 or less, such as phosphoric acid, sulfuric acid, and boric acid, are preferable in that they have high acidity.

【0012】本発明の電極およびそれを用いた二次電池
に用いられる電極活物質には、負極、正極ともに限定さ
れるものではないが、本発明は塩基性の高い電極活物質
を用いた際の電極ペーストのゲル化防止対策として特に
有効なものである。
The electrode of the present invention and the electrode active material used in a secondary battery using the same are not limited to the negative electrode and the positive electrode, but the present invention relates to the case where a highly basic electrode active material is used. This is particularly effective as a measure for preventing gelation of the electrode paste.

【0013】本発明に使用される負極活物質は、特に限
定されるものではないが、炭素体が好適に用いられるこ
とが多い。本発明に用いられる炭素体としては、特に限
定されるものではなく、一般に有機物を焼成したものや
黒鉛などが用いられる。炭素体の形態としては、粉末状
または繊維状の炭素体を粉末化したものが好ましく用い
られる。粉末状の炭素としては、天然黒鉛、人造黒鉛、
フリュードコークス、ギルソナイトコークスなどの球状
コークス、メソカーボンマイクロビーズ、ポリアクリロ
ニトリル(PAN)、ポリビニルアルコール、リグニ
ン、ポリ塩化ビニル、ポリアミド、ポリイミド、フェノ
ール樹脂、フルフリルアルコール、またはこれらの共重
合体などの樹脂焼成体、石炭もしくは石油などのピッ
チ、セルロースの焼成体などが挙げられる。繊維状の炭
素体としては、PANまたはその共重合体から得られる
PAN系炭素繊維、石炭もしくは石油などのピッチから
得られるピッチ系炭素繊維、セルロースから得られるセ
ルロース系炭素繊維、低分子量有機物の気体から得られ
る気相成長炭素繊維などが挙げられるが、その他に、上
述のポリビニルアルコール、リグニン、ポリ塩化ビニ
ル、ポリアミド、ポリイミド、フェノール樹脂、フルフ
リルアルコールなどを焼成して得られる炭素繊維でも構
わない。
The negative electrode active material used in the present invention is not particularly limited, but a carbon body is often suitably used. The carbon body used in the present invention is not particularly limited, and generally used is one obtained by firing an organic substance, graphite, or the like. As the form of the carbon body, a powdered or fibrous carbon body is preferably used. As powdered carbon, natural graphite, artificial graphite,
Spherical coke such as Flude coke and Gilsonite coke, mesocarbon microbeads, polyacrylonitrile (PAN), polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenolic resin, furfuryl alcohol, and copolymers thereof Resin, fired pitch of coal or petroleum, fired cellulose, and the like. Examples of the fibrous carbon body include a PAN-based carbon fiber obtained from PAN or a copolymer thereof, a pitch-based carbon fiber obtained from a pitch such as coal or petroleum, a cellulosic carbon fiber obtained from cellulose, and a gas of a low molecular weight organic substance. And carbon fibers obtained by sintering the above-mentioned polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenol resin, furfuryl alcohol, and the like. .

【0014】これらの中で、炭素体が用いられる電極お
よび電池の特性に応じて、その特性を満たす炭素体が適
宜選択される。上記炭素体の中で、アルカリ金属塩を含
む非水電解液を用いた二次電池の負極に使用する場合に
は、PAN系炭素体、ピッチ系炭素体、気相成長炭素体
が好ましい。特に、アルカリ金属イオン、特にリチウム
イオンのドーピングが良好であるという点で、PAN系
炭素体が好ましく用いられる。粉末状炭素体の粒径は、
好ましくは0.1〜100 μmが用いられ、さらに好まし
くは1〜50μmである。炭素繊維の直径は、それぞれ
の形態を採り易いように決められるべきであるが、好ま
しくは1 〜1000μmが用いられ、さらに好ましくは1 〜
20μmであり、特に好ましくは3〜15μm である。ま
た、異なった粒径の炭素繊維を数種類用いることも好ま
しいものである。炭素繊維の繊維長は、平均長さが1m
m以下、より好ましくは50μm以下、さらに好ましく
は8〜30μmが用いられる。また、下限としては繊維
直径に対する繊維長さの比率(アスペクト比)が1以上
が好ましい。1mmを越えると、スラリー化してシート
状の電極を形成する場合に塗工性が悪くなり、また電極
とした場合には正負極間の短絡が発生しやすくなる傾向
がある。アスペクト比が1未満になると粉末化の際に、
繊維方向に開裂して活性な炭素面が露出するため、サイ
クル特性が悪くなる傾向がある。繊維の平均長は、例え
ば、SEM等の顕微鏡観察によって、20個以上の炭素
体の繊維方向の長さを測定することにより、求められ
る。炭素繊維を1mm以下に切断または粉砕するには、
種々の微粉砕機を使用することができる。また、炭素体
以外にも、例えば特開平7―235293に示されるよ
うな金属酸化物やポリアセンなどの化合物なども負極活
物質として用いられる。
Among them, a carbon body satisfying the characteristics is appropriately selected according to the characteristics of the electrode and the battery in which the carbon body is used. In the case where the carbon material is used for a negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt, a PAN-based carbon material, a pitch-based carbon material, and a vapor-grown carbon material are preferable. In particular, a PAN-based carbon body is preferably used in that the doping of an alkali metal ion, particularly, a lithium ion is good. The particle size of the powdered carbon body is
Preferably 0.1 to 100 μm is used, and more preferably 1 to 50 μm. The diameter of the carbon fiber should be determined so that each form can be easily adopted, but preferably 1 to 1000 μm is used, and more preferably 1 to 1000 μm.
It is 20 μm, particularly preferably 3 to 15 μm. It is also preferable to use several types of carbon fibers having different particle sizes. The average length of carbon fiber is 1m
m or less, more preferably 50 μm or less, and still more preferably 8 to 30 μm. Further, as a lower limit, a ratio of a fiber length to a fiber diameter (aspect ratio) is preferably 1 or more. If the thickness exceeds 1 mm, the coatability is poor when a slurry is formed to form a sheet-like electrode, and when the electrode is used, a short circuit between the positive and negative electrodes tends to occur. When the aspect ratio is less than 1, during powdering,
Since the active carbon surface is exposed by cleavage in the fiber direction, the cycle characteristics tend to be poor. The average length of the fiber is determined by measuring the length of at least 20 carbon bodies in the fiber direction by microscopic observation such as SEM. To cut or crush carbon fiber to 1mm or less,
Various mills can be used. In addition to the carbon body, for example, a compound such as a metal oxide or polyacene as shown in JP-A-7-235293 may be used as the negative electrode active material.

【0015】本発明による電池の負極には、集電効果を
高めるために銅、ステンレスなどの金属を集電体として
用いることが可能である。この金属集電体としては、箔
状、繊維状、メッシュ状などとくに限定されるものでは
ないが、例えば、箔状の金属集電体を用いる場合、金属
箔上にスラリを塗布することによってシート状電極が作
製される。シート状電極には集電効果をさらに高めるた
め、導電剤として、アセチレンブラック、ケッチェンブ
ラックなどのカーボンブラックを添加する。さらに、導
電性向上を目的として炭素粉末、金属粉末などの導電性
粉末を添加しても良い。
For the negative electrode of the battery according to the present invention, a metal such as copper or stainless steel can be used as a current collector to enhance the current collecting effect. The metal current collector is not particularly limited to a foil shape, a fiber shape, a mesh shape, and the like.For example, when a metal foil current collector is used, a sheet is formed by applying a slurry on the metal foil. A shaped electrode is produced. Carbon black such as acetylene black and Ketjen black is added to the sheet-like electrode as a conductive agent in order to further enhance the current collecting effect. Further, conductive powder such as carbon powder and metal powder may be added for the purpose of improving conductivity.

【0016】本発明に使用される正極活物質としては、
人造あるいは天然の黒鉛粉末、フッ化カーボン、金属酸
化物などの無機化合物、有機高分子化合物など、正極活
物質として一般に用いられているものなどが好適に用い
られる。この場合、金属酸化物などの無機化合物を正極
として用いる場合は、カチオンのドープと脱ドープを利
用して充放電反応が生じる。有機高分子化合物の際に
は、アニオンのドープと脱ドープにより充放電反応が生
じる。このように、物質により様々な充放電反応様式を
採るものであり、これらは必要とされる電池の正極特性
に応じて適宜選択されるものである。具体的には、アル
カリ金属を含む遷移金属酸化物や遷移金属カルコゲンな
どの無機化合物、ポリアセチレン、ポリパラフェニレ
ン、ポリフェニレンビニレン、ポリアニリン、ポリピロ
ール、ポリチオフェンなどの共役系高分子、ジスルフィ
ド結合を有する架橋高分子、塩化チオニルなど、通常の
二次電池において用いられる正極活物質を挙げることが
できる。これらの中で、リチウム塩を含む非水電解液を
用いた二次電池の場合には、コバルト、マンガン、ニッ
ケル、モリブデン、バナジウム、クロム、鉄、銅、チタ
ンなどの遷移金属酸化物や遷移金属カルコゲンが好まし
く用いられる。特に、Lix CoO2 (0<x≦1.
0)、Lix NiO2 (0<x≦1.0)、またはこれ
らの金属元素の一部をアルカリ土類金属元素および/ま
たは遷移金属元素で置換したリチウム複合酸化物や、L
x MnO2 (0<x≦1.0)、Lix Mn2
4 (0<x≦1.3)などが好ましく用いられる。前述
のように、本発明はLiNiO2 系正極活物質に特に有
効である。
The positive electrode active material used in the present invention includes:
Materials generally used as a positive electrode active material, such as artificial or natural graphite powder, inorganic compounds such as carbon fluoride and metal oxide, and organic polymer compounds, are suitably used. In this case, when an inorganic compound such as a metal oxide is used as the positive electrode, a charge / discharge reaction occurs using doping and undoping of the cation. In the case of an organic polymer compound, a charge / discharge reaction occurs by doping and undoping of an anion. As described above, various charge / discharge reaction modes are adopted depending on the substance, and these are appropriately selected according to the required positive electrode characteristics of the battery. Specifically, inorganic compounds such as transition metal oxides and transition metal chalcogens containing alkali metals, conjugated polymers such as polyacetylene, polyparaphenylene, polyphenylenevinylene, polyaniline, polypyrrole, and polythiophene, and crosslinked polymers having disulfide bonds And positive electrode active materials used in ordinary secondary batteries such as thionyl chloride. Among these, in the case of a secondary battery using a non-aqueous electrolyte containing a lithium salt, transition metal oxides and transition metals such as cobalt, manganese, nickel, molybdenum, vanadium, chromium, iron, copper, and titanium are used. Chalcogens are preferably used. In particular, Li x CoO 2 (0 <x ≦ 1.
0), Li x NiO 2 (0 <x ≦ 1.0), or a lithium composite oxide in which part of these metal elements is replaced with an alkaline earth metal element and / or a transition metal element;
i x MnO 2 (0 <x ≦ 1.0), Li x Mn 2 O
4 (0 <x ≦ 1.3) and the like are preferably used. As described above, the present invention is particularly effective for LiNiO 2 -based positive electrode active materials.

【0017】本発明に用いられる正極には、負極同様に
集電効果を高めるためにアルミニウム、ニッケル、ステ
ンレス、チタンなどの金属を集電体として用いることが
可能である。また、負極同様に導電剤として、アセチレ
ンブラック、ケッチェンブラックなどのカーボンブラッ
クを添加する。さらに、導電性向上を目的として炭素粉
末、金属粉末などの導電性粉末を添加しても良い。
In the positive electrode used in the present invention, a metal such as aluminum, nickel, stainless steel or titanium can be used as a current collector in order to enhance the current collecting effect, similarly to the negative electrode. As in the case of the negative electrode, carbon black such as acetylene black and Ketjen black is added as a conductive agent. Further, conductive powder such as carbon powder and metal powder may be added for the purpose of improving conductivity.

【0018】本発明の電極の製造方法は特に限定されな
いが、例えば、電極活物質に対して0.01〜2 モル%に相
当する有機酸および/または無機酸を有機溶媒に溶解さ
せ、そこに電極活物質、結着剤、および必要であれば導
電材を加え、ホモミキサー等の混合機を用いて十分に撹
拌混合する事によって電極ペーストを作製する。このと
き吸湿を防止するため撹拌混合は乾燥雰囲気下で行うの
が望ましい。
The method for producing the electrode of the present invention is not particularly limited. For example, 0.01 to 2 mol% of an organic acid and / or an inorganic acid based on the electrode active material is dissolved in an organic solvent, and the electrode active material is added thereto. An electrode paste is prepared by adding a substance, a binder, and a conductive material if necessary, and sufficiently stirring and mixing using a mixer such as a homomixer. At this time, in order to prevent moisture absorption, the stirring and mixing are desirably performed in a dry atmosphere.

【0019】次に、上述の集電体上に該電極ペーストを
塗布、乾燥し、プレス加工してシート状に成形する。ペ
ースト化に用いる有機溶媒および固形分濃度は特に限定
されないが、使用する結着材、塗布方法、乾燥条件など
を考慮し、適宜定められるものである。また、該電極ペ
ースト中には、塗布性向上のための界面活性剤、消泡
剤、分散剤、紫外線吸収剤、保存安定性を向上するため
の安定剤など、各種添加剤を加えることができる。
Next, the electrode paste is applied on the above-mentioned current collector, dried, pressed and formed into a sheet. The organic solvent and the solid content concentration used for pasting are not particularly limited, but may be appropriately determined in consideration of the binder used, the coating method, the drying conditions, and the like. In addition, various additives such as a surfactant for improving applicability, an antifoaming agent, a dispersant, an ultraviolet absorber, and a stabilizer for improving storage stability can be added to the electrode paste. .

【0020】ここで、各種有機酸および/または無機酸
の添加量は、活物質あるいは酸の種類によって異なる
が、好ましくは0.01〜2 モル%であり、より好ましくは
0.01〜0.5 モル%である。ここで、有機酸および/また
は無機酸の添加量が0.01モル%より少ない場合は、ゲル
化防止効果が充分でなく、1 モル%を越えた場合は、中
和により生成した塩が活物質へのイオンの吸臓・放出を
阻害するため、充分な電極性能が得られなくなる傾向が
ある。有機酸および/または無機酸が電極中に多く残留
すると、電極性能に悪影響する恐れがあるので、電極活
物質の塩基性を中和するのに必要な量を越えないことが
望ましい。また、添加した有機酸および/または無機酸
と中和によって生成した塩の価数が同じ場合は、添加し
た有機酸および/または無機酸と生成した塩は等モルで
あり、添加した有機酸および/または無機酸が1価で生
成した塩の価数が2価の場合は、生成した塩のモル数は
添加した有機酸および/または無機酸の半分となる。
Here, the addition amount of various organic acids and / or inorganic acids varies depending on the type of active material or acid, but is preferably 0.01 to 2 mol%, more preferably
It is 0.01 to 0.5 mol%. Here, when the addition amount of the organic acid and / or the inorganic acid is less than 0.01 mol%, the effect of preventing gelation is not sufficient, and when it exceeds 1 mol%, the salt generated by neutralization is added to the active material. Since the absorption and release of ions are inhibited, sufficient electrode performance tends not to be obtained. If a large amount of the organic acid and / or the inorganic acid remains in the electrode, the electrode performance may be adversely affected. Therefore, it is desirable that the amount does not exceed the amount necessary to neutralize the basicity of the electrode active material. Further, when the valence of the salt formed by neutralization with the added organic acid and / or inorganic acid is the same, the salt formed with the added organic acid and / or inorganic acid is equimolar, If the salt formed by monovalent inorganic acid and / or the divalent salt is divalent, the number of moles of the generated salt is half that of the added organic acid and / or inorganic acid.

【0021】本発明に用いられるセパレータの材料とし
ては、特に限定されるものではなく、以下に示すような
セパレータの一般的特性を満足するものが好ましく用い
られる。即ち、セパレータに要求される一般的特性と
は、正・負極が物理的に接触しないよう分離する、
膜そのものは電気的絶縁性を有する、電解液を保持し
た状態では電解質・イオン透過性がよく、電気抵抗が低
い、電解液に対して化学的に安定であると同時に、電
気化学的にも安定である、電解液に対して濡れやす
く、電解液の保持性がよいこと、電極を電池缶内に効
率的に充填できるように、膜厚が薄くできる、電池組
立時・使用時に必要とされる機械的強度を有する、など
である。具体的には、熱可塑性樹脂として、ポリプロピ
レン(PP)、ポリエチレン(PE)、エチレンビニレ
ンアセテート(EVA)、N-置換マレイミド樹脂、ポリ
4−メチルペンテン- 1、などのポリオレフィン系、ポ
リテトラフルオロエチレン(PTFE)、ポリスチレ
ン、ポリビニルカルバゾール、ポリフッ化ビニリデン
(PVDF)、PVDFと六フッ化プロピレンの共重合
体、ポリ塩化ビニル(PVC)、などのハロゲン含有
系、リグニン、カルボキシセルロース(CMC)などの
セルロース類、ポリビニルアルコール(PVA)などの
水溶性高分子系、ポリイミド、ポリアミドなどのアミ
ド、イミド系、ポリアクリロニトリル(PAN)、ポリ
アクリル酸エステルおよびその共重合体などのアクリル
系、ポリカプロラクタム、ポリエチレンテレフタレー
ト、ポリブチレブチレンテレフタレートなどのエステル
系、その他ポリスルフォン、ポリエステルスルホン、ポ
リカーボネート、ポリアリレート、変性ポリフェニレン
オキシド、ポリエーテルエーテルケトン、シリコン樹
脂、ポリアセタールなどが用いられる。また、熱硬化性
樹脂としては、フェノキシ樹脂、エポキシ樹脂などが用
いられる。さらに、熱可塑性樹脂と熱硬化性樹脂の混合
物、2種類以上の熱可塑性樹脂、および2種類以上の熱
硬化性樹脂なども用いられる。セパレータの膜厚は、電
池の内部抵抗を下げるために200μm以下であること
が好ましく、さらに好ましくは50μm以下、特に好ま
しくは25μm以下である。 本発明による電池の電解
液としては、特に限定されることなく用いられ、例えば
酸あるいはアルカリ水溶液、または非水溶媒などが挙げ
られる。この中で、上述のアルカリ金属塩を含む非水電
解液からなる二次電池の電解液としては、プロピレンカ
ーボネート(PC)、エチレンカーボネート(EC)、
γ- ブチロラクトン(BL)、N- メチルピロリドン
(NMP)、アセトニトリル(AN)、N,N−ジメチ
ルホルムアミド、ジメチルスルフォキシド、テトラヒド
ロフラン(THF)、1,3−ジオキソラン、ギ酸メチ
ル、スルホラン、オキサゾリドン、塩化チオニル、1,
2−ジメトキシエタン(DME)、ジメチルカーボネー
ト(DMC)、ジエチレンカーボネート(DEC)、ジ
メチルイミダゾリジノン等や、これらの誘導体や2種以
上の混合物などが好ましく用いられる。
The material of the separator used in the present invention is not particularly limited, and those satisfying the following general characteristics of the separator are preferably used. That is, the general characteristics required for the separator, the positive and negative electrodes are separated so that they do not physically contact,
The membrane itself has electrical insulation properties, has good electrolyte and ion permeability while holding the electrolyte, has low electric resistance, is chemically stable to the electrolyte, and is also electrochemically stable It is easy to get wet with electrolyte solution, has good retention of electrolyte solution, can be thinned so that electrodes can be efficiently filled in the battery can, and is required at the time of battery assembly and use. And have mechanical strength. Specifically, as thermoplastic resins, polyolefins such as polypropylene (PP), polyethylene (PE), ethylene vinylene acetate (EVA), N-substituted maleimide resin, poly 4-methylpentene-1, and polytetrafluoroethylene (PTFE), polystyrene, polyvinyl carbazole, polyvinylidene fluoride (PVDF), copolymer of PVDF and propylene hexafluoride, halogen-containing systems such as polyvinyl chloride (PVC), lignin, cellulose such as carboxycellulose (CMC) Water-soluble polymers such as polyvinyl alcohol (PVA), amides such as polyimide and polyamide, imides, acrylics such as polyacrylonitrile (PAN), polyacrylates and copolymers thereof, polycaprolactam, polyethylene Esters such as terephthalate and polybutylene butylene terephthalate, as well as polysulfone, polyester sulfone, polycarbonate, polyarylate, modified polyphenylene oxide, polyetheretherketone, silicone resin, and polyacetal are used. In addition, a phenoxy resin, an epoxy resin, or the like is used as the thermosetting resin. Further, a mixture of a thermoplastic resin and a thermosetting resin, two or more kinds of thermoplastic resins, two or more kinds of thermosetting resins, and the like are also used. The thickness of the separator is preferably 200 μm or less, more preferably 50 μm or less, particularly preferably 25 μm or less in order to reduce the internal resistance of the battery. The electrolytic solution of the battery according to the present invention is used without any particular limitation, and examples thereof include an acid or alkali aqueous solution and a non-aqueous solvent. Among them, propylene carbonate (PC), ethylene carbonate (EC), and propylene carbonate (EC) are used as the electrolyte of a secondary battery composed of the non-aqueous electrolyte containing the alkali metal salt.
γ-butyrolactone (BL), N-methylpyrrolidone (NMP), acetonitrile (AN), N, N-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran (THF), 1,3-dioxolan, methyl formate, sulfolane, oxazolidone, Thionyl chloride, 1,
2-Dimethoxyethane (DME), dimethyl carbonate (DMC), diethylene carbonate (DEC), dimethylimidazolidinone, and the like, a derivative thereof, and a mixture of two or more kinds are preferably used.

【0022】電解液に含まれる電解質としては、アルカ
リ金属、特にリチウムのハロゲン化物、過塩素酸塩、チ
オシアン塩、ホウフッ化塩、リンフッ化塩、砒素フッ化
塩、アルミニウムフッ化塩、トリフルオロメチル硫酸塩
などが好ましく用いられる。本発明の電極は、電池用電
極として広く用いられるが、電池とする場合の一態様を
以下に示す。まず、本発明の電極にリードを取り付け、
正・負極をセパレータを介してスパイラル状巻き込み、
該捲回電極体の上下両端面に絶縁板を配置した後、電池
缶に挿入し、正極リードを電池蓋に、負極リードを電池
缶に溶接する。そして、該電池缶に、非水雰囲気中で電
解液を注入し、封口材で表面を塗布した絶縁封口ガスケ
ットを介して電池缶をかしめることによって、電池内に
気密性を保持させ円筒型非水電解液系二次電池組み立て
る。
The electrolyte contained in the electrolyte may be an alkali metal, especially lithium halide, perchlorate, thiocyanate, borofluoride, phosphorus fluoride, arsenic fluoride, aluminum fluoride, trifluoromethyl. Sulfates and the like are preferably used. The electrode of the present invention is widely used as an electrode for a battery. One embodiment in the case of a battery is described below. First, a lead is attached to the electrode of the present invention,
The positive and negative electrodes are spirally wound through the separator,
After arranging insulating plates on both upper and lower end surfaces of the wound electrode body, it is inserted into a battery can, and the positive electrode lead is welded to the battery lid, and the negative electrode lead is welded to the battery can. Then, an electrolyte is injected into the battery can in a non-aqueous atmosphere, and the battery can is caulked through an insulating sealing gasket whose surface is coated with a sealing material, thereby maintaining the airtightness in the battery and allowing the cylindrical can to be sealed. Assemble the water electrolyte secondary battery.

【0023】本発明による二次電池の用途としては、軽
量かつ高容量で高エネルギー密度の特徴を利用して、ビ
デオカメラ、パソコン、ワープロ、ラジカセ、携帯電
話、ハンディターミナル、CDプレーヤー、MDプレー
ヤー、電気髭剃り、液晶テレビ、玩具などの携帯用小型
電子機器、電気自動車等などの携帯用小型電子機器に広
く利用可能である。
The secondary battery according to the present invention can be used as a video camera, a personal computer, a word processor, a radio-cassette, a mobile phone, a handy terminal, a CD player, an MD player by utilizing the features of light weight, high capacity and high energy density. It can be widely used in portable small electronic devices such as electric shaving, liquid crystal televisions and toys, and portable small electronic devices such as electric vehicles.

【0024】[0024]

【実施例】本発明の具体的実施態様を以下に実施例をも
って述べるが、本発明はこれに限定されるものではな
い。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0025】実施例1 電極活物質としてのLiNiO2 に対して0.05モル%に
相当するリン酸をN-メチルピロリドンに溶解させ、そこ
にLiNiO2 、導電材としてのアセチレンブラック
(“デンカブラック”、電気化学(株)製)および結着
材としてのポリフッ化ビニリデン(PVDF:呉羽化学
(株)製KFポリマー#1100)を重量比91:3:
6の比率で加え、乾燥空気中でホモミキサーにより十分
に撹拌混合することにより正極用ペーストを得た。
Example 1 Phosphoric acid corresponding to 0.05 mol% with respect to LiNiO 2 as an electrode active material was dissolved in N-methylpyrrolidone, and LiNiO 2 and acetylene black (“Denka Black”) as a conductive material were added thereto. Electrochemical Co., Ltd.) and polyvinylidene fluoride (PVDF: KF polymer # 1100, manufactured by Kureha Chemical Co., Ltd.) as a binder were added at a weight ratio of 91: 3:
The mixture was added at a ratio of 6 and sufficiently stirred and mixed with a homomixer in dry air to obtain a positive electrode paste.

【0026】このペーストを厚さ20μmのアルミ箔上
に塗布し、乾燥器内90℃で乾燥後、裏面にも塗布、乾
燥して両面に電極を形成した後、プレスして厚さ200
μm、極材塗布部の幅10mm,長さ20mmの電極を
作製した。
This paste was applied on an aluminum foil having a thickness of 20 μm, dried at 90 ° C. in a drier, applied on the back side, dried to form electrodes on both sides, and then pressed to a thickness of 200 μm.
An electrode having a width of 10 μm and a length of 20 mm was prepared.

【0027】次に、このようにして作製した電極の放電
容量の評価を行った。電解液は1MLiBF4 を含むプ
ロピレンカーボネート、ジメチルカーボネート(各々体
積比で1:1)で、対極および参照極には金属リチウム
箔を用い、3極式セルで評価した。活物質当たりの電流
密度は30mA/gの定電流で、4.2V(vs.Li+ /L
i) まで充電した。充電後に、充電と同じ電流密度で
3.0V(vs.Li+ /Li) まで放電した。電極の容量は活
物質1gあたりの容量に換算した。
Next, the discharge capacity of the electrode thus manufactured was evaluated. The electrolyte was propylene carbonate and dimethyl carbonate (each having a volume ratio of 1: 1) containing 1M LiBF 4, and a lithium electrode foil was used as a counter electrode and a reference electrode. The current density per active material was 4.2 V (vs. Li + / L) at a constant current of 30 mA / g.
Charged up to i). After the charging, the battery was discharged to 3.0 V (vs. Li + / Li) at the same current density as the charging. The capacity of the electrode was converted to the capacity per 1 g of the active material.

【0028】実施例2 添加する酸としてリン酸の代わりに硫酸を用いたこと以
外は実施例1と同様にして電極を作成し、同様に評価し
た。
Example 2 An electrode was prepared and evaluated in the same manner as in Example 1 except that sulfuric acid was used instead of phosphoric acid as the acid to be added.

【0029】実施例3 添加する酸としてリン酸の代わりにトリフロロメタンホ
スホン酸を用い、LiNiO2 に対して0.1 モル%添加
したこと以外は実施例1と同様にして電極を作成し、同
様に評価した。
Example 3 An electrode was prepared in the same manner as in Example 1 except that trifluoromethanephosphonic acid was used instead of phosphoric acid as the acid to be added and 0.1 mol% was added to LiNiO 2 . evaluated.

【0030】実施例4 添加する酸としてリン酸の代わりにトリフロロメタンス
ルホン酸を用い、LiNiO2 に対して0.1 モル%添加
したこと以外は実施例1と同様にして電極を作成し、同
様に評価した。
Example 4 An electrode was prepared in the same manner as in Example 1 except that trifluoromethanesulfonic acid was used instead of phosphoric acid as an acid to be added, and 0.1 mol% was added to LiNiO 2 . evaluated.

【0031】実施例5 添加する酸としてリン酸の代わりにトリフロロ酢酸を用
い、LiNiO2 に対して0.1 モル%添加したこと以外
は実施例1と同様にして電極を作成し、同様に評価し
た。
Example 5 An electrode was prepared and evaluated in the same manner as in Example 1 except that trifluoroacetic acid was used instead of phosphoric acid as the acid to be added, and 0.1 mol% was added to LiNiO 2 .

【0032】実施例6 添加する酸としてリン酸の代わりにホウ酸を用いたこと
以外は実施例1と同様にして電極を作成し、同様に評価
した。
Example 6 An electrode was prepared and evaluated in the same manner as in Example 1 except that boric acid was used instead of phosphoric acid as an acid to be added.

【0033】実施例7 添加する酸としてリン酸の代わりに酢酸を用いたこと以
外は実施例1と同様にして電極を作成し、同様に評価し
た。
Example 7 An electrode was prepared and evaluated in the same manner as in Example 1 except that acetic acid was used instead of phosphoric acid as the acid to be added.

【0034】比較例1 酸を添加しなかったこと以外は実施例1と同様の操作を
行ったが、ペースト混練開始から約10分でゲル化し、
集電体への塗工は不可能であった。
Comparative Example 1 The same operation as in Example 1 was carried out except that no acid was added, but gelled in about 10 minutes from the start of paste kneading.
Coating on the current collector was not possible.

【0035】以上の実施例および比較例の評価結果を表
1にまとめた。
Table 1 summarizes the evaluation results of the above Examples and Comparative Examples.

【0036】実施例1〜7と比較例1の比較から酸を添
加した正極ペーストは良好な塗工性を有しており、中で
もトリフロロメタンホスホン酸あるいはトリフロロメタ
ンスルホン酸を添加した電極がより良好な性能を有して
いることがわかる。
From the comparison between Examples 1 to 7 and Comparative Example 1, the positive electrode paste to which the acid was added had good coatability, and among them, the electrode to which trifluoromethanephosphonic acid or trifluoromethanesulfonic acid was added was excellent. It can be seen that it has better performance.

【0037】実施例8 実施例3と同様にしてLiNiO2 正極ペーストを、厚
さ16μmのアルミ箔上の片面に、電極部の幅8cm、
長さ60cm、単位面積当たりの正極活物質重量が20
0g/m2 になるように塗布し、100℃で15分乾燥
後、もう一方の面にも塗布し、100℃で30分乾燥
し、さらに180℃で15分乾燥してLiNiO2 使用
シート状電極を作製した。このシート状電極を、線圧約
100kg/cmでローラープレスしてアルミ集電体に
圧着した後、幅54mmに長さ465mmにスリット
し、総厚み190μmの正極を得た。
Example 8 In the same manner as in Example 3, LiNiO 2 positive electrode paste was applied on one surface of an aluminum foil having a thickness of 16 μm to form an electrode having a width of 8 cm.
Length 60 cm, weight of cathode active material per unit area is 20
0 g / m 2 , dried at 100 ° C. for 15 minutes, applied to the other side, dried at 100 ° C. for 30 minutes, and further dried at 180 ° C. for 15 minutes to form a sheet using LiNiO 2. An electrode was prepared. The sheet-shaped electrode was roller-pressed at a linear pressure of about 100 kg / cm and pressed on an aluminum current collector, and then slit into a width of 54 mm and a length of 465 mm to obtain a positive electrode having a total thickness of 190 μm.

【0038】負極活物質として短繊維状炭素繊維(“ト
レカ”ミルドファイバー:MLD-30、東レ(株)製)を8
5重量%、PVDF(前述)を10重量%、アセチレンブラ
ック(前述)を5重量%量りとり、約1.4倍のNMP
を加え、混練して負極用ペーストにした。
As the negative electrode active material, short fibrous carbon fiber ("Treca" milled fiber: MLD-30, manufactured by Toray Industries, Inc.) was used.
5% by weight, 10% by weight of PVDF (described above), and 5% by weight of acetylene black (described above) are used.
And kneaded to obtain a paste for a negative electrode.

【0039】このペーストを、厚さ10μmの銅箔上の
片面に、電極部の幅8cm、長さ60cm塗布し、10
0℃で15分乾燥後、もう一方の面には若干目付量(単
位面積当たりの活物質量)を減少して塗布し、100℃
で30分乾燥し、さらに200℃で15分、窒素気流中
で乾燥し短繊維状炭素繊維使用シート状電極を作製し
た。このシート状電極を幅65mmにスリットし、線圧
約100kg/cmでローラープレスして銅箔集電体に
圧着した後、幅56mmに長さ500mmにスリット
し、厚み200μmの負極を得た。
This paste was applied on one side of a copper foil having a thickness of 10 μm to a width of 8 cm and a length of 60 cm of an electrode portion.
After drying at 0 ° C. for 15 minutes, the other surface is slightly reduced in the basis weight (the amount of the active material per unit area) and applied.
For 30 minutes, and further dried at 200 ° C. for 15 minutes in a nitrogen stream to produce a sheet-like electrode using short fibrous carbon fibers. This sheet-shaped electrode was slit to a width of 65 mm, pressed with a roller at a linear pressure of about 100 kg / cm, and pressed to a copper foil current collector, and then slit to a width of 56 mm and a length of 500 mm to obtain a 200 μm thick negative electrode.

【0040】次に、上述の正・負極を用いて、以下に示
した方法で二次電池を作製した。本発明の非水電解液系
二次電池の概略縦断面図を図1に示す。該電池は、上記
で得られた負極1と正極2を巻込み、その上下に絶縁体
4を設置した状態で電池缶5に収納してなるものであ
る。電池缶5には電池蓋7が封口ガスケット6を介して
かしめることによって取り付けられ、それぞれ負極リー
ド11、正極リード12を介して負極1と正極2と電気的に
接続され、電池として機能するように構成されている。
Next, a secondary battery was manufactured using the positive and negative electrodes by the following method. FIG. 1 is a schematic longitudinal sectional view of the nonaqueous electrolyte secondary battery of the present invention. The battery is obtained by winding the negative electrode 1 and the positive electrode 2 obtained as described above, and housing the battery in a battery can 5 with insulators 4 disposed above and below the negative electrode 1 and the positive electrode 2. A battery lid 7 is attached to the battery can 5 by caulking via a sealing gasket 6, and is electrically connected to the negative electrode 1 and the positive electrode 2 via the negative electrode lead 11 and the positive electrode lead 12, respectively, so that the battery can function as a battery. Is configured.

【0041】そして、上記電池では、正極リード12は、
電流遮断弁8に溶接されて取り付けられ、この電流遮断
弁8を介して電池蓋7との電気的絶縁が図られている。
この電流遮断弁8は、電池内圧が上昇するとそれに伴っ
て、押し上げられて変形するようになっており、上記正
極リード12は、この電流遮断弁8の変形によって、電流
遮断弁8と溶接された部分を残して切断されるようにな
っている。
In the above battery, the positive electrode lead 12 is
It is attached by welding to the current cutoff valve 8, and electrical insulation from the battery lid 7 is achieved through the current cutoff valve 8.
The current cutoff valve 8 is configured to be pushed up and deformed as the internal pressure of the battery increases, and the positive electrode lead 12 is welded to the current cutoff valve 8 by the deformation of the current cutoff valve 8. It is designed to be cut leaving some parts.

【0042】この様な非水電解液系二次電池を以下のよ
うに作製した。負極1、正極2の集電体部分に、あらか
じめ、ニッケル製負極リード11、アルミニウム製正極リ
ード12を溶接した。負極1と正極2をセパレータ3を介
して積層しながらスパイラル状に巻き込み、外径約17
mmのスパイラル状巻き込み電極を得た。
Such a non-aqueous electrolyte secondary battery was manufactured as follows. A negative electrode lead 11 made of nickel and a positive electrode lead 12 made of aluminum were welded to the current collector portions of the negative electrode 1 and the positive electrode 2 in advance. The negative electrode 1 and the positive electrode 2 are spirally wound while being laminated with the separator 3 interposed therebetween.
mm spiral wound electrode was obtained.

【0043】この様にして作製したスパイラル状巻き込
み電極の上下両端面に絶縁板4を配置した後、電池缶5
に挿入し、正極リード12を電池蓋に、負極リード11を電
池缶5に溶接した。この電池缶5に、アルゴン雰囲気の
グローブボックス内で電解液を注入した。
After the insulating plates 4 are arranged on both upper and lower end surfaces of the spirally wound electrode thus manufactured, the battery can 5
The positive electrode lead 12 was welded to the battery lid, and the negative electrode lead 11 was welded to the battery can 5. An electrolytic solution was injected into the battery can 5 in a glove box in an argon atmosphere.

【0044】アスファルトで表面を塗布した絶縁封口ガ
スケット6を介して電池缶5をかしめることによって電
池蓋7を固定し、電池内に気密性を保持させ18650
サイズの円筒型非水電解液系二次電池を組み立てた。
The battery lid 5 is fixed by caulking the battery can 5 through the insulating sealing gasket 6 coated on the surface with asphalt, and the airtightness is maintained in the battery.
A cylindrical non-aqueous electrolyte secondary battery having a size was assembled.

【0045】この電池を、充電終止電圧4.2V、充電
電流1Aの条件で3時間定電流/定電圧充電を行った
後、放電終止電圧3.0V、放電電流0.2Aの条件で
定電流放電して初期容量を求めた。
The battery was charged at a constant current / constant voltage for 3 hours under the conditions of a charge end voltage of 4.2 V and a charge current of 1 A, and then was discharged under a condition of a discharge end voltage of 3.0 V and a discharge current of 0.2 A. Discharge was performed to determine the initial capacity.

【0046】実施例9 トリフロロメタンホスホン酸の代わりに酢酸を正極に添
加した以外は、実施例8と同様の方法で円筒型非水電解
液系二次電池を組み立てた。この電池のこの電池の初期
容量を求めた。
Example 9 A cylindrical nonaqueous electrolyte secondary battery was assembled in the same manner as in Example 8, except that acetic acid was added to the positive electrode instead of trifluoromethanephosphonic acid. The initial capacity of this battery was determined.

【0047】以上の実施例および比較例の評価結果を表
1にまとめた。
Table 1 summarizes the evaluation results of the above Examples and Comparative Examples.

【0048】[0048]

【表1】 実施例1〜9と比較例1の比較から有機酸または無機酸
を添加した正極ペーストは良好な塗工性を有しており、
中でもトリフロロメタンホスホン酸あるいはトリフロロ
メタンスルホン酸を添加した電極がより良好な性能を有
していることがわかる。
[Table 1] From the comparison between Examples 1 to 9 and Comparative Example 1, the positive electrode paste to which an organic acid or an inorganic acid was added had good coatability,
Among them, it can be seen that the electrode to which trifluoromethanephosphonic acid or trifluoromethanesulfonic acid is added has better performance.

【0049】[0049]

【発明の効果】本発明により、ゲル化が防止された、安
定な電極およびそれを用いた二次電池を提供することが
できる。
According to the present invention, it is possible to provide a stable electrode in which gelation is prevented and a secondary battery using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明二次電池の一例を示す概略断面図であ
る。
FIG. 1 is a schematic sectional view showing an example of the secondary battery of the present invention.

【符号の説明】 1・・・負極 2・・・正極 3・・・セパレータ 4・・・絶縁板 5・・・電池缶 6・・・封口ガスケット 7・・・電池蓋 8・・・電流遮断弁 9・・・負極集電体 10・・・正極集電体 11・・・負極リード 12・・・正極リード[Description of Signs] 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 4 ... Insulating plate 5 ... Battery can 6 ... Sealing gasket 7 ... Battery cover 8 ... Current interruption Valve 9: negative electrode current collector 10: positive electrode current collector 11: negative electrode lead 12: positive electrode lead

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】少なくとも電極活物質、結着剤を含み、か
つ、有機酸および/または無機酸の中和塩を含むことを
特徴とする電極。
An electrode comprising at least an electrode active material and a binder and a neutralized salt of an organic acid and / or an inorganic acid.
【請求項2】該有機酸および/または無機酸が、該電極
活物質に対して0.01モル%以上、2モル%以下であ
ることを特徴とする請求項1記載の電極。
2. The electrode according to claim 1, wherein said organic acid and / or inorganic acid accounts for 0.01 mol% or more and 2 mol% or less based on said electrode active material.
【請求項3】該有機酸および/または無機酸が、pH3
以下であることを特徴とする請求項1または2記載の電
極。
3. The organic acid and / or inorganic acid having a pH of 3
The electrode according to claim 1 or 2, wherein:
【請求項4】該有機酸が、トリフロロメタンスルホン
酸、トリフロロメタンホスホン酸およびトリフロロ酢酸
から選ばれた少なくとも1種であることを特徴とする請
求項1〜3のいずれかに記載の電極。
4. The electrode according to claim 1, wherein said organic acid is at least one selected from trifluoromethanesulfonic acid, trifluoromethanephosphonic acid and trifluoroacetic acid. .
【請求項5】該無機酸が、リン酸、硫酸およびホウ酸の
中から選ばれた少なくとも1種であることを特徴とする
請求項1〜4のいずれかに記載の電極。
5. The electrode according to claim 1, wherein said inorganic acid is at least one selected from phosphoric acid, sulfuric acid and boric acid.
【請求項6】該結着剤が、分子内にフッ素官能基を有す
る樹脂であることを特徴とする請求項1〜5のいずれか
に記載の電極。
6. The electrode according to claim 1, wherein said binder is a resin having a fluorine functional group in a molecule.
【請求項7】該電極活物質が、リチウム・遷移金属複合
酸化物であることを特徴とする請求項1〜6のいずれか
に記載の電極。
7. The electrode according to claim 1, wherein said electrode active material is a lithium / transition metal composite oxide.
【請求項8】該リチウム・遷移金属複合酸化物が、Li
x CoO2 (0<x≦1.0)、Lix NiO2 (0<
x≦1.0)、Lix Coy Ni1-y 2 (0<x≦
1.0、0<y≦1.0)、および、これらに1種以上
のアルカリ土類金属元素を添加した化合物、およびLi
x Mn2 4 (0<x≦1.0)から選ばれることを特
徴とする請求項1〜7のいずれかに記載の電極。
8. The lithium / transition metal composite oxide is Li
x CoO 2 (0 <x ≦ 1.0), Li x NiO 2 (0 <
x ≦ 1.0), Li x Co y Ni 1−y O 2 (0 <x ≦
1.0, 0 <y ≦ 1.0), and a compound obtained by adding one or more alkaline earth metal elements thereto, and Li
The electrode according to claim 1, wherein the electrode is selected from x Mn 2 O 4 (0 <x ≦ 1.0).
【請求項9】請求項1〜8のいずれかに記載の電極を用
いた非水電解液系二次電池。
9. A non-aqueous electrolyte secondary battery using the electrode according to claim 1.
【請求項10】該非水電解液が、アルカリ金属塩である
電解質を含むことを特徴とする請求項9記載の非水電解
液系二次電池。
10. The non-aqueous electrolyte secondary battery according to claim 9, wherein said non-aqueous electrolyte contains an electrolyte which is an alkali metal salt.
【請求項11】該アルカリ金属塩がリチウム塩であるこ
とを特徴とする請求項10記載の非水電解液系二次電
池。
11. The non-aqueous electrolyte secondary battery according to claim 10, wherein said alkali metal salt is a lithium salt.
JP8234090A 1996-09-04 1996-09-04 Electrode and nonaqueous electrolyte second battery using it Pending JPH1079244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8234090A JPH1079244A (en) 1996-09-04 1996-09-04 Electrode and nonaqueous electrolyte second battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8234090A JPH1079244A (en) 1996-09-04 1996-09-04 Electrode and nonaqueous electrolyte second battery using it

Publications (1)

Publication Number Publication Date
JPH1079244A true JPH1079244A (en) 1998-03-24

Family

ID=16965469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8234090A Pending JPH1079244A (en) 1996-09-04 1996-09-04 Electrode and nonaqueous electrolyte second battery using it

Country Status (1)

Country Link
JP (1) JPH1079244A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030744A (en) * 1998-07-14 2000-01-28 Ngk Insulators Ltd Lithium secondary battery
JP2000077102A (en) * 1998-08-28 2000-03-14 Sony Corp Nonaqueous electrolyte secondary battery
WO2002101869A1 (en) * 2001-06-07 2002-12-19 Mitsubishi Chemical Corporation Lithium secondary cell
JP2003123755A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
US6682850B1 (en) 1998-08-27 2004-01-27 Nec Corporation Nonaqueous electrolyte solution secondary battery using lithium-manganese composite oxide for positive electrode
KR100589307B1 (en) * 1999-08-27 2006-06-14 삼성에스디아이 주식회사 A lithium secondary battery and a method of preparing a electrode plate for a lithium secondary battery
US7326498B2 (en) 2003-11-29 2008-02-05 Samsung Sdi Co., Ltd. Method for preparing positive active material for rechargeable lithium battery and positive active material prepared by same
JP2009087885A (en) * 2007-10-03 2009-04-23 Sony Corp Method for manufacturing positive electrode
JP2009123464A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode active material for lithium-ion secondary battery, positive electrode, method of manufacturing the same, and lithium-ion secondary battery
JP2009123463A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode for lithium-ion secondary battery, method of manufacturing the same, and lithium-ion secondary battery
JP2012160463A (en) * 2012-04-05 2012-08-23 Sony Corp Method for manufacturing positive electrode for lithium ion battery, and method for manufacturing lithium ion battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
JP2013073724A (en) * 2011-09-27 2013-04-22 Toyo Ink Sc Holdings Co Ltd Mixed material paste for lithium ion secondary battery positive electrode
EP2631972A1 (en) 2012-02-24 2013-08-28 Hitachi, Ltd. Method for producing composition for forming positive electrode material mixture layer and method for producing lithium ion secondary battery
EP2654109A1 (en) 2012-04-18 2013-10-23 Nichia Corporation Positive electrode composition for nonaqueous electrolyte secondary battery
US8916292B2 (en) 2006-03-21 2014-12-23 Samsung Sdi Co., Ltd. Positive electrode for lithium rechargeable battery and lithium rechargeable battery including the same and method of fabricating the lithium rechargeable battery
KR20150080394A (en) * 2013-12-31 2015-07-09 주식회사 에코프로 Manufacturing method of cathod active material for lithium rechargeable battery of preventing gelling, and cathod active material for lithium rechargeable battery made by the same
CN106104872A (en) * 2014-03-31 2016-11-09 住友化学株式会社 Sodium rechargeable battery electrode closes material slurry, sodium rechargeable battery positive pole and sodium rechargeable battery
US9774037B2 (en) 2013-10-17 2017-09-26 Nichia Corporation Positive electrode composition for non-aqueous electrolyte secondary battery, method of manufacturing thereof, and non-aqueous electrolyte secondary battery
JP2017228412A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
JP2017228413A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
KR20180084065A (en) 2015-12-09 2018-07-24 스미토모덴키고교가부시키가이샤 Sodium ion secondary battery and positive electrode active material particle
JPWO2017158961A1 (en) * 2016-03-18 2019-01-17 Necエナジーデバイス株式会社 Positive electrode mixture for secondary battery, method for producing secondary battery positive electrode, and method for producing secondary battery
US10270104B2 (en) 2014-08-08 2019-04-23 Sumitomo Electric Industries, Ltd. Positive electrode for sodium ion secondary battery and sodium ion secondary battery
WO2019168035A1 (en) * 2018-02-27 2019-09-06 積水化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
WO2019182064A1 (en) 2018-03-20 2019-09-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
KR20200014299A (en) 2017-05-31 2020-02-10 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN112090382A (en) * 2020-08-28 2020-12-18 江苏富矿智能科技有限公司 Novel size mixing device for lithium ion battery production and size mixing method thereof

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030744A (en) * 1998-07-14 2000-01-28 Ngk Insulators Ltd Lithium secondary battery
US6682850B1 (en) 1998-08-27 2004-01-27 Nec Corporation Nonaqueous electrolyte solution secondary battery using lithium-manganese composite oxide for positive electrode
JP2000077102A (en) * 1998-08-28 2000-03-14 Sony Corp Nonaqueous electrolyte secondary battery
KR100589307B1 (en) * 1999-08-27 2006-06-14 삼성에스디아이 주식회사 A lithium secondary battery and a method of preparing a electrode plate for a lithium secondary battery
WO2002101869A1 (en) * 2001-06-07 2002-12-19 Mitsubishi Chemical Corporation Lithium secondary cell
JP2003123755A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
US7326498B2 (en) 2003-11-29 2008-02-05 Samsung Sdi Co., Ltd. Method for preparing positive active material for rechargeable lithium battery and positive active material prepared by same
US8916292B2 (en) 2006-03-21 2014-12-23 Samsung Sdi Co., Ltd. Positive electrode for lithium rechargeable battery and lithium rechargeable battery including the same and method of fabricating the lithium rechargeable battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
US8647772B2 (en) 2007-03-30 2014-02-11 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte battery
JP2009087885A (en) * 2007-10-03 2009-04-23 Sony Corp Method for manufacturing positive electrode
US8178238B2 (en) 2007-11-14 2012-05-15 Sony Corporation Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
JP2009123463A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode for lithium-ion secondary battery, method of manufacturing the same, and lithium-ion secondary battery
US8486566B2 (en) 2007-11-14 2013-07-16 Sony Corporation Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
JP2009123464A (en) * 2007-11-14 2009-06-04 Sony Corp Positive electrode active material for lithium-ion secondary battery, positive electrode, method of manufacturing the same, and lithium-ion secondary battery
JP2013073724A (en) * 2011-09-27 2013-04-22 Toyo Ink Sc Holdings Co Ltd Mixed material paste for lithium ion secondary battery positive electrode
JP2013175325A (en) * 2012-02-24 2013-09-05 Hitachi Ltd Method of manufacturing composition for positive electrode mixture layer formation and method of manufacturing lithium ion secondary battery
EP2631972A1 (en) 2012-02-24 2013-08-28 Hitachi, Ltd. Method for producing composition for forming positive electrode material mixture layer and method for producing lithium ion secondary battery
JP2012160463A (en) * 2012-04-05 2012-08-23 Sony Corp Method for manufacturing positive electrode for lithium ion battery, and method for manufacturing lithium ion battery
US9742002B2 (en) 2012-04-18 2017-08-22 Nichia Corporation Positive electrode composition for nonaqueous electrolyte secondary battery
US10454097B2 (en) 2012-04-18 2019-10-22 Nichia Corporation Positive electrode composition for nonaqueous electrolyte secondary battery
EP2654109A1 (en) 2012-04-18 2013-10-23 Nichia Corporation Positive electrode composition for nonaqueous electrolyte secondary battery
KR20130117340A (en) 2012-04-18 2013-10-25 니치아 카가쿠 고교 가부시키가이샤 Positive electrode composition for nonaqueous electrolyte secondary battery
US9774037B2 (en) 2013-10-17 2017-09-26 Nichia Corporation Positive electrode composition for non-aqueous electrolyte secondary battery, method of manufacturing thereof, and non-aqueous electrolyte secondary battery
KR20150080394A (en) * 2013-12-31 2015-07-09 주식회사 에코프로 Manufacturing method of cathod active material for lithium rechargeable battery of preventing gelling, and cathod active material for lithium rechargeable battery made by the same
CN106104872A (en) * 2014-03-31 2016-11-09 住友化学株式会社 Sodium rechargeable battery electrode closes material slurry, sodium rechargeable battery positive pole and sodium rechargeable battery
US10658653B2 (en) 2014-03-31 2020-05-19 Sumitomo Chemical Company, Limited Electrode mixture paste for sodium secondary cell, positive electrode for sodium secondary cell, and sodium secondary cell
US10270104B2 (en) 2014-08-08 2019-04-23 Sumitomo Electric Industries, Ltd. Positive electrode for sodium ion secondary battery and sodium ion secondary battery
US10593993B2 (en) 2015-12-09 2020-03-17 Sumitomo Electric Industries, Ltd. Sodium ion secondary battery and positive electrode active material particles
KR20180084065A (en) 2015-12-09 2018-07-24 스미토모덴키고교가부시키가이샤 Sodium ion secondary battery and positive electrode active material particle
EP3432387A4 (en) * 2016-03-18 2019-10-30 Envision AESC Energy Devices Ltd. Positive electrode mixture for secondary batteries, manufacturing method for positive electrodes for secondary batteries, and manufacturing method for secondary batteries
JPWO2017158961A1 (en) * 2016-03-18 2019-01-17 Necエナジーデバイス株式会社 Positive electrode mixture for secondary battery, method for producing secondary battery positive electrode, and method for producing secondary battery
US11245107B2 (en) 2016-03-18 2022-02-08 Envision Aesc Japan Ltd. Positive electrode mixture for secondary battery, method for manufacturing positive electrode for secondary battery, and method for manufacturing secondary battery
JP2017228413A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
JP2017228412A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
KR20200014299A (en) 2017-05-31 2020-02-10 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2019168035A1 (en) * 2018-02-27 2019-09-06 積水化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JPWO2019168035A1 (en) * 2018-02-27 2020-08-20 積水化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
WO2019182064A1 (en) 2018-03-20 2019-09-26 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
CN112090382A (en) * 2020-08-28 2020-12-18 江苏富矿智能科技有限公司 Novel size mixing device for lithium ion battery production and size mixing method thereof

Similar Documents

Publication Publication Date Title
JPH1079244A (en) Electrode and nonaqueous electrolyte second battery using it
KR100782868B1 (en) Charging method for charging nonaqueous electrolyte secondary battery
KR101378235B1 (en) Lithium secondary battery
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
KR100624059B1 (en) Solid state electrolyte cell and method for producing same
EP2113957A1 (en) Positive electrode for lithium secondary cell and lithium secondary cell using the same
CN100444458C (en) Battery
JP2016100094A (en) Binder, electrode containing the same, and electrochemical device
JP2003229172A (en) Nonaqueous electrolyte battery
JP4355970B2 (en) Solid electrolyte battery and manufacturing method thereof
JP2003036884A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
US10957936B2 (en) Lithium ion secondary battery
JPH11102729A (en) Manufacture of nonaqueous solvent type secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JP4910228B2 (en) Nonaqueous electrolyte secondary battery
JP2010092673A (en) Nonaqueous electrolyte secondary battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JPH1167214A (en) Lithium secondary battery
JP2004087325A (en) Nonaqueous electrolytic solution battery
JP4120439B2 (en) Lithium ion secondary battery
JPH11185773A (en) Gelled electrolyte cell
JP4085481B2 (en) battery
JP2000195550A (en) Nonaqueous electrolyte secondary battery
JP2002117903A (en) Nonaqueous electrolyte battery