JPH1078567A - Manufacture of progressive multifocus lens - Google Patents

Manufacture of progressive multifocus lens

Info

Publication number
JPH1078567A
JPH1078567A JP23539896A JP23539896A JPH1078567A JP H1078567 A JPH1078567 A JP H1078567A JP 23539896 A JP23539896 A JP 23539896A JP 23539896 A JP23539896 A JP 23539896A JP H1078567 A JPH1078567 A JP H1078567A
Authority
JP
Japan
Prior art keywords
refractive power
power
progressive
lens
refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23539896A
Other languages
Japanese (ja)
Other versions
JP4190597B2 (en
Inventor
Moriyasu Shirayanagi
守康 白柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP23539896A priority Critical patent/JP4190597B2/en
Publication of JPH1078567A publication Critical patent/JPH1078567A/en
Application granted granted Critical
Publication of JP4190597B2 publication Critical patent/JP4190597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a manufacture equipment cost and a management cost, to reduce the burdens of a worker and to prevent work errors by setting surface refractive power at a far-sight part measurement reference point smaller for a progressive refractive surface for manufacturing the progressive multifocus lens of larger joining refractive power. SOLUTION: A manufacture range is divided into plural blocks by the value of far-sight part vertex refractive power. Inside the respective blocks, one of the front surface and rear surface of a lens is turned to a common progressive refractive surface corresponding to the joining refractive power, the shape of the other surface is changed and prescribed far-sight part vertex refractive power is obtained. That is, for each joining refractive power ADD, in the relation of the far-sight part surface refractive power D1F of the progressive refractive surface and rear surface refractive power D2 capable of obtaining the far-sight vertex refractive power SPH+4.000ptr, CYL+0.000ptr, the surface refractive power at the far-sight part side measurement reference point is set smaller for the progressive refractive surface for manufacturing the progressive multifocus lens of the larger joining refractive power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、累進多焦点レンズの製造
方法に関する。
The present invention relates to a method for manufacturing a progressive multifocal lens.

【0002】[0002]

【従来技術およびその問題点】従来眼鏡レンズの製作範
囲は、例えば、図8の(a)、(b)、(c)に示すよ
うな球面屈折力SPHおよび円柱屈折力CYLの組合せ
表で示されている。累進多焦点レンズの場合にはさらに
加入屈折力ADDとの組合せもあるので、三次元的な表
になる。
2. Description of the Related Art The range of production of a conventional spectacle lens is shown in, for example, a combination table of a spherical refractive power SPH and a cylindrical refractive power CYL as shown in FIGS. 8 (a), 8 (b) and 8 (c). Have been. In the case of the progressive multifocal lens, since there is a combination with the addition refractive power ADD, a three-dimensional table is obtained.

【0003】このような多様な屈折力の累進多焦点レン
ズを加工するために、従来眼鏡レンズ製造業者は、遠用
部頂点屈折力(球面屈折力と円柱屈折力)の値によっ
て、図8(b)中にアルファベットA、B、C、D、E
で示すように製作範囲を複数のブロックに分けて、それ
ぞれのブロック内ではレンズの前面または後面の何れか
一面を、加入屈折力ADDに応じた共通の累進屈折面と
している。そして所望の遠用部頂点屈折力を得るため
に、累進屈折面とは反対側の面の形状を変えている。た
とえば、加入屈折力ADD2.00ディオプトリ(Dpt
r)で、図8(b)中Dで示される範囲の全36種類の
遠用部頂点屈折力を得るために、レンズの前面に共通の
1種類の累進屈折面を用い、レンズの後面を、4種類の
球面及び32種類のトーリック面の中から選択してい
る。
In order to process such progressive multifocal lenses having various refractive powers, a conventional spectacle lens manufacturer uses a distance portion vertex power (spherical power and cylindrical power) as shown in FIG. b) alphabets A, B, C, D, E
As shown by, the production range is divided into a plurality of blocks, and in each block, one of the front surface and the rear surface of the lens is a common progressive refraction surface corresponding to the addition power ADD. Then, in order to obtain a desired far-distance vertex refractive power, the shape of the surface on the side opposite to the progressive refractive surface is changed. For example, the addition power ADD2.00 diopters (Dpt
In (r), in order to obtain a total of 36 types of far vision apex powers in the range indicated by D in FIG. 8 (b), one common progressive refractive surface is used on the front surface of the lens, and the rear surface of the lens is , 4 types of spherical surfaces and 32 types of toric surfaces.

【0004】より具体的には、球面屈折力SPH+4.
00Dptr、円柱屈折力CYL+0.00Dptr、加入屈折
力ADD2.00Dptrの累進多焦点レンズを製作するに
は、前面を遠用部測定基準点の面屈折力(遠用部面屈折
力)7.00Dptrで加入屈折力ADD2.00Dptrの累
進屈折面とし、後面を−3.24Dptrの球面とする。ま
た、球面屈折力SPH+3.50Dptr、円柱屈折力CY
L+0.50Dptr、加入屈折力ADD2.00Dptrの累
進多焦点レンズを製作するには、前面を前記と同様の累
進屈折面とし、後面を−3.74/−3.24Dptrのト
ーリック面とする。
More specifically, the spherical power SPH + 4.
In order to produce a progressive multifocal lens having a refractive power of 00 Dptr, a cylindrical refractive power of CYL + 0.00 Dptr, and an additional refractive power of ADD of 2.00 Dptr, the front surface must have a surface refractive power of a distance reference portion reference point (distance refractive power of 7.00 Dptr). A progressive refraction surface having an addition power of ADD 2.00 Dptr is used, and a rear surface is a spherical surface of -3.24 Dptr. In addition, spherical refractive power SPH + 3.50 Dptr, cylindrical refractive power CY
In order to manufacture a progressive multifocal lens with L + 0.50 Dptr and addition power ADD2.00 Dptr, the front surface is a progressive refraction surface similar to the above, and the rear surface is a toric surface of -3.74 / -3.24 Dptr.

【0005】従来の累進多焦点レンズの製造方法におい
ては、同じ共通ブロックの累進屈折面は加入屈折力AD
Dによらずほぼ一定の遠用部面屈折力としていた。例え
ば、図8(b)中のDブロックで加入屈折力ADD4.
00Dptr用の累進屈折面の遠用部面屈折力は、加入屈折
力ADD2.00Dptr用のものと同じく7.00Dptrで
あった。この場合、球面屈折力SPH+4.00Dptr、
円柱屈折力CYL+0.00Dptr、加入屈折力ADD
4.00Dptrの累進多焦点レンズを製作する場合には、
前面を遠用部面屈折力7.00Dptrで加入屈折力4.0
0Dptr用の累進屈折面とする。ここで、後面を上記−
3.24Dptrの球面とすると、遠用部頂点屈折力はSP
H+4.06Dptrになってしまう。加入屈折力ADDが
2.00Dptrの場合には中心厚が6.90mmであったの
が、加入屈折力ADDが4.00Dptrになると累進屈折
面の曲率が大きくなり、中心厚が7.85mmにまで厚く
なってしまい、このレンズ厚の変化の影響を受けて、遠
用部頂点屈折力が強くなってしまうのである。
In the conventional method of manufacturing a progressive multifocal lens, the progressive surface of the same common block has an addition power AD.
Irrespective of D, the refractive power of the distance portion was almost constant. For example, the addition refractive power ADD4.D in the D block in FIG.
The distance refractive power of the progressive power surface for 00 Dptr was 7.00 Dptr, the same as that for ADD 2.00 Dptr. In this case, the spherical refractive power SPH + 4.00 Dptr,
Cylindrical refractive power CYL + 0.00 Dptr, addition refractive power ADD
When manufacturing a progressive multifocal lens of 4.00 Dptr,
The front surface has a distance power of 7.00 Dptr and an added power of 4.0.
A progressive refraction surface for 0 Dptr. Here, the rear surface is
Assuming a spherical surface of 3.24 Dptr, the distance power at the vertex is SP
H + 4.06 Dptr. When the addition refractive power ADD is 2.00 Dptr, the center thickness is 6.90 mm. However, when the addition refractive power ADD becomes 4.00 Dptr, the curvature of the progressive refractive surface increases, and the center thickness becomes 7.85 mm. In this case, the refractive power of the distance portion becomes high due to the influence of the change in the lens thickness.

【0006】加入屈折力ADDが2.00Dptrおよび
4.00Dptrの場合の眼鏡レンズの垂直断面図を図9の
(a)、(b)に示した。図9の(a)、(b)におい
て、符号15、16はレンズの前面、25、26はレン
ズの後面、35、36は累進屈折面、45、46は遠用
部測定基準点、55、56は近用部加入屈折力測定基準
点を示している。加入屈折力ADDが4.00Dptrの従
来レンズの場合、後面を−3.30Dptrの球面にする
と、球面屈折力SPH+4.00Dptrが得られる。従来
例1について各加入屈折力ADD毎に、累進屈折面の遠
用部面屈折力D1Fと、遠用部頂点屈折力SPH+4.
00Dptr、CYL+0.00Dptrを得るための後面屈折
力D2を求めると、表1および図10のようになる。図
10において、横軸は加入屈折力ADD、縦軸は上方が
遠用部面屈折力D1F、下方が後面屈折力D2である。
FIGS. 9 (a) and 9 (b) show vertical sectional views of spectacle lenses when the addition power ADD is 2.00 Dptr and 4.00 Dptr. 9A and 9B, reference numerals 15 and 16 denote the front surface of the lens, 25 and 26 denote the rear surface of the lens, 35 and 36 denote progressive refraction surfaces, 45 and 46 denote distance reference measurement reference points, and 55 and 46, respectively. Reference numeral 56 denotes a reference point for measuring the addition power of the near portion. In the case of a conventional lens having an addition refractive power ADD of 4.00 Dptr, if the rear surface is a spherical surface of −3.30 Dptr, a spherical refractive power SPH + 4.00 Dptr is obtained. In Conventional Example 1, for each addition refractive power ADD, the distance portion surface refractive power D1F of the progressive refractive surface and the distance portion vertex power SPH + 4.
When the back surface refractive power D2 for obtaining 00 Dptr and CYL + 0.00 Dptr is obtained, the result is as shown in Table 1 and FIG. In FIG. 10, the horizontal axis represents the addition refractive power ADD, and the vertical axis represents the distance portion surface refractive power D1F on the upper side and the rear surface refractive power D2 on the lower side.

【0007】従来例1Conventional example 1

【表1】 [Table 1]

【0008】図8において、Aブロックを加入屈折力A
DDによらず一定の遠用部面屈折力5.00Dptrを持っ
た累進屈折面で製作する場合、球面屈折力SPH+1.
00Dptr、円柱屈折力CYL+0.00Dptr、加入屈折
力ADD2.00Dptrの累進多焦点レンズを製作するた
めの後面屈折力は−4.07Dptrであるが、この後面屈
折力を加入屈折力ADD1.00Dptrに適用すると、球
面屈折力SPH+0.99Dptrになってしまい、加入屈
折力ADD4.00Dptrに適用すると球面屈折力SPH
+1.04Dptrになってしまう。
In FIG. 8, an A block is added with an additional refractive power A.
In the case of manufacturing with a progressive refractive surface having a constant distance refractive power of 5.00 Dptr irrespective of DD, a spherical refractive power SPH + 1.
The back surface refractive power for producing a progressive multifocal lens having a refractive power of 00 Dptr, a cylindrical refractive power CYL + 0.00 Dptr, and an add power ADD 2.00 Dptr is -4.07 Dptr. Then, the spherical refractive power becomes SPH + 0.99 Dptr. When applied to the addition refractive power ADD4.00 Dptr, the spherical refractive power SPH is obtained.
+1.04 Dptr.

【0009】この従来例2について各加入屈折力ADD
ごとに、累進屈折面の遠用部面屈折力D1Fと、遠用部
頂点屈折力SPH+1.00Dptr、CYL+0.00Dp
trを得るための後面屈折力D2を求めると、表2および
図11のようになる。図11において、横軸は加入屈折
力ADD、縦軸は上方が遠用部面屈折力D1F、下方が
後面屈折力D2である。
With respect to the conventional example 2, each addition refractive power ADD
In each case, the distance portion surface power D1F of the progressive refraction surface and the distance portion vertex power SPH + 1.00Dptr, CYL + 0.00Dp
When the rear refractive power D2 for obtaining tr is obtained, the result is as shown in Table 2 and FIG. In FIG. 11, the horizontal axis represents the addition refractive power ADD, the vertical axis represents the distance portion surface refractive power D1F on the upper side, and the rear surface refractive power D2 on the lower side.

【0010】従来例2Conventional example 2

【表2】 [Table 2]

【0011】このように、従来のレンズ技術では、累進
屈折面の遠用部面屈折力を加入屈折力ADDによらず一
定に設定していたので、所望の遠用部頂点屈折力を得る
ためには累進屈折面の反対側の面の面屈折力を加入屈折
力ADDに応じて調整する必要があった。そのため、累
進多焦点レンズの完成品を成形によって製作する場合に
は、累進屈折面の反対側の面を成形するための球面型や
トーリック型が多種類必要であった。また、あらかじめ
累進屈折面が成形された半完成品を研削、研磨して累進
多焦点レンズの完成品を製作する場合には、多種類の研
磨皿が必要であった。成形型や研磨皿の種類が多くなれ
ば、製造設備コスト、管理コストが上がり、さらに加工
者の負担も増えて加工ミスにもつながりやすいという問
題があった。
As described above, in the conventional lens technology, the refractive power of the distance portion of the progressive refraction surface is set to be constant regardless of the addition power ADD. It was necessary to adjust the surface refractive power of the surface on the opposite side of the progressive refraction surface according to the addition refractive power ADD. Therefore, when a finished product of a progressive multifocal lens is manufactured by molding, various types of spherical molds and toric molds for molding the surface opposite to the progressive refraction surface are required. Further, when a semi-finished product having a progressive refraction surface formed in advance is ground and polished to produce a finished progressive multifocal lens, various types of polishing plates are required. If there are many types of molds and polishing plates, there is a problem that manufacturing equipment costs and management costs increase, and a burden on a processor also increases, which easily leads to a processing error.

【0012】[0012]

【発明の目的】本発明は、累進屈折面の反対側の面を成
形するための型や、研磨加工するための研磨皿の種類を
減らし、製造設備コスト、管理コストを低減させ、加工
者の負担を減らして加工ミスを防ぐことができる累進多
焦点レンズの製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention reduces the number of molds for forming the surface opposite to the progressive refraction surface and the types of polishing plates for polishing, thereby reducing manufacturing equipment costs and management costs, and It is an object of the present invention to provide a method of manufacturing a progressive multifocal lens capable of reducing a load and preventing a processing error.

【0013】[0013]

【発明の概要】この目的を達成する本発明の累進多焦点
レンズの製造方法は、所定の遠用部頂点屈折力および所
定の加入屈折力の製作範囲を包含する累進多焦点レンズ
製品群における累進多焦点レンズの製造方法であって、
前記製作範囲を遠用部頂点屈折力の値によって複数のブ
ロックに分割し、それぞれのブロック内においてはレン
ズの前面または後面の何れか一方の面を加入屈折力に応
じた共通の累進屈折面とし、他方の面の形状を変えて所
定の遠用部頂点屈折力を得ることとし、より大きな加入
屈折力の累進多焦点レンズを製作するための累進屈折面
ほど遠用部測定基準点における面屈折力を小さく設定す
ること、に特徴を有する。
SUMMARY OF THE INVENTION To achieve this object, a method of manufacturing a progressive multifocal lens according to the present invention is provided in a progressive multifocal lens product group that includes a manufacturing range of a predetermined distance portion vertex power and a predetermined addition power. A method for manufacturing a multifocal lens,
The manufacturing range is divided into a plurality of blocks according to the value of the distance portion vertex refractive power, and in each block, one of the front surface and the rear surface of the lens is a common progressive refractive surface according to the addition power. By changing the shape of the other surface to obtain a predetermined distance refractive power at the vertex, the progressive refraction surface for manufacturing a progressive addition lens having a larger addition power has a higher surface refractive power at the distance measuring reference point. The feature is that the force is set small.

【0014】特に本発明は、正の遠用部頂点屈折力を持
ち、遠用部測定基準点において主子午線に沿った断面の
面屈折力をDFm、主子午線に直交する断面の面屈折力
をDFsとするとき、DFm<DFsを満足する累進多
焦点レンズの製造方法において、同一の遠用部頂点屈折
力のブロックにおいては、より大きな加入屈折力の累進
屈折面ほど、遠用部測定基準点における平均面屈折力を
小さくする。なお、前記平均面屈折力は、面屈折力DF
mおよびDFsの算術平均とする。さらに本発明は、加
入屈折力の変化による遠用部測定基準点における主子午
線に沿った断面の面屈折力の変化をΔDFm、主子午線
に直交する断面の面屈折力の変化をΔDFsとすると
き、|ΔDFm|<|ΔDFs|とすることが望まし
い。
In particular, according to the present invention, the surface refractive power of the section along the principal meridian at the distance reference point is DFm, and the surface refractive power of the section orthogonal to the principal meridian at the distance reference point. In the method of manufacturing a progressive multifocal lens that satisfies DFm <DFs, DFs <DFs, in a block having the same apex refractive power at the far vision portion, the progressive power surface having a larger addition power has a greater distance measurement reference point. The average surface refractive power at is reduced. Note that the average surface power is the surface power DF.
The arithmetic mean of m and DFs. Further, in the present invention, when a change in surface refractive power of a cross section along the principal meridian at a distance measurement reference point due to a change in addition refractive power is ΔDFm, and a change in surface refractive power of a cross section orthogonal to the main meridian is ΔDFs, , | ΔDFm | <| ΔDFs |.

【0015】[0015]

【発明の実施の形態】以下図面に基づいて本発明を説明
する。図1および図2は、本発明を適用した、前面が累
進屈折面、後面が球面である累進多焦点レンズの実施例
1および2の面屈折力をグラフで示す図である。図1お
よび図2において、横軸は加入屈折力ADD、縦軸は上
方が遠用部面屈折力D1F、下方が後面屈折力D2であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIGS. 1 and 2 are graphs showing the surface refractive power of Examples 1 and 2 of progressive multifocal lenses to which the present invention is applied, the front surface of which is a progressive refraction surface and the rear surface of which is a spherical surface. 1 and 2, the horizontal axis represents the addition refractive power ADD, and the vertical axis represents the distance portion surface power D1F on the upper side and the rear surface power D2 on the lower side.

【0016】表3は、図1に示した実施例1における、
加入屈折力ADDごとに、累進屈折面の遠用部面屈折力
D1Fと、遠用部頂点屈折力SPH+4.00Dptr、C
YL+0.00Dptrを得ることができる後面屈折力D2
との関係の具体的数値例である。
Table 3 shows the results obtained in the first embodiment shown in FIG.
For each addition refractive power ADD, the distance portion surface refractive power D1F of the progressive refraction surface and the distance portion vertex power SPH + 4.00 Dptr, C
Back surface power D2 that can obtain YL + 0.00 Dptr
It is a specific numerical example of the relationship with.

【0017】実施例1Embodiment 1

【表3】 [Table 3]

【0018】表4は、図2に示した実施例2における、
加入屈折力ADDごとに、累進屈折面の遠用部面屈折力
D1Fと、遠用部頂点屈折力SPH+1.00Dptr、C
YL+0.00Dptrを得ることができる後面屈折力D2
との関係の具体的数値例である。
Table 4 shows the results obtained in the second embodiment shown in FIG.
For each addition refractive power ADD, the distance portion surface power D1F of the progressive refraction surface and the distance portion vertex power SPH + 1.00 Dptr, C
Back surface power D2 that can obtain YL + 0.00 Dptr
It is a specific numerical example of the relationship with.

【0019】実施例2Embodiment 2

【表4】 [Table 4]

【0020】以上の実施例1および2によれば、同一の
遠用部頂点屈折力のレンズ群では、レンズの後面を、加
入屈折力ADDにかかわらず、共通の球面とすることが
可能になった。
According to the first and second embodiments, in a lens group having the same distance portion vertex power, the rear surface of the lens can be formed into a common spherical surface regardless of the addition power ADD. Was.

【0021】後面を累進屈折面とした眼鏡レンズの垂直
断面図を図3に示す。この眼鏡レンズに本発明を適用し
た実施例3において、各加入屈折力ADDごとに、累進
屈折面の遠用部面屈折力D2Fと、遠用部頂点屈折力S
PH+4.00Dptr、CYL+0.00Dptrを得ること
ができる前面屈折力D1との関係を表5および図4に示
した。図3において、符号11はレンズの前面、21は
レンズの後面、31は累進屈折面、41は遠用部測定基
準点、51は近用部加入屈折力測定基準点を示してい
る。
FIG. 3 is a vertical sectional view of a spectacle lens having a rear surface as a progressive refractive surface. In the third embodiment in which the present invention is applied to this spectacle lens, for each addition refractive power ADD, the distance portion surface power D2F of the progressive refraction surface and the distance portion vertex power S
Table 5 and FIG. 4 show the relationship between the front refractive power D1 at which PH + 4.00 Dptr and CYL + 0.00 Dptr can be obtained. In FIG. 3, reference numeral 11 denotes a front surface of the lens, 21 denotes a rear surface of the lens, 31 denotes a progressive refraction surface, 41 denotes a distance reference point, and 51 denotes a near addition power reference point.

【0022】実施例3Embodiment 3

【表5】 [Table 5]

【0023】この実施例3によれば、後面21の累進屈
折面31の加入屈折力ADDによらず、前面11を共通
の球面とすることができる。
According to the third embodiment, the front surface 11 can be a common spherical surface irrespective of the addition power ADD of the progressive refractive surface 31 of the rear surface 21.

【0024】図5は、前面を累進屈折面とし、遠用部測
定基準点における主子午線に沿ったメリジオナル断面の
面屈折力と、主子午線に直交するサジタル断面の面屈折
力に所定の差をつけ、ベースカーブ(レンズ前面の屈折
力)を低くすることによって薄型・軽量化を図ったレン
ズの正面図である。
FIG. 5 shows that the front surface is a progressive refractive surface, and a predetermined difference is made between the surface refractive power of the meridional section along the principal meridian at the distance measuring reference point and the surface refractive power of the sagittal section perpendicular to the principal meridian. FIG. 4 is a front view of a lens that is made thinner and lighter by lowering a base curve (refractive power of the front surface of the lens).

【0025】本発明を図5に示したレンズに適用した実
施例4を表6及び図6に示した。表6および図6は、各
加入屈折力ADD毎に、累進屈折面の遠用部測定基準点
における主子午線に沿った断面屈折力D1Fmと、主子
午線に直交する断面屈折力D1Fsと、遠用部頂点屈折
力SPH+4.00、CYL+0.00Dptrを得ること
ができる後面屈折力D2との関係を示している。なお、
図5において、符号32は累進屈折面、42は遠用部測
定基準点、52は近用部加入屈折力測定基準点、62は
主子午線、72はメリジオナル断面、82はサジタル断
面を示している。図6において、符号mは加入屈折力A
DDとメリジオナル断面72における断面屈折力D1F
mとの関係を示し、符号sは加入屈折力ADDとサジタ
ル断面82における断面屈折力D1Fsとの関係を示し
ている。
Example 6 in which the present invention was applied to the lens shown in FIG. 5 is shown in Table 6 and FIG. Table 6 and FIG. 6 show, for each addition refractive power ADD, the sectional refractive power D1Fm along the principal meridian at the distance measuring reference point of the progressive refractive surface, the sectional refractive power D1Fs orthogonal to the principal meridian, and the distance use. It shows the relationship with the rear surface refractive power D2 that can obtain a vertex power SPH + 4.00 and CYL + 0.00Dptr. In addition,
5, reference numeral 32 denotes a progressive refractive surface, reference numeral 42 denotes a distance reference point, reference numeral 52 denotes a near addition power measurement reference point, reference numeral 62 denotes a principal meridian, reference numeral 72 denotes a meridional section, and reference numeral 82 denotes a sagittal section. . In FIG. 6, the sign m is the addition power A.
DD and sectional refractive power D1F at meridional section 72
The symbol s indicates the relationship between the added refractive power ADD and the sectional refractive power D1Fs in the sagittal section 82.

【0026】実施例4Embodiment 4

【表6】 [Table 6]

【0027】本発明を図5に示したレンズに適用した実
施例5を表7及び図7に示した。表7および図7は、各
加入屈折力ADD毎に、累進屈折面の遠用部測定基準点
における主子午線に沿った断面屈折力D1Fmと、主子
午線に直交する断面屈折力D1Fsと、遠用部頂点屈折
力SPH+2.00Dptr、CYL+0.00Dptrを得る
ための後面屈折力D2との関係を示している。
Example 7 in which the present invention was applied to the lens shown in FIG. 5 is shown in Table 7 and FIG. Table 7 and FIG. 7 show, for each addition refractive power ADD, the sectional refractive power D1Fm along the principal meridian at the distance measuring reference point of the progressive refractive surface, the sectional refractive power D1Fs orthogonal to the principal meridian, and the distance use. It shows the relationship with the rear surface refractive power D2 for obtaining the apex refractive power SPH + 2.00 Dptr and CYL + 0.00 Dptr.

【0028】実施例5Embodiment 5

【表7】 [Table 7]

【0029】実施例4および5は、遠用部測定基準点に
おいて主子午線に沿った断面の面屈折力をD1Fm、主
子午線と直交する断面の面屈折力をD1Fsとすると
き、D1Fm<D1Fsを満足する。さらに実施例4お
よび5は、図6および図7から分かるように、加入屈折
力ADDの変化による遠用部測定基準点における主子午
線に沿った断面の面屈折力の変化をΔD1Fm、主子午
線と直交する断面の面屈折力の変化をΔD1Fsとする
と、 |ΔD1Fm|<|ΔD1Fs| を満足している。
In Examples 4 and 5, when the surface refractive power of a section along the principal meridian at the distance reference point is D1Fm and the surface refractive power of a section orthogonal to the principal meridian is D1Fs, D1Fm <D1Fs is satisfied. To be satisfied. Further, as can be seen from FIGS. 6 and 7, in Examples 4 and 5, the change in the surface power of the cross section along the main meridian at the distance measurement reference point due to the change in the addition power ADD is ΔD1Fm, the main meridian and Assuming that the change in the surface refractive power of the orthogonal cross section is ΔD1Fs, | ΔD1Fm | <| ΔD1Fs | is satisfied.

【0030】以上の通り実施例4および実施例5の累進
多焦点レンズ構成によれば、前面の累進屈折面の加入屈
折力ADDによらず、後面を共通の球面とすることがで
きる。
As described above, according to the progressive multifocal lens configurations of the fourth and fifth embodiments, the rear surface can be a common spherical surface irrespective of the addition refractive power ADD of the front progressive surface.

【0031】[0031]

【発明の効果】以上の説明から明らかな通り本発明によ
れば、同じ遠用部頂点屈折力を得るための累進屈折面の
反対側の面は加入屈折力によらず共通にできるので、成
形によって累進多焦点レンズの完成品を製作する場合に
累進屈折面の反対側の面を成形するための球面型やトー
リック型の種類が少なくて済む。本発明によって製造す
るレンズは、加入屈折力が大きくなるに従ってレンズ厚
が厚くなり、このレンズ厚の変化の影響を受けて遠用部
頂点屈折力が強くなる傾向を、累進屈折面の遠用部面屈
折力を小さくすることで補正しているので、累進屈折面
と反対側の面を補正しなくて済むようになった。さらに
本発明によると、あらかじめ累進屈折面が成形された半
完成品を研削、研磨して累進多焦点レンズの完成品を製
作する場合には、加工者の負担が減り、加工ミスも少な
くなる。
As is clear from the above description, according to the present invention, the surface on the opposite side of the progressive refraction surface for obtaining the same refractive power at the apex of the far vision can be commonly used regardless of the addition power. Thus, when a finished product of the progressive multifocal lens is manufactured, the types of the spherical type and the toric type for molding the surface opposite to the progressive refraction surface can be reduced. In the lens manufactured according to the present invention, the lens thickness increases as the addition refractive power increases, and the refractive power of the distance portion vertex becomes stronger under the influence of the change in the lens thickness. Since the correction is made by reducing the surface refractive power, the surface on the opposite side to the progressive refraction surface does not need to be corrected. Further, according to the present invention, when a semi-finished product in which a progressive refracting surface is formed in advance is ground and polished to produce a finished progressive multifocal lens, the burden on the processor is reduced, and processing errors are reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法によって製作した実施例1の
レンズの面屈折力をグラフで示す図である。
FIG. 1 is a graph showing the surface refractive power of a lens of Example 1 manufactured by a manufacturing method of the present invention.

【図2】本発明の製造方法によって製作した実施例2の
レンズの面屈折力をグラフで示す図である。
FIG. 2 is a graph showing a surface refractive power of a lens of Example 2 manufactured by a manufacturing method of the present invention.

【図3】本発明の製造方法を適用する他のレンズの垂直
断面図である。
FIG. 3 is a vertical sectional view of another lens to which the manufacturing method of the present invention is applied.

【図4】本発明の製造方法を図3に示したレンズに適用
した実施例3のレンズの面屈折力をグラフで示す図であ
る。
FIG. 4 is a graph showing the surface refractive power of the lens of Example 3 in which the manufacturing method of the present invention is applied to the lens shown in FIG. 3;

【図5】本発明の製造方法を適用するさらに他のレンズ
の正面図である。
FIG. 5 is a front view of still another lens to which the manufacturing method of the present invention is applied.

【図6】本発明の製造方法を図5に示したレンズに適用
した実施例4のレンズの面屈折力をグラフで示す図であ
る。
FIG. 6 is a graph showing the surface refractive power of the lens of Example 4 in which the manufacturing method of the present invention is applied to the lens shown in FIG.

【図7】本発明の製造方法を図5に示したレンズに適用
した実施例5のレンズの面屈折力をグラフで示す図であ
る。
FIG. 7 is a graph showing the surface refractive power of the lens of Example 5 in which the manufacturing method of the present invention is applied to the lens shown in FIG. 5;

【図8】(a)、(b)、(c)は累進多焦点レンズの
製作範囲およびブロック化の一例を表にして示す図であ
る。
FIGS. 8A, 8B, and 8C are tables showing examples of a manufacturing range and blocking of a progressive multifocal lens.

【図9】(a)、(b)はレンズの前面を累進面とした
場合の加入度数とレンズの厚さの関係を示す図である。
FIGS. 9A and 9B are diagrams showing the relationship between the addition power and the lens thickness when the front surface of the lens is a progressive surface.

【図10】従来レンズの面屈折力をグラフで示す図であ
る。
FIG. 10 is a graph showing the surface refractive power of a conventional lens in a graph.

【図11】他の従来レンズの面屈折力をグラフで示す図
である。
FIG. 11 is a graph showing the surface refractive power of another conventional lens.

【符号の説明】[Explanation of symbols]

11 レンズの前面 21 レンズの後面 31 累進屈折面 32 累進屈折面 41 遠用部測定基準点 42 遠用部測定基準点 51 近用部加入屈折力測定基準点 52 近用部加入屈折力測定基準点 62 主子午線 72 メリジオナル断面 82 サジタル断面 DESCRIPTION OF SYMBOLS 11 Front surface of lens 21 Rear surface of lens 31 Progressive refraction surface 32 Progressive refraction surface 41 Distance measurement reference point 42 Distance measurement reference point 51 Near addition power measurement reference point 52 Near addition power measurement reference point 62 Main meridian 72 Meridional section 82 Sagittal section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定の遠用部頂点屈折力および所定の加
入屈折力の製作範囲を包含する累進多焦点レンズ製品群
における累進多焦点レンズの製造方法であって、 前記製作範囲を遠用部頂点屈折力の値によって複数のブ
ロックに分割し、 それぞれのブロック内においてはレンズの前面または後
面の何れか一方の面を加入屈折力に応じた共通の累進屈
折面とし、他方の面の形状により所定の遠用部頂点屈折
力を得ることとし、 より大きな加入屈折力の累進多焦点レンズを製作するた
めの累進屈折面ほど遠用部測定基準点における面屈折力
を小さく設定すること、を特徴とする累進多焦点レンズ
の製造方法。
1. A method of manufacturing a progressive multifocal lens in a progressive multifocal lens product group including a production range of a predetermined distance portion vertex power and a predetermined addition power, wherein the production range is a distance portion. Divided into a plurality of blocks according to the value of the vertex refractive power, and within each block, one of the front surface and the rear surface of the lens is a common progressive refractive surface according to the added refractive power, and the shape of the other surface is A predetermined distance portion vertex refractive power is obtained, and the surface refractive power at the distance portion measurement reference point is set to be smaller for a progressive power surface for producing a progressive addition lens having a larger addition power. A method of manufacturing a progressive multifocal lens.
【請求項2】 請求項1において、前記所定の遠用部頂
点屈折力が同一の場合には、前記加入屈折力にかかわら
ず他方の面の面屈折力を同一にする累進多焦点レンズの
製造方法。
2. A progressive multifocal lens according to claim 1, wherein, when said predetermined distance portion vertex power is the same, the other surface has the same surface power regardless of said additional power. Method.
【請求項3】 正の遠用部頂点屈折力を有し、遠用部測
定基準点において主子午線に沿った断面の面屈折力をD
Fm、主子午線と直交する断面の面屈折力をDFsとす
ると、DFm<DFsである累進多焦点レンズの製造方
法であって、 同一の遠用部頂点屈折力のブロックでは、より大きな加
入屈折力の累進屈折面ほど遠用部測定基準点における平
均面屈折力を小さく設定すること、を特徴とする累進多
焦点レンズの製造方法。
3. It has a positive far-distance portion vertex power, and the surface refractive power of a section along the principal meridian at the far-distance portion measurement reference point is D
Fm, where DFs is a surface refractive power of a cross section orthogonal to the principal meridian, a method of manufacturing a progressive multifocal lens in which DFm <DFs is satisfied. The method of manufacturing a progressive multifocal lens, characterized in that the average surface refractive power at the distance measuring reference point is set to be smaller as the progressive refraction surface becomes.
【請求項4】 請求項3において、加入屈折力の変化に
よる遠用部測定基準点における主子午線に沿った断面の
面屈折力の変化をΔDFm、主子午線と直交する断面の
面屈折力の変化をΔDFsとすると、 |ΔDFm|<|ΔDFs| を満足すること、を特徴とする累進多焦点レンズの製造
方法。
4. The method according to claim 3, wherein the change in the surface refractive power of the cross section along the principal meridian at the distance measuring reference point due to the change in the addition refractive power is ΔDFm, and the change in the surface refractive power of the cross section orthogonal to the main meridian. Where ΔDFs is satisfied, | ΔDFm | <| ΔDFs | is satisfied.
JP23539896A 1996-09-05 1996-09-05 Manufacturing method of progressive multifocal lens Expired - Fee Related JP4190597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23539896A JP4190597B2 (en) 1996-09-05 1996-09-05 Manufacturing method of progressive multifocal lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23539896A JP4190597B2 (en) 1996-09-05 1996-09-05 Manufacturing method of progressive multifocal lens

Publications (2)

Publication Number Publication Date
JPH1078567A true JPH1078567A (en) 1998-03-24
JP4190597B2 JP4190597B2 (en) 2008-12-03

Family

ID=16985507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23539896A Expired - Fee Related JP4190597B2 (en) 1996-09-05 1996-09-05 Manufacturing method of progressive multifocal lens

Country Status (1)

Country Link
JP (1) JP4190597B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021846A (en) * 1999-07-08 2001-01-26 Sota Suzuki Progressive focus lens for spectacles and its production as well as spectacles using this progressive focus lens for spectacles
WO2007058352A1 (en) * 2005-11-18 2007-05-24 Hoya Corporation Process for producing molded article, molding die, and method of manufacturing the same
WO2007058353A1 (en) * 2005-11-18 2007-05-24 Hoya Corporation Process for production of molded articles, glass material, and method for determing the surface shapes of glass material and mold
US8197727B2 (en) 2005-11-30 2012-06-12 Hoya Corporation Method of manufacturing formed article, covering member, and forming apparatus comprising the same
JP2012220655A (en) * 2011-04-07 2012-11-12 Seiko Epson Corp Designing method of progressive refractive power lens
US8641937B2 (en) 2009-02-27 2014-02-04 Hoya Corporation Method of manufacturing lens casting mold and method of manufacturing eyeglass lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021846A (en) * 1999-07-08 2001-01-26 Sota Suzuki Progressive focus lens for spectacles and its production as well as spectacles using this progressive focus lens for spectacles
WO2007058352A1 (en) * 2005-11-18 2007-05-24 Hoya Corporation Process for producing molded article, molding die, and method of manufacturing the same
WO2007058353A1 (en) * 2005-11-18 2007-05-24 Hoya Corporation Process for production of molded articles, glass material, and method for determing the surface shapes of glass material and mold
US8277704B2 (en) 2005-11-18 2012-10-02 Hoya Corporation Method of manufacturing formed article, mold and method of manufacturing the same
JP5042032B2 (en) * 2005-11-18 2012-10-03 Hoya株式会社 Method for manufacturing molded product, glass material, and method for determining surface shape of glass material and mold
US9242889B2 (en) 2005-11-18 2016-01-26 Hoya Corporation Method of manufacturing formed article, glass material, and method of determining shape of glass material and mold
US8197727B2 (en) 2005-11-30 2012-06-12 Hoya Corporation Method of manufacturing formed article, covering member, and forming apparatus comprising the same
US8641937B2 (en) 2009-02-27 2014-02-04 Hoya Corporation Method of manufacturing lens casting mold and method of manufacturing eyeglass lens
JP2012220655A (en) * 2011-04-07 2012-11-12 Seiko Epson Corp Designing method of progressive refractive power lens

Also Published As

Publication number Publication date
JP4190597B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP4223290B2 (en) Progressive focus lens
US7159983B2 (en) Multifocal lenses for pre-presbyopic individuals
KR100659434B1 (en) Progressive refractive power lens
US7419261B2 (en) Non-corrective lenses with improved peripheral vision
CA2493448A1 (en) Toric multifocal contact lenses
AU2002252366A1 (en) Progressive addition lenses
EP1026533A2 (en) Progressive addition lenses having regressive surfaces
JP2000206469A (en) Contact lens and its production
US5867246A (en) Enhanced ophthalmic lens
CA2332330C (en) Contact lenses with contoured edges
US20100045931A1 (en) Short Channel Progressive Addition Lenses
JP3845251B2 (en) Manufacturing method and supply method of spectacle lens
EP1846800A2 (en) Spectacle lenses incorporating atoric surfaces
JP2004045633A (en) Multifocal spectacle lens and its manufacturing method
JPH1078567A (en) Manufacture of progressive multifocus lens
JP2000066148A (en) Progressive refracting power lens
KR100490345B1 (en) Aspheric eyeglass lens and its design method
JP2002024316A (en) Ophthalmic lens, its design method, and manufacturing method
WO2003069393A1 (en) Contact lenses with off-center sphere surface
US3405995A (en) Preformed blank for multifocal lens
JP2008209431A (en) Method for manufacturing precursor lens for spherical lens
GB2368662A (en) Single vision astigmatic cylindrical power spectacle lens
JP2001318344A (en) Progressive power lens
Meister et al. Principles of atoric lens design
JPS60123822A (en) Progressive multifocus lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

A131 Notification of reasons for refusal

Effective date: 20070227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20080428

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080507

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Effective date: 20080611

Free format text: JAPANESE INTERMEDIATE CODE: A711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110926

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Effective date: 20081015

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Effective date: 20081015

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A072 Dismissal of procedure

Effective date: 20090217

Free format text: JAPANESE INTERMEDIATE CODE: A072

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120926

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130926

LAPS Cancellation because of no payment of annual fees