JP4190597B2 - Manufacturing method of progressive multifocal lens - Google Patents

Manufacturing method of progressive multifocal lens Download PDF

Info

Publication number
JP4190597B2
JP4190597B2 JP23539896A JP23539896A JP4190597B2 JP 4190597 B2 JP4190597 B2 JP 4190597B2 JP 23539896 A JP23539896 A JP 23539896A JP 23539896 A JP23539896 A JP 23539896A JP 4190597 B2 JP4190597 B2 JP 4190597B2
Authority
JP
Japan
Prior art keywords
refractive power
power
progressive
refractive
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23539896A
Other languages
Japanese (ja)
Other versions
JPH1078567A (en
Inventor
守康 白柳
Original Assignee
セイコーオプティカルプロダクツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーオプティカルプロダクツ株式会社 filed Critical セイコーオプティカルプロダクツ株式会社
Priority to JP23539896A priority Critical patent/JP4190597B2/en
Publication of JPH1078567A publication Critical patent/JPH1078567A/en
Application granted granted Critical
Publication of JP4190597B2 publication Critical patent/JP4190597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Eyeglasses (AREA)

Description

【0001】
【発明の技術分野】
本発明は、累進多焦点レンズの製造方法に関する。
【0002】
【従来技術およびその問題点】
従来眼鏡レンズの製作範囲は、例えば、図8の(a)、(b)、(c)に示すような球面屈折力SPHおよび円柱屈折力CYLの組合せ表で示されている。累進多焦点レンズの場合にはさらに加入屈折力ADDとの組合せもあるので、三次元的な表になる。
【0003】
このような多様な屈折力の累進多焦点レンズを加工するために、従来眼鏡レンズ製造業者は、遠用部頂点屈折力(球面屈折力と円柱屈折力)の値によって、図8(b)中にアルファベットA、B、C、D、Eで示すように製作範囲を複数のブロックに分けて、それぞれのブロック内ではレンズの前面または後面の何れか一面を、加入屈折力ADDに応じた共通の累進屈折面としている。そして所望の遠用部頂点屈折力を得るために、累進屈折面とは反対側の面の形状を変えている。たとえば、加入屈折力ADD2.00ディオプトリ(Dptr)で、図8(b)中Dで示される範囲の全36種類の遠用部頂点屈折力を得るために、レンズの前面に共通の1種類の累進屈折面を用い、レンズの後面を、4種類の球面及び32種類のトーリック面の中から選択している。
【0004】
より具体的には、球面屈折力SPH+4.00Dptr、円柱屈折力CYL+0.00Dptr、加入屈折力ADD2.00Dptrの累進多焦点レンズを製作するには、前面を遠用部測定基準点の面屈折力(遠用部面屈折力)7.00Dptrで加入屈折力ADD2.00Dptrの累進屈折面とし、後面を−3.24Dptrの球面とする。
また、球面屈折力SPH+3.50Dptr、円柱屈折力CYL+0.50Dptr、加入屈折力ADD2.00Dptrの累進多焦点レンズを製作するには、前面を前記と同様の累進屈折面とし、後面を−3.74/−3.24Dptrのトーリック面とする。
【0005】
従来の累進多焦点レンズの製造方法においては、同じ共通ブロックの累進屈折面は加入屈折力ADDによらずほぼ一定の遠用部面屈折力としていた。例えば、図8(b)中のDブロックで加入屈折力ADD4.00Dptr用の累進屈折面の遠用部面屈折力は、加入屈折力ADD2.00Dptr用のものと同じく7.00Dptrであった。この場合、球面屈折力SPH+4.00Dptr、円柱屈折力CYL+0.00Dptr、加入屈折力ADD4.00Dptrの累進多焦点レンズを製作する場合には、前面を遠用部面屈折力7.00Dptrで加入屈折力4.00Dptr用の累進屈折面とする。ここで、後面を上記−3.24Dptrの球面とすると、遠用部頂点屈折力はSPH+4.06Dptrになってしまう。加入屈折力ADDが2.00Dptrの場合には中心厚が6.90mmであったのが、加入屈折力ADDが4.00Dptrになると累進屈折面の曲率が大きくなり、中心厚が7.85mmにまで厚くなってしまい、このレンズ厚の変化の影響を受けて、遠用部頂点屈折力が強くなってしまうのである。
【0006】
加入屈折力ADDが2.00Dptrおよび4.00Dptrの場合の眼鏡レンズの垂直断面図を図9の(a)、(b)に示した。図9の(a)、(b)において、符号15、16はレンズの前面、25、26はレンズの後面、35、36は累進屈折面、45、46は遠用部測定基準点、55、56は近用部加入屈折力測定基準点を示している。加入屈折力ADDが4.00Dptrの従来レンズの場合、後面を−3.30Dptrの球面にすると、球面屈折力SPH+4.00Dptrが得られる。従来例1について各加入屈折力ADD毎に、累進屈折面の遠用部面屈折力D1Fと、遠用部頂点屈折力SPH+4.00Dptr、CYL+0.00Dptrを得るための後面屈折力D2を求めると、表1および図10のようになる。図10において、横軸は加入屈折力ADD、縦軸は上方が遠用部面屈折力D1F、下方が後面屈折力D2である。
【0007】
従来例1
【表1】

Figure 0004190597
【0008】
図8において、Aブロックを加入屈折力ADDによらず一定の遠用部面屈折力5.00Dptrを持った累進屈折面で製作する場合、球面屈折力SPH+1.00Dptr、円柱屈折力CYL+0.00Dptr、加入屈折力ADD2.00Dptrの累進多焦点レンズを製作するための後面屈折力は−4.07Dptrであるが、この後面屈折力を加入屈折力ADD1.00Dptrに適用すると、球面屈折力SPH+0.99Dptrになってしまい、加入屈折力ADD4.00Dptrに適用すると球面屈折力SPH+1.04Dptrになってしまう。
【0009】
この従来例2について各加入屈折力ADDごとに、累進屈折面の遠用部面屈折力D1Fと、遠用部頂点屈折力SPH+1.00Dptr、CYL+0.00Dptrを得るための後面屈折力D2を求めると、表2および図11のようになる。図11において、横軸は加入屈折力ADD、縦軸は上方が遠用部面屈折力D1F、下方が後面屈折力D2である。
【0010】
従来例2
【表2】
Figure 0004190597
【0011】
このように、従来のレンズ技術では、累進屈折面の遠用部面屈折力を加入屈折力ADDによらず一定に設定していたので、所望の遠用部頂点屈折力を得るためには累進屈折面の反対側の面の面屈折力を加入屈折力ADDに応じて調整する必要があった。そのため、累進多焦点レンズの完成品を成形によって製作する場合には、累進屈折面の反対側の面を成形するための球面型やトーリック型が多種類必要であった。また、あらかじめ累進屈折面が成形された半完成品を研削、研磨して累進多焦点レンズの完成品を製作する場合には、多種類の研磨皿が必要であった。成形型や研磨皿の種類が多くなれば、製造設備コスト、管理コストが上がり、さらに加工者の負担も増えて加工ミスにもつながりやすいという問題があった。
【0012】
【発明の目的】
本発明は、累進屈折面の反対側の面を成形するための型や、研磨加工するための研磨皿の種類を減らし、製造設備コスト、管理コストを低減させ、加工者の負担を減らして加工ミスを防ぐことができる累進多焦点レンズの製造方法を提供することを目的とする。
【0013】
【発明の概要】
この目的を達成する本発明の累進多焦点レンズの製造方法は、所定の遠用部頂点屈折力および所定の加入屈折力の製作範囲を包含する累進多焦点レンズ製品群における前記製作範囲を遠用部頂点屈折力の値によって複数のブロックに分割し、それぞれのブロック内においてはレンズの前面または後面の何れか一方の面を、加入屈折力毎に異なり、ブロック内で共通の累進屈折面とし、他方の面の形状により所定の遠用部頂点屈折力を得る累進多焦点レンズの製造方法において、正の遠用部頂点屈折力のブロックに割り当てられた累進屈折面は、より大きな加入屈折力の累進多焦点レンズを製作するための累進屈折面ほど遠用部測定基準点における面屈折力を小さく設定することにより、前記所定の遠用部頂点屈折力が同一の場合には、前記加入屈折力にかかわらず他方の面の面屈折力を同一にすること、に特徴を有する。
【0014】
特に本発明は、正の遠用部頂点屈折力を持ち、遠用部測定基準点において主子午線に沿った断面の面屈折力をDFm、主子午線に直交する断面の面屈折力をDFsとするとき、DFm<DFsを満足する累進多焦点レンズの製造方法において、同一の遠用部頂点屈折力のブロックにおいては、より大きな加入屈折力の累進屈折面ほど、遠用部測定基準点における平均面屈折力を小さくする。なお、前記平均面屈折力は、面屈折力DFmおよびDFsの算術平均とする。
さらに本発明は、加入屈折力の変化による遠用部測定基準点における主子午線に沿った断面の面屈折力の変化をΔDFm、主子午線に直交する断面の面屈折力の変化をΔDFsとするとき、|ΔDFm|<|ΔDFs|とすることが望ましい。
【0015】
【発明の実施の形態】
以下図面に基づいて本発明を説明する。
図1および図2は、本発明を適用した、前面が累進屈折面、後面が球面である累進多焦点レンズの実施例1および2の面屈折力をグラフで示す図である。図1および図2において、横軸は加入屈折力ADD、縦軸は上方が遠用部面屈折力D1F、下方が後面屈折力D2である。
【0016】
表3は、図1に示した実施例1における、加入屈折力ADDごとに、累進屈折面の遠用部面屈折力D1Fと、遠用部頂点屈折力SPH+4.00Dptr、CYL+0.00Dptrを得ることができる後面屈折力D2との関係の具体的数値例である。
【0017】
実施例1
【表3】
Figure 0004190597
【0018】
表4は、図2に示した実施例2における、加入屈折力ADDごとに、累進屈折面の遠用部面屈折力D1Fと、遠用部頂点屈折力SPH+1.00Dptr、CYL+0.00Dptrを得ることができる後面屈折力D2との関係の具体的数値例である。
【0019】
実施例2
【表4】
Figure 0004190597
【0020】
以上の実施例1および2によれば、同一の遠用部頂点屈折力のレンズ群では、レンズの後面を、加入屈折力ADDにかかわらず、共通の球面とすることが可能になった。
【0021】
後面を累進屈折面とした眼鏡レンズの垂直断面図を図3に示す。この眼鏡レンズに本発明を適用した実施例3において、各加入屈折力ADDごとに、累進屈折面の遠用部面屈折力D2Fと、遠用部頂点屈折力SPH+4.00Dptr、CYL+0.00Dptrを得ることができる前面屈折力D1との関係を表5および図4に示した。図3において、符号11はレンズの前面、21はレンズの後面、31は累進屈折面、41は遠用部測定基準点、51は近用部加入屈折力測定基準点を示している。
【0022】
実施例3
【表5】
Figure 0004190597
【0023】
この実施例3によれば、後面21の累進屈折面31の加入屈折力ADDによらず、前面11を共通の球面とすることができる。
【0024】
図5は、前面を累進屈折面とし、遠用部測定基準点における主子午線に沿ったメリジオナル断面の面屈折力と、主子午線に直交するサジタル断面の面屈折力に所定の差をつけ、ベースカーブ(レンズ前面の屈折力)を低くすることによって薄型・軽量化を図ったレンズの正面図である。
【0025】
本発明を図5に示したレンズに適用した実施例4を表6及び図6に示した。表6および図6は、各加入屈折力ADD毎に、累進屈折面の遠用部測定基準点における主子午線に沿った断面屈折力D1Fmと、主子午線に直交する断面屈折力D1Fsと、遠用部頂点屈折力SPH+4.00、CYL+0.00Dptrを得ることができる後面屈折力D2との関係を示している。なお、図5において、符号32は累進屈折面、42は遠用部測定基準点、52は近用部加入屈折力測定基準点、62は主子午線、72はメリジオナル断面、82はサジタル断面を示している。図6において、符号mは加入屈折力ADDとメリジオナル断面72における断面屈折力D1Fmとの関係を示し、符号sは加入屈折力ADDとサジタル断面82における断面屈折力D1Fsとの関係を示している。
【0026】
実施例4
【表6】
Figure 0004190597
【0027】
本発明を図5に示したレンズに適用した実施例5を表7及び図7に示した。表7および図7は、各加入屈折力ADD毎に、累進屈折面の遠用部測定基準点における主子午線に沿った断面屈折力D1Fmと、主子午線に直交する断面屈折力D1Fsと、遠用部頂点屈折力SPH+2.00Dptr、CYL+0.00Dptrを得るための後面屈折力D2との関係を示している。
【0028】
実施例5
【表7】
Figure 0004190597
【0029】
実施例4および5は、遠用部測定基準点において主子午線に沿った断面の面屈折力をD1Fm、主子午線と直交する断面の面屈折力をD1Fsとするとき、D1Fm<D1Fsを満足する。
さらに実施例4および5は、図6および図7から分かるように、加入屈折力ADDの変化による遠用部測定基準点における主子午線に沿った断面の面屈折力の変化をΔD1Fm、主子午線と直交する断面の面屈折力の変化をΔD1Fsとすると、
|ΔD1Fm|<|ΔD1Fs|
を満足している。
【0030】
以上の通り実施例4および実施例5の累進多焦点レンズ構成によれば、前面の累進屈折面の加入屈折力ADDによらず、後面を共通の球面とすることができる。
【0031】
【発明の効果】
以上の説明から明らかな通り本発明によれば、同じ遠用部頂点屈折力を得るための累進屈折面の反対側の面は加入屈折力によらず共通にできるので、成形によって累進多焦点レンズの完成品を製作する場合に累進屈折面の反対側の面を成形するための球面型やトーリック型の種類が少なくて済む。
本発明によって製造するレンズは、加入屈折力が大きくなるに従ってレンズ厚が厚くなり、このレンズ厚の変化の影響を受けて遠用部頂点屈折力が強くなる傾向を、累進屈折面の遠用部面屈折力を小さくすることで補正しているので、累進屈折面と反対側の面を補正しなくて済むようになった。
さらに本発明によると、あらかじめ累進屈折面が成形された半完成品を研削、研磨して累進多焦点レンズの完成品を製作する場合には、加工者の負担が減り、加工ミスも少なくなる。
【図面の簡単な説明】
【図1】本発明の製造方法によって製作した実施例1のレンズの面屈折力をグラフで示す図である。
【図2】本発明の製造方法によって製作した実施例2のレンズの面屈折力をグラフで示す図である。
【図3】本発明の製造方法を適用する他のレンズの垂直断面図である。
【図4】本発明の製造方法を図3に示したレンズに適用した実施例3のレンズの面屈折力をグラフで示す図である。
【図5】本発明の製造方法を適用するさらに他のレンズの正面図である。
【図6】本発明の製造方法を図5に示したレンズに適用した実施例4のレンズの面屈折力をグラフで示す図である。
【図7】本発明の製造方法を図5に示したレンズに適用した実施例5のレンズの面屈折力をグラフで示す図である。
【図8】(a)、(b)、(c)は累進多焦点レンズの製作範囲およびブロック化の一例を表にして示す図である。
【図9】(a)、(b)はレンズの前面を累進面とした場合の加入度数とレンズの厚さの関係を示す図である。
【図10】従来レンズの面屈折力をグラフで示す図である。
【図11】他の従来レンズの面屈折力をグラフで示す図である。
【符号の説明】
11 レンズの前面
21 レンズの後面
31 累進屈折面
32 累進屈折面
41 遠用部測定基準点
42 遠用部測定基準点
51 近用部加入屈折力測定基準点
52 近用部加入屈折力測定基準点
62 主子午線
72 メリジオナル断面
82 サジタル断面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a progressive multifocal lens.
[0002]
[Prior art and its problems]
The production range of the conventional spectacle lens is shown in, for example, a combination table of spherical refractive power SPH and cylindrical refractive power CYL as shown in (a), (b), and (c) of FIG. In the case of a progressive multifocal lens, there is also a combination with the addition power ADD, so that it becomes a three-dimensional table.
[0003]
In order to process such a progressive multifocal lens having various refractive powers, a conventional spectacle lens manufacturer uses a distance apex refractive power (spherical refractive power and cylindrical refractive power) in FIG. 8B. As shown by alphabets A, B, C, D, and E, the manufacturing range is divided into a plurality of blocks, and in each block, either one of the front surface or the rear surface of the lens is shared by the common refractive power ADD. Progressive refractive surface. Then, in order to obtain a desired distance apex refractive power, the shape of the surface opposite to the progressive refractive surface is changed. For example, in order to obtain all 36 kinds of distance portion vertex powers in the range indicated by D in FIG. 8B with the addition power ADD 2.00 diopter (Dptr), one type common to the front surface of the lens is used. A progressive refraction surface is used, and the rear surface of the lens is selected from four types of spherical surfaces and 32 types of toric surfaces.
[0004]
More specifically, in order to manufacture a progressive multifocal lens having a spherical refractive power SPH + 4.00 Dptr, a cylindrical refractive power CYL + 0.00 Dptr, and an addition refractive power ADD 2.00 Dptr, the front surface has a surface refractive power of the distance measurement reference point ( The distance refractive power is 7.00 Dptr and the addition refractive power is ADD 2.00 Dptr, and the rear surface is -3.24 Dptr.
In order to manufacture a progressive multifocal lens having spherical refractive power SPH + 3.50 Dptr, cylindrical refractive power CYL + 0.50 Dptr, and addition refractive power ADD 2.00 Dptr, the front surface is a progressive refractive surface similar to the above, and the rear surface is −3.74. /-3.24Dptr toric surface.
[0005]
In the conventional progressive multifocal lens manufacturing method, the progressive refractive surface of the same common block has a substantially constant distance surface refractive power regardless of the addition power ADD. For example, the distance-part surface refractive power of the progressive addition surface for the addition refractive power ADD 4.00 Dptr in the D block in FIG. 8B is 7.00 Dptr, similar to that for the addition refractive power ADD 2.00 Dptr. In this case, when a progressive multifocal lens having spherical refractive power SPH + 4.00 Dptr, cylindrical refractive power CYL + 0.00 Dptr, and addition refractive power ADD4.00 Dptr is manufactured, the front surface has an addition refractive power of 7.00 Dptr. A progressive refractive surface for 4.00 Dptr. Here, if the rear surface is a spherical surface of −3.24 Dptr, the distance portion vertex refractive power becomes SPH + 4.06 Dptr. When the addition power ADD is 2.00 Dptr, the center thickness is 6.90 mm. However, when the addition power ADD is 4.00 Dptr, the curvature of the progressive refractive surface increases and the center thickness becomes 7.85 mm. The distance apex refractive power becomes stronger under the influence of the change in the lens thickness.
[0006]
9A and 9B show vertical sectional views of the spectacle lens when the addition power ADD is 2.00 Dptr and 4.00 Dptr. 9A and 9B, reference numerals 15 and 16 are front surfaces of the lens, 25 and 26 are rear surfaces of the lens, 35 and 36 are progressive refractive surfaces, 45 and 46 are distance measurement reference points, 55, Reference numeral 56 denotes a reference power measuring reference point for the near portion. In the case of a conventional lens having an addition power ADD of 4.00 Dptr, a spherical power of SPH + 4.00 Dptr is obtained by making the rear surface a spherical surface of −3.30 Dptr. For the conventional example 1, for each additional refractive power ADD, the rear surface refractive power D1F of the progressive refractive surface and the rear surface refractive power D2 for obtaining the distance portion vertex refractive power SPH + 4.00 Dptr, CYL + 0.00Dptr are obtained. It becomes like Table 1 and FIG. In FIG. 10, the horizontal axis represents the addition power ADD, the vertical axis represents the distance portion surface power D1F above, and the rear surface power D2 below.
[0007]
Conventional Example 1
[Table 1]
Figure 0004190597
[0008]
In FIG. 8, when the A block is made of a progressive refractive surface having a constant distance surface refractive power of 5.00 Dptr regardless of the addition refractive power ADD, spherical refractive power SPH + 1.00 Dptr, cylindrical refractive power CYL + 0.00 Dptr, The rear refractive power for manufacturing a progressive multifocal lens having an addition refractive power of ADD 2.00 Dptr is −4.07 Dptr. When this rear refractive power is applied to the addition refractive power ADD1.00 Dptr, the spherical refractive power is SPH + 0.99 Dptr. Therefore, when applied to the addition power ADD 4.00 Dptr, the spherical power SPH + 1.04 Dptr is obtained.
[0009]
For this conventional example 2, for each additional refractive power ADD, when calculating the rear surface refractive power D1F of the progressive refractive surface and the rear surface refractive power D2 for obtaining the distance portion vertex refractive power SPH + 1.00Dptr, CYL + 0.00Dptr Table 2 and FIG. 11 are obtained. In FIG. 11, the horizontal axis indicates the addition power ADD, the vertical axis indicates the distance portion surface power D1F, and the lower side indicates the rear surface power D2.
[0010]
Conventional example 2
[Table 2]
Figure 0004190597
[0011]
As described above, in the conventional lens technology, the distance refractive power of the progressive refractive surface is set to be constant irrespective of the addition power ADD. It was necessary to adjust the surface refractive power of the surface opposite to the refractive surface according to the addition refractive power ADD. Therefore, when a finished product of a progressive multifocal lens is manufactured by molding, a large number of spherical types and toric types for molding a surface opposite to the progressive refractive surface are necessary. Further, when a semi-finished product having a progressive refracting surface formed in advance is ground and polished to produce a finished product of a progressive multifocal lens, various types of polishing dishes are required. If there are many types of molds and polishing dishes, manufacturing equipment costs and management costs increase, and further, the burden on the processor increases, leading to processing errors.
[0012]
OBJECT OF THE INVENTION
The present invention reduces the mold for molding the surface opposite to the progressive refractive surface and the type of polishing dish for polishing, reduces manufacturing equipment costs and management costs, and reduces the burden on the processor. An object of the present invention is to provide a method of manufacturing a progressive multifocal lens that can prevent mistakes.
[0013]
SUMMARY OF THE INVENTION
The method of manufacturing a progressive multifocal lens according to the present invention that achieves this object uses the manufacturing range in a progressive multifocal lens product group that includes a manufacturing range of a predetermined distance apex refractive power and a predetermined addition power. Dividing into a plurality of blocks according to the value of the partial vertex refractive power, and in each block, either the front surface or the rear surface of the lens is different for each addition power, and is a progressive refractive surface common in the block , In the manufacturing method of a progressive multifocal lens that obtains a predetermined distance vertex power by the shape of the other surface, the progressive addition surface assigned to the positive distance vertex power block has a larger addition power. By setting the surface refractive power at the distance measurement reference point to be smaller in the progressive refractive surface for manufacturing the progressive multifocal lens, when the predetermined distance portion vertex refractive power is the same, That the surface power of the other surface regardless power the same, to have the features.
[0014]
In particular, the present invention has a positive distance vertex refractive power, and the distance refractive power of the cross section along the main meridian at the distance measurement reference point is DFm, and the surface refractive power of the cross section perpendicular to the main meridian is DFs. In the progressive multifocal lens manufacturing method satisfying DFm <DFs, in the same distance portion vertex power block, the progressive addition surface having a larger addition power is the average surface at the distance measurement reference point. Reduce refractive power. The average surface power is the arithmetic average of the surface powers DFm and DFs.
Further, in the present invention, the change in the surface refractive power of the cross section along the main meridian at the distance measurement reference point due to the change in the addition refractive power is ΔDFm, and the change in the surface refractive power of the cross section perpendicular to the main meridian is ΔDFs. , | ΔDFm | <| ΔDFs |.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings.
FIG. 1 and FIG. 2 are graphs showing the surface refractive powers of Examples 1 and 2 of progressive multifocal lenses to which the present invention is applied and the front surface is a progressive refraction surface and the rear surface is a spherical surface. 1 and 2, the horizontal axis represents the addition power ADD, the vertical axis represents the distance portion surface power D1F above, and the rear surface power D2 below.
[0016]
Table 3 shows that, for each addition refractive power ADD in the embodiment 1 shown in FIG. 1, the distance refractive power D1F for the progressive refractive surface and the vertex light power SPH + 4.00 Dptr, CYL + 0.00Dptr for the distance. It is a specific numerical example of the relationship with the rear surface refractive power D2 that can be
[0017]
Example 1
[Table 3]
Figure 0004190597
[0018]
Table 4 shows that, for each additional refractive power ADD in the embodiment 2 shown in FIG. 2, the distance refractive power D1F for the progressive refractive surface and the vertex light power SPH + 1.00Dptr and CYL + 0.00Dptr for the distance are obtained. It is a specific numerical example of the relationship with the rear surface refractive power D2 that can be
[0019]
Example 2
[Table 4]
Figure 0004190597
[0020]
According to Examples 1 and 2 described above, in the lens group having the same distance portion vertex power, the rear surface of the lens can be a common spherical surface regardless of the addition power ADD.
[0021]
FIG. 3 shows a vertical sectional view of a spectacle lens having a rear surface as a progressive refraction surface. In Example 3 in which the present invention is applied to this spectacle lens, the distance refractive power D2F of the progressive refractive surface and the distance vertex power SPH + 4.00 Dptr, CYL + 0.00Dptr are obtained for each additional refractive power ADD. Table 5 and FIG. 4 show the relationship with the front refractive power D1 that can be used. In FIG. 3, reference numeral 11 denotes a front surface of the lens, 21 denotes a rear surface of the lens, 31 denotes a progressive refractive surface, 41 denotes a distance portion measurement reference point, and 51 denotes a near portion addition refractive power measurement reference point.
[0022]
Example 3
[Table 5]
Figure 0004190597
[0023]
According to the third embodiment, the front surface 11 can be a common spherical surface regardless of the addition power ADD of the progressive refractive surface 31 of the rear surface 21.
[0024]
FIG. 5 shows a progressive refracting surface as a front surface, with a predetermined difference between the surface refractive power of the meridional section along the main meridian at the distance measurement reference point and the surface refractive power of the sagittal section perpendicular to the main meridian. FIG. 3 is a front view of a lens that is made thinner and lighter by lowering a curve (refractive power on the front surface of the lens).
[0025]
Example 4 in which the present invention was applied to the lens shown in FIG. 5 is shown in Table 6 and FIG. Table 6 and FIG. 6 show the sectional refractive power D1Fm along the main meridian at the distance measuring reference point of the progressive refractive surface, the sectional refractive power D1Fs orthogonal to the main meridian, This shows the relationship with the rear surface refractive power D2 that can obtain the partial vertex power SPH + 4.00 and CYL + 0.00Dptr. In FIG. 5, reference numeral 32 is a progressive refractive surface, 42 is a distance measurement reference point, 52 is a near addition optical power measurement reference point, 62 is a main meridian, 72 is a meridional section, and 82 is a sagittal section. ing. In FIG. 6, the symbol m indicates the relationship between the addition power ADD and the cross-sectional power D1Fm at the meridional section 72, and the symbol s indicates the relationship between the addition power ADD and the cross-section power D1Fs at the sagittal section 82.
[0026]
Example 4
[Table 6]
Figure 0004190597
[0027]
Example 5 in which the present invention was applied to the lens shown in FIG. 5 is shown in Table 7 and FIG. Table 7 and FIG. 7 show the sectional refractive power D1Fm along the main meridian at the distance measurement reference point of the progressive refractive surface, the sectional refractive power D1Fs orthogonal to the main meridian, and the distance for each additional refractive power ADD. This shows the relationship with the rear surface refractive power D2 for obtaining the partial vertex refractive power SPH + 2.00 Dptr and CYL + 0.00 Dptr.
[0028]
Example 5
[Table 7]
Figure 0004190597
[0029]
Examples 4 and 5 satisfy D1Fm <D1Fs, where D1Fm is the surface refractive power of the cross section along the main meridian at the distance measurement reference point, and D1Fs is the surface refractive power of the cross section orthogonal to the main meridian.
Further, as can be seen from FIGS. 6 and 7, in Examples 4 and 5, the change in the surface refractive power of the cross section along the main meridian at the distance measurement reference point due to the change in the addition power ADD is ΔD1Fm, the main meridian Assuming that the change in the surface refractive power of the orthogonal cross section is ΔD1Fs,
| ΔD1Fm | <| ΔD1Fs |
Is satisfied.
[0030]
As described above, according to the progressive multifocal lens configurations of Example 4 and Example 5, the rear surface can be a common spherical surface regardless of the addition power ADD of the front progressive refractive surface.
[0031]
【The invention's effect】
As is apparent from the above description, according to the present invention, the surface opposite to the progressive refractive surface for obtaining the same distance portion vertex refractive power can be made common regardless of the addition refractive power. When producing a finished product, there are fewer types of spherical and toric molds for molding the surface opposite to the progressive refractive surface.
In the lens manufactured according to the present invention, the lens thickness increases as the addition power increases, and the distance portion vertex refractive power tends to increase due to the change in the lens thickness. Since the correction is made by reducing the surface refractive power, it becomes unnecessary to correct the surface opposite to the progressive refractive surface.
Furthermore, according to the present invention, when a semi-finished product having a progressive refracting surface formed in advance is ground and polished to produce a finished product of a progressive multifocal lens, the burden on the operator is reduced and processing errors are reduced.
[Brief description of the drawings]
FIG. 1 is a graph showing the surface refractive power of a lens of Example 1 manufactured by the manufacturing method of the present invention.
FIG. 2 is a graph showing the surface refractive power of the lens of Example 2 manufactured by the manufacturing method of the present invention.
FIG. 3 is a vertical sectional view of another lens to which the manufacturing method of the present invention is applied.
4 is a graph showing the surface refractive power of a lens of Example 3 in which the manufacturing method of the present invention is applied to the lens shown in FIG. 3; FIG.
FIG. 5 is a front view of still another lens to which the manufacturing method of the present invention is applied.
6 is a graph showing the surface refractive power of the lens of Example 4 in which the manufacturing method of the present invention is applied to the lens shown in FIG. 5; FIG.
7 is a graph showing the surface refractive power of a lens of Example 5 in which the manufacturing method of the present invention is applied to the lens shown in FIG. 5; FIG.
FIGS. 8A, 8B, and 8C are diagrams showing an example of a manufacturing range and blocking of a progressive multifocal lens in a table form.
FIGS. 9A and 9B are diagrams showing the relationship between the addition power and the lens thickness when the front surface of the lens is a progressive surface. FIGS.
FIG. 10 is a graph showing the surface refractive power of a conventional lens.
FIG. 11 is a graph showing the surface power of another conventional lens.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Front surface 21 Lens rear surface 31 Progressive refracting surface 32 Progressive refracting surface 41 Distance portion measurement reference point 42 Distance portion measurement reference point 51 Near portion addition refractive power measurement reference point 52 Near portion addition refractive power measurement reference point 62 Main meridian 72 Meridional section 82 Sagittal section

Claims (3)

所定の遠用部頂点屈折力および所定の加入屈折力の製作範囲を包含する累進多焦点レンズ製品群における前記製作範囲を遠用部頂点屈折力の値によって複数のブロックに分割し、
それぞれのブロック内においてはレンズの前面または後面の何れか一方の面を、加入屈折力毎に異なり、ブロック内で共通の累進屈折面とし、他方の面の形状により所定の遠用部頂点屈折力を得る累進多焦点レンズの製造方法において、
正の遠用部頂点屈折力のブロックに割り当てられた累進屈折面は、
より大きな加入屈折力の累進多焦点レンズを製作するための累進屈折面ほど遠用部測定基準点における面屈折力を小さく設定することにより、前記所定の遠用部頂点屈折力が同一の場合には、前記加入屈折力にかかわらず他方の面の面屈折力を同一にすること、を特徴とする累進多焦点レンズの製造方法。
Dividing the production range in the progressive multifocal lens product group including the production range of the predetermined distance portion vertex power and the predetermined addition power into a plurality of blocks according to the value of the distance portion vertex power,
Within each block, either the front or rear surface of the lens is different for each additional refractive power, and is a common progressive refractive surface within the block, and a predetermined distance apex refractive power depending on the shape of the other surface. In the manufacturing method of the progressive multifocal lens to obtain
The progressive refracting surface assigned to the positive distance vertex power block is
By setting the surface refractive power at the distance measurement reference point to be smaller as the progressive refractive surface for producing a progressive multifocal lens having a larger addition refractive power, the predetermined distance portion vertex refractive power is the same. The method of manufacturing a progressive multifocal lens, characterized in that the surface refractive power of the other surface is made the same regardless of the addition refractive power.
請求項1において、遠用部測定基準点において主子午線に沿った断面の面屈折力をDFm、主子午線と直交する断面の面屈折力をDFsとすると、DFm<DFsである累進多焦点レンズの製造方法。  2. The progressive multifocal lens according to claim 1, wherein DFm <DFs, where DFm is a surface refractive power of a cross section along the main meridian at a distance measurement reference point, and DFs is a surface refractive power of a cross section perpendicular to the main meridian. Production method. 請求項2において、加入屈折力の変化による遠用部測定基準点における主子午線に沿った断面の面屈折力の変化をΔDFm、主子午線と直交する断面の面屈折力の変化をΔDFsとすると、
|ΔDFm|<|ΔDFs|
を満足すること、を特徴とする累進多焦点レンズの製造方法。
In claim 2, when the change of the surface refractive power of the cross section along the main meridian at the distance measurement reference point due to the change of the addition refractive power is ΔDFm, the change of the surface refractive power of the cross section perpendicular to the main meridian is ΔDFs,
| ΔDFm | <| ΔDFs |
Satisfying the above, a method for manufacturing a progressive multifocal lens.
JP23539896A 1996-09-05 1996-09-05 Manufacturing method of progressive multifocal lens Expired - Fee Related JP4190597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23539896A JP4190597B2 (en) 1996-09-05 1996-09-05 Manufacturing method of progressive multifocal lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23539896A JP4190597B2 (en) 1996-09-05 1996-09-05 Manufacturing method of progressive multifocal lens

Publications (2)

Publication Number Publication Date
JPH1078567A JPH1078567A (en) 1998-03-24
JP4190597B2 true JP4190597B2 (en) 2008-12-03

Family

ID=16985507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23539896A Expired - Fee Related JP4190597B2 (en) 1996-09-05 1996-09-05 Manufacturing method of progressive multifocal lens

Country Status (1)

Country Link
JP (1) JP4190597B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510177B2 (en) * 1999-07-08 2010-07-21 東海光学株式会社 Progressive focus lens for spectacles, manufacturing method thereof, and spectacles using the progressive focus lens for spectacles
EP1961709B1 (en) * 2005-11-18 2016-12-21 Hoya Corporation Process for production of molded articles, glass material, and method for determing the surface shapes of glass material and mold
CN101312920B (en) * 2005-11-18 2013-02-13 Hoya株式会社 Process for production of molded articles, glass material, and method for determing the surface shapes of glass material and mold
EP1967498A4 (en) 2005-11-30 2014-10-01 Hoya Corp Process for production of molded articles, occluding member, and molding equipment with the same
CN102414000A (en) 2009-02-27 2012-04-11 Hoya株式会社 Method of producing mold for lens and method of producing eyeglass lens
JP5872785B2 (en) * 2011-04-07 2016-03-01 イーエイチエス レンズ フィリピン インク Progressive power lens design method

Also Published As

Publication number Publication date
JPH1078567A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
CN100504510C (en) Ophthalmic lenses without joint part and methods for making same
JP3170785B2 (en) Eyeglass lens with variable refractive index
KR101068028B1 (en) Methods for designing multifocal ophthalmic lenses
US8540367B2 (en) Method of selecting a semi-finished ophthalmic lens according to a given spectacle frame
EP2028533B1 (en) Method of calculating an optical system according to a given spectacle frame
US5867246A (en) Enhanced ophthalmic lens
US9772511B2 (en) Eyeglass lens and eyeglass lens manufacturing method
JP2005189875A (en) Method for molding contact lenses
CN103246080B (en) Design method of progressive addition ophthalmic lens
KR100739485B1 (en) Contact lenses with contoured edges and a method for designing such contact lens
CN1980779A (en) Mold designing method, mold, and molded piece
CN101341434B (en) Toric contact lenses
CN103246084A (en) Progressive addition lens with fixed channel length
JP4190597B2 (en) Manufacturing method of progressive multifocal lens
EP0910811A1 (en) Contact lens and method for making the same
JP2000066148A (en) Progressive refracting power lens
US5815236A (en) Contact lens and method for making the same
US7111937B2 (en) Spectacle lenses incorporating atoric surfaces
JP2005517976A (en) Contact lens having an eccentric spherical surface
JP5495529B2 (en) Manufacturing method of lens mold and manufacturing method of lens
JP2008191516A (en) Method for manufacturing precursor lens for lens shape for spectacles
JPH04218016A (en) Lens for spectacles and production thereof
JPS59168413A (en) Spectacles and its adjusting method
JP2024090450A (en) Methods for designing and manufacturing progressive power lenses
JP2002049011A (en) Progressive multifocal astigmatism spectacle lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080507

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081015

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081015

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees