JPH1077801A - Low aspect patio cascade - Google Patents

Low aspect patio cascade

Info

Publication number
JPH1077801A
JPH1077801A JP23408296A JP23408296A JPH1077801A JP H1077801 A JPH1077801 A JP H1077801A JP 23408296 A JP23408296 A JP 23408296A JP 23408296 A JP23408296 A JP 23408296A JP H1077801 A JPH1077801 A JP H1077801A
Authority
JP
Japan
Prior art keywords
blade
cascade
loss
wing
secondary flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23408296A
Other languages
Japanese (ja)
Inventor
Yuichiro Hirano
雄一郎 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23408296A priority Critical patent/JPH1077801A/en
Publication of JPH1077801A publication Critical patent/JPH1077801A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low aspect ratio cascade remarkably improving the performance of a steam and a gas turbine by reducing both a cascade loss of a secondary low loss area itself due to a vortex generated by the secondary flow of a blade tip part in a three dimensional blade profile and a mutually interfering additional cascade loss incurring through movement of the secondary flow loss area simultaneously. SOLUTION: The front edge side of a three dimensional blade profile 02 is inclined at a bow angle θ+ being an angle at which the tangential line of a blade back 03 is inclined rather to the blade back side than the normal direction N of a blade end wall and a positive bow angle θ+ at which the tangential line of the blade back 03 of the rear edge side is inclined to the blade belly 04 side and forms a curve wherein a bow angle is monotonously and smoothly changed from a front edge toward a rear edge. This constitution suppresses movement in the direction of a blade height of a secondary flow loss area at a blade front edge part, reduces incurring of an additional cascade loss, suppresses development of a vortex at a blade rear edge part, reduces the strength of a secondary flow loss, and reduces incurring of a cascade loss due to a loss area itself.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気タービン及び
ガスタービン等に利用され、翼列を構成する3次元翼型
の翼端部近傍で発生する、2次流れ損失域自体による損
失、および2次流れ損失域が相互に干渉することによっ
て発生する付加的な損失をそれぞれ低減し、性能を大幅
に向上できる低アスペクト比翼列に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a loss caused by a secondary flow loss region itself, which is used in a steam turbine, a gas turbine, or the like, and is generated near a tip of a three-dimensional airfoil constituting a cascade. The present invention relates to a low-aspect-ratio cascade in which the additional losses caused by the interference of the secondary flow loss areas can be reduced, and the performance can be greatly improved.

【0002】[0002]

【従来の技術】翼列を形成する3次元翼型の翼根、若し
くは翼端近傍の翼端部に発生する、2次流れにより発生
した渦が発達して形成される損失域自体で生じる損失、
および両翼端部に発生した損失域がそれぞれ翼高さ方向
に移動し、相互干渉することによって付加的に生じる損
失によって、大きな翼列損失が発生する低アスペクト比
翼列においては、損失域自体で生じる翼列損失を低減す
るとともに、付加的な損失で生じる翼列損失の両方を低
減することが性能向上重要である。
2. Description of the Related Art A three-dimensional airfoil root forming a cascade, or a loss generated in a loss region itself formed by the development of a vortex generated by a secondary flow generated at a blade tip near a blade tip. ,
In the low aspect ratio cascade where a large cascade loss occurs due to the additional loss caused by the loss area generated at the tip of both wings moving in the blade height direction and interfering with each other, it occurs in the loss area itself It is important to improve both performance to reduce cascade losses and to reduce both cascade losses caused by additional losses.

【0003】すなわち、(翼高さ)2 と翼面積との比が
小さくされた低アスペクト比の3次元翼型を、回転する
ディスクのまわりに等ピッチで周設して、動翼を形成
し、若しくは外輪と内輪との間に等ピッチで周設して、
静翼を形成する低アスペクト比翼列、例えば、動翼を形
成する低アスペクト比翼列では、3次元翼型の翼背面
と、3次元翼型の翼根部を植設するディスクおよびその
翼端が対向して設けられる作動流体の通路壁(以下、デ
ィスクおよび通路壁を併せて翼端壁という。)とのなす
コーナ部には、2次流れによって渦が形成され、翼端壁
によって発生した損失が集中する損失域が形成され、こ
の損失域自体によって翼列損失が発生する。
[0003] That is, a three-dimensional airfoil having a low aspect ratio, in which the ratio of (wing height) 2 to the blade area is reduced, is provided around the rotating disk at equal pitches to form a moving blade. Or between the outer and inner rings at equal pitch,
In a low aspect ratio cascade forming a stator vane, for example, a low aspect ratio cascade forming a moving blade, a three-dimensional airfoil blade back face, a disk on which a three-dimensional airfoil blade root is to be implanted, and its blade tip face each other. A vortex is formed by a secondary flow in a corner formed by a working fluid passage wall (hereinafter, the disk and the passage wall are collectively referred to as a wing tip wall), and a loss generated by the wing tip wall is formed. A concentrated loss region is formed, and the loss region itself generates a cascade loss.

【0004】また、3次元翼型の翼背面の高さ方向を、
翼端壁の法線方向と同一にした低アスペクト比翼列(以
下、平行翼列という。)等では、両側の翼端壁でそれぞ
れ発生した損失域が翼高さ方向に移動して互に干渉する
ことにより、付加的に生じる損失によって、翼高さ方向
中央部に大きな翼列損失が発生する。従って、これらの
翼列損失の両方を効果的に低減することが、低アスペク
ト比翼列の性能向上には必要となる。
Further, the height direction of the back surface of the three-dimensional airfoil is
In low-aspect-ratio cascades (hereinafter referred to as parallel cascades) that are the same as the normal direction of the blade tip wall, the loss regions generated on both blade tip walls move in the blade height direction and interfere with each other. By doing so, a large cascade loss occurs at the center in the blade height direction due to the additional loss. Therefore, it is necessary to effectively reduce both of these cascade losses to improve the performance of a low aspect ratio cascade.

【0005】このため、従来の低アスペクト比翼列にお
いては、2次元翼型を翼端壁の法線方向に対して、周方
向に傾斜させて順次高さ方向に積み上げ、翼面が高さ方
向に、凹面若しくは凸面をなして、高さ方向および軸方
向に滑らかに変化する形状の3次元翼型にし、周設して
これらの翼列損失を低減することが行われている。
For this reason, in a conventional low aspect ratio cascade, two-dimensional airfoils are piled up in the height direction in such a manner that they are inclined in the circumferential direction with respect to the normal direction of the blade tip wall and are sequentially stacked in the height direction. In addition, a three-dimensional airfoil having a concave or convex surface and having a shape that smoothly changes in the height direction and the axial direction is provided, and the blades are arranged around the airfoil to reduce the cascade loss.

【0006】すなわち、その1例である図3,図4に示
すように、翼端壁05,05の間に設けられる3次元翼
型02は、翼端壁05の法線方向Nに対して、翼端部に
おける翼背面03に高さ方向に引いた接線の方向が、翼
背面03側から翼腹面04側に傾斜した正のバウ角θ+
にされて、低アスペクト比翼列01を形成することが行
われている。
That is, as shown in FIGS. 3 and 4, which are one example, the three-dimensional airfoil 02 provided between the wing tip walls 05, 05 The direction of the tangent drawn in the height direction to the wing back surface 03 at the wing tip portion is such that the positive bow angle θ + inclined from the wing back surface 03 side to the wing abdominal surface 04 side
The formation of the low aspect ratio cascade 01 has been carried out.

【0007】なお、このような正のバウ角θ+ にした低
アスペクト比翼列01を以下、順バウ翼列011と称す
ることとする。
The low aspect ratio cascade 01 having such a positive bow angle θ + is hereinafter referred to as a forward bow cascade 011.

【0008】このような順バウ翼列011では、翼端壁
05と翼背面03で形成されるコーナ形状が鈍角とな
り、強い渦の形成が抑制されて、2次流れによる損失域
自体での損失を小さくすることができる。
In such a forward bow cascade 011, the corner formed by the wing tip wall 05 and the wing back surface 03 has an obtuse angle, the formation of a strong vortex is suppressed, and the loss in the loss region itself due to the secondary flow Can be reduced.

【0009】一方、低アスペクト比翼列01において
は、図6,図7に示すように、翼端壁05の法線方向に
対して、翼端部における翼背面03に高さ方向に引いた
接線の方向が、翼腹面04側から翼背面03側に傾斜し
た負のバウ角θ- にされて、3次元翼型02を形成する
ことも行われている。
On the other hand, in the low aspect ratio cascade 01, as shown in FIGS. 6 and 7, a tangent drawn in the height direction to the blade back surface 03 at the blade tip portion with respect to the normal direction of the blade tip wall 05. Is formed into a negative bow angle θ inclined from the wing abdominal surface 04 side to the wing back surface 03 side to form a three-dimensional airfoil 02.

【0010】このような負のバウ角θ- にした低アスペ
クト比翼列01を以下、逆バウ翼列012と称すること
とする。
[0010] Such negative bow angle theta - the low aspect wing column 01 was hereinafter be referred to as an inverse bow cascade 012.

【0011】図6,図7に示す逆バウ翼列012におい
ては、前述したように、翼端壁05付近で翼端壁05の
法線方向Nに対して、翼端部における翼背面03の傾斜
が翼腹面04側から翼背面03側に傾斜しており、翼端
壁05と翼背面03で形成されるコーナ形状は鋭角とな
っているため、この形状によって、コーナ部に2次流れ
によって形成された損失域は、翼高さ中央方向へ移動し
にくくなる。従って、逆バウ翼列012では、両翼端壁
05,05からの2次流れ損失域同士が干渉して、大き
な翼列損失を発生させるような低アスペクト比翼列01
に用いられた場合、渦、すなわち2次流れ損失域が翼高
さ中央方向へ移動して干渉するのを防ぎ低減することが
でき、干渉による付加的な損失の増加を抑える効果があ
る。
In the reverse bow cascade 012 shown in FIGS. 6 and 7, as described above, the vicinity of the wing tip wall 05 with respect to the normal direction N of the wing tip wall 05, The inclination is inclined from the wing abdominal surface 04 side to the wing back surface 03 side, and the corner shape formed by the wing tip wall 05 and the wing back surface 03 is an acute angle. The formed loss region is less likely to move toward the blade height center. Therefore, in the reverse bow cascade 012, the low aspect ratio cascade 01 in which the secondary flow loss areas from both the blade end walls 05, 05 interfere with each other to generate a large cascade loss.
In this case, the vortex, that is, the secondary flow loss area, can be prevented from moving toward the center of the blade height and interfered with the vortex, thereby reducing the additional loss due to the interference.

【0012】図4,図7に示すように、3次元翼型02
の翼高さ方向の形状は、軸方向に同一であり、設定され
るバウ角に正のバウ角θ+ 、負のバウ角θ- の違いはあ
るものの、軸方向には、バウ角θ+ ,θ- が一定にされ
た従来の順バウ翼列011及び逆バウ翼列012では、
上述した効果により、バウ角θ+ ,θ- を設けない平行
翼列の翼列損失に比較して、図2に示すような翼列損失
となる。
As shown in FIGS. 4 and 7, a three-dimensional airfoil 02
The wings in the height direction shape is the same in the axial direction, a positive bow angle theta + the bow angle is set, a negative bow angle theta - although the difference is, in the axial direction, the bow angle theta + , Θ - are fixed, the conventional forward bow cascade 011 and reverse bow cascade 012,
Due to the above-described effects, the cascade loss shown in FIG. 2 is obtained as compared with the cascade loss of the parallel cascade in which the bow angles θ + and θ are not provided.

【0013】すなわち、順バウ翼列011では、前述し
たようにコーナ形状が鈍角となり、強い渦の形成が抑制
されて、2次流れによる損失域自体による損失が小さく
なる反面、周設された隣接する3次元翼型の間の翼間流
路には、図5に示すような、隣接する3次元翼型02の
翼背面03から、当該3次元翼型02の翼腹面04に向
けて静圧が上昇する圧力場が形成され、この圧力場によ
って、翼背面03では翼端部に向けて静圧が高くなる圧
力勾配が発生する。これによって、順バウ翼列011で
は強い渦の形成が抑制されて、その強さが小さくはなっ
ているものの、両翼端壁05,05付近の2次流れによ
る損失域が翼高さ中央方向へ移動し易くなり、互いに干
渉して、付加的な損失が大きくなり、翼高さ中央部で
は、図2に示すように、平行翼列013の翼列損失より
も大きな翼列損失を発生させることとなる。
That is, in the forward bow cascade 011, as described above, the corner shape becomes obtuse and the formation of a strong vortex is suppressed, and the loss due to the loss region itself due to the secondary flow is reduced. In the inter-blade flow path between the three-dimensional airfoils, static pressure is applied from the blade back surface 03 of the adjacent three-dimensional airfoil 02 toward the blade abdominal surface 04 of the three-dimensional airfoil 02 as shown in FIG. Is formed, and this pressure field generates a pressure gradient at the blade back surface 03 where the static pressure increases toward the blade tip. As a result, in the forward bow cascade 011, the formation of strong vortices is suppressed, and the strength of the vortices is reduced. However, the loss region due to the secondary flow near the both wing end walls 05, 05 moves toward the center of the wing height. It becomes easier to move, interferes with each other, and causes an additional loss. At the center of the blade height, as shown in FIG. 2, a blade cascade loss larger than that of the parallel cascade 013 is generated. Becomes

【0014】一方逆バウ翼列012では、前述したよう
に、翼端壁05と翼背面03とのなす鋭角コーナ形状の
効果によって、両翼端壁05付近からの渦が、翼高さ中
央方向、移動するのを低減し、この移動により生じる2
次流れ損失域同士の干渉を低減し、干渉によって増加す
る、翼高さ中央付近に生じる付加的な翼列損失を、図2
に示すように平行翼列013の場合よりも低減する効果
をもつが、2次流れによって生じる、損失域自体で生じ
る損失そのものを低減する効果はもたない。
On the other hand, in the reverse bow cascade 012, as described above, the vortex from the vicinity of both the wing end walls 05 is caused by the effect of the acute corner formed by the wing end wall 05 and the wing back surface 03, so that the wing height direction, To reduce the movement,
The additional cascade loss occurring near the center of the blade height, which reduces the interference between the secondary flow loss regions and increases due to the interference, is shown in FIG.
As shown in (1), there is an effect of reducing the loss as compared with the case of the parallel cascade 013, but there is no effect of reducing the loss itself caused in the loss region itself caused by the secondary flow.

【0015】従って、従来の順バウ翼列011、逆バウ
翼列012のように、翼前縁から翼後縁までの軸方向に
は、バウ角θ+ ,θ- が一定にされた低アスペクト比翼
列01では、2次流れ損失域自体により損失を低減し、
かつ2次流れ損失域の相互の干渉による付加的な損失の
増加を同時に防ぐことは困難であり、このために、低ア
スペクト比翼列01の大幅な性能向上は、これまでなさ
れていないのが現状である。
Therefore, like the conventional forward bow cascade 011 and reverse bow cascade 012, a low aspect ratio in which the bow angles θ + and θ are constant in the axial direction from the leading edge to the trailing edge of the blade. In the specific cascade 01, the loss is reduced by the secondary flow loss region itself,
At the same time, it is difficult to simultaneously prevent an increase in additional loss due to mutual interference in the secondary flow loss region. For this reason, the performance of the low aspect ratio cascade 01 has not been significantly improved so far. It is.

【0016】[0016]

【発明が解決しようとする課題】本発明は、上述した現
状に鑑み、3次元翼型の翼端部で生じる2次流れ損失域
自体による損失と、3次元翼型の両翼端部で生じる2次
流れ損失域が、それぞれ移動して、相互に干渉すること
によって発生する付加的な損失との両者を低減し、大幅
な性能向上を図ることができる、低アスペクト比翼列を
提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above-mentioned situation, the present invention has been developed in consideration of the loss caused by the secondary flow loss region itself at the tip of a three-dimensional airfoil and the loss at the two ends of a three-dimensional airfoil at both ends. It is an object of the present invention to provide a low aspect ratio cascade that can reduce both an additional loss caused by the following flow loss areas moving and interfering with each other, thereby achieving a significant performance improvement. And

【0017】[0017]

【課題を解決するための手段】このため、本発明の低ア
スペクト比翼列は、次の手段とした。翼高さ方向の厚み
を小さくした2次元翼型を、翼端壁の法線方向に対し
て、周方向に傾斜させて順次積み上げ、翼面の高さ方向
に、凹面若しくは凸面をなして、高さ方向および軸方向
に滑らかに変化させて形成された3次元翼型が、(1)
翼前縁部では、翼端壁の法線方向に対して、翼背面側翼
端部高さ方向の接線が、翼腹面側から翼背面側に傾斜す
る負のバウ角にされ、翼後縁部では、翼端壁の接線方向
に対して、翼背面側翼端部高さ方向の接線が、翼背面側
から翼腹面側に傾斜する正のバウ角にされ、(2)翼前
縁から翼後縁に向う軸方向に、単調、且つ滑らかに変化
させた曲面が形成され、(3)翼前縁付近では、翼背面
の翼高さ方向の形状が凹面にされ、翼後縁付近では、翼
背面の翼高さ方向の形状が凸面にされて、翼端壁の間
に、等ピッチで配置されて、周方向に設置された低アス
ペクト比翼列を設けた。
For this reason, the low aspect ratio cascade of the present invention has the following means. Two-dimensional airfoils with reduced thickness in the wing height direction are piled up sequentially inclining in the circumferential direction with respect to the normal direction of the wing tip wall, forming a concave or convex surface in the height direction of the wing surface, The three-dimensional airfoil formed by changing smoothly in the height direction and the axial direction is (1)
At the leading edge of the wing, the tangent in the height direction of the wing tip on the back side of the wing with respect to the normal direction of the wing tip wall is set to a negative bow angle inclined from the flank side to the back side of the wing. Then, the tangent in the wing tip height direction with respect to the tangential direction of the wing tip wall is set to a positive bow angle inclined from the wing back side to the wing abdomen side. In the axial direction toward the edge, a curved surface that is monotonously and smoothly changed is formed. (3) Near the leading edge of the blade, the shape in the blade height direction on the back surface of the blade is concave, and near the trailing edge, the blade is A low aspect ratio cascade provided in the circumferential direction was provided between the blade end walls with a convex shape in the blade height direction on the back side and arranged at equal pitches.

【0018】なお、2次元翼型は、高さ方向に同一形状
のものを、順次積み上げたものに限定されるものではな
い。また、本発明の低アスペクト比翼列は、タービン動
翼および静翼にも適用できるものである。
The two-dimensional airfoil is not limited to one having the same shape in the height direction and sequentially stacked. The low aspect ratio cascade of the present invention is also applicable to turbine blades and stationary blades.

【0019】本発明の低アスペクト比翼列では、上述
(1)〜(3)の手段にした3次元翼型を、翼端壁の間
に配設して構成するようにしたので、翼端壁と翼背面と
がなすコーナー部には、隣接する3次元翼型の翼背面と
当該3次元翼型の翼腹面とで形成される翼間流路には、
かなり上流側から2次流れによる渦が存在し、下流方向
へ流れるにつれ、この渦は大きく発達しながら翼高さ中
央方向へ移動するが、バウ角が負にされた翼前縁部にし
たことにより、低アスペクト比翼列の翼前縁部の領域で
は、翼背面と翼端壁とがなす鋭角的コーナ形状を利用し
て、まだあまり大きく発達していない2次流れ損失域を
このコーナ部にくい止め、翼高さ方向へ移動するのを低
減して、より下流側で互いに干渉して、付加的な損失が
発生するのを防ぎ、翼高さ方向中央部の翼列損失を低減
させることができる。
In the low aspect ratio cascade according to the present invention, the three-dimensional airfoil according to the above-mentioned means (1) to (3) is arranged between the blade tip walls, so that the blade tip wall is formed. In the corner formed by the blade and the back of the blade, the inter-blade flow path formed by the back of the blade of the adjacent three-dimensional blade and the blade abdominal surface of the three-dimensional blade,
There is a vortex due to secondary flow from the upstream side, and as it flows downstream, this vortex moves toward the center of the wing height while developing greatly, but it has been set at the leading edge of the wing with a negative bow angle Therefore, in the area of the leading edge of the blade row of the low aspect ratio cascade, the secondary flow loss area, which has not yet developed so much, is used in this corner part by utilizing the sharp corner shape formed by the blade back face and the tip wall. It is possible to reduce the cascade and the movement in the height direction of the blade, to prevent interference with each other on the downstream side, thereby generating additional loss, and to reduce the cascade loss in the center in the height direction of the blade. it can.

【0020】また、翼後縁部の領域では、バウ角が正に
された翼後縁部にしたので、翼背面と翼端壁とのコーナ
部に形成される鈍角的形状を利用して、強い渦の形成を
抑制して、2次流れ損失域自体が発達するのを防ぎ、損
失域自体による翼列損失を低減させることができる。
In the region of the wing trailing edge, the wing trailing edge has a positive bow angle, so that the obtuse angle formed at the corner between the wing rear surface and the wing tip wall can be used. The formation of a strong vortex can be suppressed to prevent the secondary flow loss region itself from developing, and the cascade loss due to the loss region itself can be reduced.

【0021】このように、本発明の低アスペクト比翼列
では、2次流れ損失域自体で発生する損失と、2次流れ
損失域の相互の干渉によって発生する付加的な損失の両
者を、同時に低減することができるようになり、翼列損
失を少くして、性能を大幅に向上させることができる。
Thus, in the low aspect ratio cascade of the present invention, both the loss generated in the secondary flow loss region itself and the additional loss generated by mutual interference in the secondary flow loss region are simultaneously reduced. Cascade loss can be reduced, and performance can be greatly improved.

【0022】[0022]

【発明の実施の形態】以下、本発明の低アスペクト比翼
列の実施の一形態を、図面にもとづき説明する。図1は
本発明の実施の第1形態としての低アスペクト比翼列1
を構成する、3次元翼型に設ける軸方向のバウ角分布を
示したものである。図に示すように、バウ角が翼前縁側
半分では負のバウ角θ- 、翼後縁側半分では正のバウ角
θ+ となるような軸方向分布を翼前縁から翼後縁に向け
て設けることにより、図2に示すように、翼列損失の低
減を図ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a low aspect ratio cascade according to the present invention will be described below with reference to the drawings. FIG. 1 shows a low aspect ratio cascade 1 as a first embodiment of the present invention.
FIG. 3 shows an axial bow angle distribution provided on a three-dimensional airfoil. As shown in the figure, the axial distribution is such that the bow angle is a negative bow angle θ − in the wing leading edge half and a positive bow angle θ + in the trailing edge half, from the wing leading edge to the wing trailing edge. By providing the cascade, as shown in FIG. 2, the cascade loss can be reduced.

【0023】すなわち、低アスペクト比翼列を構成する
3次元翼型を、翼高さ方向の厚みが微小な2次元翼型
を、翼端壁の法線方向に対して周方向に傾斜させて積上
げ、翼背面および翼腹面の高さ方向に、凹面若しくは凸
面をなして、翼高さ方向および翼軸方向ともに滑らかに
変化させることにより形成した。また、翼前縁では、翼
端壁の法線方向に対して、翼背面側の翼端部における翼
高さ方向の接線方向が、図6,図7で示すように、翼腹
面04から翼背面03に傾斜するようにした、負のバウ
角θ- の最大値にされ、翼後縁では、翼端壁の接線方向
に対して、翼背面側の翼端部における翼高さ方向の接線
方向が、図3,図4で示すように、翼背面04から翼腹
面04に傾斜するようにした、正のバウ角θ + の最大値
にされている。さらに、翼前縁から翼後縁に向う軸方向
には、翼前縁の最大の負のバウ角θ- から翼後縁の最大
の正のバウθ+ に、単調で、しかも滑らかにバウ角が変
化する曲面にされている。従って、翼背面04の高さ方
向の形状が、翼前縁部では凸面、翼後縁部では凹面に形
成されるようになる。
That is, a low aspect ratio cascade is formed.
A three-dimensional airfoil is a two-dimensional airfoil with a small thickness in the height direction
To the wing tip wall in the circumferential direction with respect to the normal direction.
Concave or convex in the height direction of the
Surface, smooth in both blade height and blade axis directions
It was formed by changing. Also, at the leading edge of the wing,
The wing at the wing tip on the back side of the wing with respect to the normal direction of the end wall
As shown in FIGS. 6 and 7, the tangential direction in the height direction is
Negative bow, inclined from the plane 04 to the wing back 03
Angle θ-At the wing trailing edge, the tangential direction of the wing tip wall
Tangent to the blade height direction at the blade tip on the back side of the blade
As shown in FIG. 3 and FIG. 4, the direction is
Positive bow angle θ inclined to surface 04 +Maximum value of
Has been. Furthermore, the axial direction from the leading edge to the trailing edge
Has the largest negative bow angle θ at the leading edge of the wing.-From the wing trailing edge to the maximum
Positive bow θ of+The bow angle changes monotonically and smoothly
It is a curved surface. Therefore, the height of the wing back surface 04
Shape is convex at the leading edge of the wing and concave at the trailing edge of the wing.
Will be implemented.

【0024】このような3次元翼型を周設した、低アス
ペクト比翼列の翼端壁05と翼背面03とがなすコーナ
ー部には、隣接する3次元翼型の翼背面03と、当該3
次元翼型の翼腹面04とで形成される翼間流路には、か
なり上流側から2次流れによる渦が存在し、下流方向へ
流れるにつれ、この渦は大きく発達しながら翼高さ中央
方向へ移動し、翼端壁05によって発生した損失が集中
する、2次流れ損失域が翼高さ中央方向へ移動しようと
するが、翼前縁部のバウ角が負にされているので、翼前
縁部の領域では、翼背面03と翼端壁05とがなす鋭角
的コーナ形状によって、まだあまり大きく発達していな
い2次流れ損失域を、このコーナ部にくい止めて、翼高
さ方向への移動を低減して、より下流側で互いに干渉し
て、付加的な損失が発生するのを防止して、翼高さ方向
中央部の翼列損失を低減させることができる。
At the corner between the blade end wall 05 and the blade back surface 03 of the low aspect ratio cascade around which such a three-dimensional airfoil is provided, the adjacent three-dimensional blade-shaped airfoil back surface 03,
In the inter-blade channel formed by the three-dimensional airfoil abdominal surface 04, there is a vortex due to a secondary flow from a considerably upstream side. And the secondary flow loss region where the loss generated by the wing tip wall 05 concentrates moves toward the center of the wing height, but since the bow angle at the leading edge of the wing is negative, the wing In the area of the leading edge, the sharply formed corner formed by the wing rear surface 03 and the wing tip wall 05 prevents the secondary flow loss area, which has not yet greatly developed, from being hardly stopped at this corner, and toward the blade height direction. Of the blades can be prevented from interfering with each other on the downstream side, and additional losses can be prevented, and the cascade loss at the center in the blade height direction can be reduced.

【0025】また、翼後縁部では、バウ角が正にされて
いるので、翼背面03と翼端壁05とのコーナ部に形成
される鈍角的形状により、強い渦の形成が抑制され、2
次流れ損失域自体が発達するのを防ぎ、2次流れ損失域
自体による翼列損失を低減させることができる。
Since the bow angle is made positive at the trailing edge of the blade, the formation of a strong vortex is suppressed by the obtuse angle formed at the corner between the blade back surface 03 and the blade end wall 05. 2
The development of the secondary flow loss region itself can be prevented, and the cascade loss due to the secondary flow loss region itself can be reduced.

【0026】このように、本実施の形態の低アスペクト
比翼列では、2次流れ損失域自体による損失と、2次流
れ損失域の相互の干渉によって発生する付加的な損失の
両者を同時に低減することができ、翼列損失を少くし
て、性能を大幅に向上させることができる。
As described above, in the low aspect ratio cascade of the present embodiment, both the loss caused by the secondary flow loss region itself and the additional loss generated by mutual interference between the secondary flow loss regions are simultaneously reduced. The cascade loss can be reduced, and the performance can be greatly improved.

【0027】[0027]

【発明の効果】以上、述べたように、本発明の低アスペ
クト比翼列によれば、特許請求の範囲に示す構成によ
り、2次流れ損失域自体で発生する損失と、翼端壁から
翼高さ方向に移動する2次流れ損失域の相互の干渉によ
って発生する、付加的な損失の両者を低減して、大幅な
性能向上を図ることができる。
As described above, according to the low aspect ratio cascade of the present invention, the loss occurring in the secondary flow loss region itself and the blade height from the blade tip wall can be achieved by the structure shown in the claims. Both additional losses, which are caused by mutual interference of the secondary flow loss regions moving in the vertical direction, can be reduced, and a significant performance improvement can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態を示すバウ角の軸方向
分布の概略図,
FIG. 1 is a schematic diagram of an axial distribution of a bow angle showing a first embodiment of the present invention,

【図2】図1に示す実施の形態における翼高さ方向の翼
列損失分布と、従来の逆バウ翼列、順バウ翼列、および
平行翼列における翼高さ方向の翼列損失分布を示す図,
FIG. 2 shows the cascade loss distribution in the blade height direction in the embodiment shown in FIG. 1, and the blade cascade loss distribution in the blade height direction in the conventional reverse bow cascade, forward bow cascade, and parallel cascade. Figure,

【図3】従来の順バウ翼列の立体図,FIG. 3 is a three-dimensional view of a conventional forward bow cascade,

【図4】図3に示す順バウ翼列の翼高さ方向形状図,FIG. 4 is a wing height profile of the forward bow cascade shown in FIG. 3,

【図5】図3に示す順バウ翼列の翼間流路断面の静圧分
布模式図,
FIG. 5 is a schematic diagram of a static pressure distribution in a cross section of a flow path between blades of a forward bow cascade shown in FIG.

【図6】従来の逆バウ翼列の立体図,FIG. 6 is a three-dimensional view of a conventional reverse bow cascade,

【図7】図6に示す逆バウ翼列の翼高さ方向形状図であ
る。
FIG. 7 is a blade height direction shape diagram of the inverted bow cascade shown in FIG. 6;

【符号の説明】[Explanation of symbols]

1,01 低アスペクト比翼列 011 順バウ翼列 012 逆バウ翼列 013 平行翼列 02 3次元翼型 03 翼背面 04 翼腹面 05 翼端壁 θ+ 正のバウ角 θ- 負のバウ角 N 翼端壁の法線1,01 Low aspect ratio cascade 011 Forward bow cascade 012 Reverse bow cascade 013 Parallel cascade 02 Three-dimensional airfoil 03 Back of wing 04 Wing abdominal surface 05 Wing tip wall θ + positive bow angle θ - negative bow angle N wing End wall normal

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年12月16日[Submission date] December 16, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Correction target item name] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】[0002]

【従来の技術】翼列を形成する3次元翼型の翼根、若し
くは翼端近傍の翼端部に発生する、2次流れにより発生
した渦が発達して形成される損失域自体で生じる損失、
および両翼端部に発生した損失域がそれぞれ翼高さ方向
に移動し、相互干渉することによって付加的に生じる損
失によって、大きな翼列損失が発生する低アスペクト比
翼列においては、損失域自体で生じる翼列損失を低減す
るとともに、付加的な損失で生じる翼列損失の両方を低
減することが性能向上重要である。
2. Description of the Related Art A three-dimensional airfoil root forming a cascade, or a loss generated in a loss region itself formed by the development of a vortex generated by a secondary flow generated at a blade tip near a blade tip. ,
In the low aspect ratio cascade where a large cascade loss occurs due to the additional loss caused by the loss area generated at the tip of both wings moving in the blade height direction and interfering with each other, it occurs in the loss area itself while reducing the blade row loss, it is important performance improvements reduce both blade cascade loss caused by additional losses.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】図6,図7に示す逆バウ翼列012におい
ては、前述したように、翼端壁05付近で翼端壁05の
法線方向Nに対して、翼端部における翼背面03の傾斜
が翼腹面04側から翼背面03側に傾斜しており、翼端
壁05と翼背面03で形成されるコーナ形状は鋭角とな
っているため、この形状によって、コーナ部に2次流れ
によって形成された損失域は、翼高さ中央方向へ移動し
にくくなる。従って、逆バウ翼列012では、両翼端壁
05,05からの2次流れ損失域同士が干渉して、大き
な翼列損失を発生させるような低アスペクト比翼列01
に用いられた場合、渦、すなわち2次流れ損失域が翼高
さ中央方向へ移動して干渉するのを抑制することがで
き、干渉による付加的な損失の増加を抑える効果があ
る。
In the reverse bow cascade 012 shown in FIGS. 6 and 7, as described above, the vicinity of the wing tip wall 05 with respect to the normal direction N of the wing tip wall 05, The inclination is inclined from the wing abdominal surface 04 side to the wing back surface 03 side, and the corner shape formed by the wing tip wall 05 and the wing back surface 03 is an acute angle. The formed loss region is less likely to move toward the blade height center. Therefore, in the reverse bow cascade 012, the low aspect ratio cascade 01 in which the secondary flow loss areas from both the blade end walls 05, 05 interfere with each other to generate a large cascade loss.
When used, the vortex, i.e. the secondary flow loss region is able to suppress the interference by moving the blade height the center direction, the effect of suppressing the increase of the additional losses due to interference.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】一方逆バウ翼列012では、前述したよう
に、翼端壁05と翼背面03とのなす鋭角コーナ形状の
効果によって、両翼端壁05付近からの渦が、翼高さ中
央方向移動するのを抑制し、この移動により生じる2
次流れ損失域同士の干渉を低減し、干渉によって増加す
る、翼高さ中央付近に生じる付加的な翼列損失を、図2
に示すように平行翼列013の場合よりも低減する効果
をもつが、2次流れによって生じる、損失域自体で生じ
る損失そのものを低減する効果はもたない。
[0014] On the other hand the reverse bow blade row 012, as described above, the effect of acute corners shape formed by the tip wall 05 and the blade suction surface 03, vortices from both wings end wall 05 near the wing in the height center direction The movement is suppressed, and the movement
The additional cascade loss occurring near the center of the blade height, which reduces the interference between the secondary flow loss regions and increases due to the interference, is shown in FIG.
As shown in (1), there is an effect of reducing the loss as compared with the case of the parallel cascade 013, but there is no effect of reducing the loss itself caused in the loss region itself caused by the secondary flow.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】従って、従来の順バウ翼列011、逆バウ
翼列012のように、翼前縁から翼後縁までの軸方向に
は、バウ角θ+ ,θ- が一定にされた低アスペクト比翼
列01では、2次流れ損失域自体によ損失を低減し、
かつ2次流れ損失域の相互の干渉による付加的な損失の
増加を同時に防ぐことは困難であり、このために、低ア
スペクト比翼列01の大幅な性能向上は、これまでなさ
れていないのが現状である。
Therefore, like the conventional forward bow cascade 011 and reverse bow cascade 012, a low aspect ratio in which the bow angles θ + and θ are constant in the axial direction from the leading edge to the trailing edge of the blade. in the fly front row 01, to reduce by that loss to the secondary flow loss region itself,
At the same time, it is difficult to simultaneously prevent an increase in additional loss due to mutual interference in the secondary flow loss region. For this reason, the performance of the low aspect ratio cascade 01 has not been significantly improved so far. It is.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】本発明の低アスペクト比翼列では、上述
(1)〜(3)の手段にした3次元翼型を、翼端壁の間
に配設して構成するようにしたので、翼端壁と翼背面と
がなすコーナー部には、隣接する3次元翼型の翼背面と
当該3次元翼型の翼腹面とで形成される翼間流路には、
かなり上流側から2次流れによる渦が存在し、下流方向
へ流れるにつれ、この渦は大きく発達しながら翼高さ中
央方向へ移動するが、バウ角が負にされた翼前縁部にし
たことにより、低アスペクト比翼列の翼前縁部の領域で
は、翼背面と翼端壁とがなす鋭角的コーナ形状を利用し
て、まだあまり大きく発達していない2次流れ損失域を
このコーナ部にくい止め、翼高さ方向へ移動するのを
して、より下流側で互いに干渉して、付加的な損失が
発生するのを防ぎ、翼高さ方向中央部の翼列損失を低減
させることができる。
In the low aspect ratio cascade according to the present invention, the three-dimensional airfoil according to the above-mentioned means (1) to (3) is arranged between the blade tip walls, so that the blade tip wall is formed. In the corner formed by the blade and the back of the blade, the inter-blade flow path formed by the back of the blade of the adjacent three-dimensional blade and the blade abdominal surface of the three-dimensional blade,
There is a vortex due to secondary flow from the upstream side, and as it flows downstream, this vortex moves toward the center of the wing height while developing greatly, but it has been set at the leading edge of the wing with a negative bow angle Therefore, in the area of the leading edge of the blade of the low aspect ratio cascade, the secondary flow loss area, which has not yet developed much, is used in this corner part by utilizing the acute corner shape formed by the blade back face and the tip wall. stemmed, suppress the movement of the blade height direction
And braking and more in the downstream side interfere with each other to prevent additional loss occurs, it is possible to reduce the blade cascade loss of the blade height direction central portion.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】このような3次元翼型を周設した、低アス
ペクト比翼列の翼間流路において、翼端壁05と翼背面
03とがなすコーナー部には、かなり上流側から2次流
れによる渦が存在し、下流方向へ流れるにつれ、この渦
は大きく発達しながら翼高さ中央方向へ移動し、翼端壁
05によって発生した損失が集中する、2次流れ損失域
が翼高さ中央方向へ移動しようとするが、翼前縁部のバ
ウ角が負にされているので、翼前縁部の領域では、翼背
面03と翼端壁05とがなす鋭角的コーナ形状によっ
て、まだあまり大きく発達していない2次流れ損失域
を、このコーナ部にくい止めて、翼高さ方向への移動を
抑制して、より下流側で互いに干渉して、付加的な損失
が発生するのを防止して、翼高さ方向中央部の翼列損失
を低減させることができる。
[0024] was provided around such a three-dimensional airfoil, the inter-blade passage low aspect wing column, the corner portion formed by the tip wall 05 and the blade suction surface 03, secondary flow from the upstream side Nari or As the vortex exists and flows downstream, the vortex moves toward the center of the wing height while developing greatly, and the loss caused by the wing tip wall 05 concentrates. Direction, but the bow angle at the leading edge of the wing is negative, so that in the region of the leading edge of the wing, the sharp angle formed by the wing back surface 03 and the wing tip wall 05 is still too small. The secondary flow loss area, which has not developed significantly, is stopped at this corner, and movement in the blade height direction is prevented.
It is possible to suppress the interference with each other on the downstream side to prevent the additional loss from occurring, thereby reducing the cascade loss at the center in the blade height direction.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸気タービン、若しくはガスタービンに
用いられ、2次元翼型を翼端壁の法線方向に対して、周
方向に傾斜させて順次積み上げ、翼面の高さ方向に、凹
面若しくは凸面をなして、高さ方向および軸方向に滑ら
かに変化する形状の3次元翼型にして周設された低アス
ペクト比翼列において、前記翼端壁の法線方向と前記3
次元翼型の翼背面の翼端部高さ方向の接線とで形成され
るバウ角が、翼前縁部では前記接線が前記3次元翼型の
翼腹面側から前記翼背面側に傾斜した負、翼後縁部では
前記接線が前記翼背面側から前記翼腹面側に傾斜した正
にされると共に、軸方向に単調、且つ滑らかに変化させ
た曲面に形成され、前記翼背面の翼高さ方向の形状が翼
前縁付近では凹面、翼後縁付近では凸面にされているこ
とを特徴とする低アスペクト比翼列。
1. A two-dimensional airfoil is used for a steam turbine or a gas turbine, and is successively piled up while being inclined in a circumferential direction with respect to a normal direction of a blade tip wall, and has a concave or convex shape in a height direction of a blade surface. In a low aspect ratio cascade provided in a three-dimensional airfoil shape having a convex shape and smoothly changing in a height direction and an axial direction, a normal direction of the blade tip wall and the 3
The bow angle formed by the tangent in the height direction of the wing tip of the back of the three-dimensional airfoil has a negative angle at the leading edge of the blade, in which the tangent is inclined from the abdominal surface of the three-dimensional airfoil toward the back of the blade. In the trailing edge of the blade, the tangent line is inclined from the rear side of the blade toward the front side of the blade, and is formed in a curved surface that is monotonically and smoothly changed in the axial direction. A low aspect ratio cascade characterized in that the shape of the direction is concave near the leading edge of the wing and convex near the trailing edge of the wing.
JP23408296A 1996-09-04 1996-09-04 Low aspect patio cascade Withdrawn JPH1077801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23408296A JPH1077801A (en) 1996-09-04 1996-09-04 Low aspect patio cascade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23408296A JPH1077801A (en) 1996-09-04 1996-09-04 Low aspect patio cascade

Publications (1)

Publication Number Publication Date
JPH1077801A true JPH1077801A (en) 1998-03-24

Family

ID=16965332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23408296A Withdrawn JPH1077801A (en) 1996-09-04 1996-09-04 Low aspect patio cascade

Country Status (1)

Country Link
JP (1) JPH1077801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064725A1 (en) 1998-06-12 1999-12-16 Ebara Corporation Turbine nozzle vane
JP2008169783A (en) * 2007-01-12 2008-07-24 Mitsubishi Heavy Ind Ltd Blade structure of gas turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064725A1 (en) 1998-06-12 1999-12-16 Ebara Corporation Turbine nozzle vane
US6491493B1 (en) 1998-06-12 2002-12-10 Ebara Corporation Turbine nozzle vane
JP2008169783A (en) * 2007-01-12 2008-07-24 Mitsubishi Heavy Ind Ltd Blade structure of gas turbine
US8317466B2 (en) 2007-01-12 2012-11-27 Mitsubishi Heavy Industries, Ltd. Blade structure of gas turbine

Similar Documents

Publication Publication Date Title
JP4640339B2 (en) Wall shape of axial flow machine and gas turbine engine
JP3621216B2 (en) Turbine nozzle
JP5059991B2 (en) Stator blade with narrow waist
JP3894970B2 (en) Gas turbine engine, method for improving air flow at blade tip, and combined body of case and blade
JP2008157247A (en) Turbine assembly of gas turbine engine and its manufacturing method
JP2008157250A (en) Gas turbine engine including multi-curved surface stator vane and method for assembling the same
JP5449087B2 (en) Wing
JP2008157246A (en) Gas turbine engine including inclined stator vane and method for assembling the same
US6638021B2 (en) Turbine blade airfoil, turbine blade and turbine blade cascade for axial-flow turbine
JP2001271602A (en) Gas turbine engine
JP3927886B2 (en) Axial flow compressor
US20020021968A1 (en) Stator blade and stator blade cascade for axial-flow compressor
JPH0544691A (en) Axial flow turbomachinery blade
US11572890B2 (en) Blade and axial flow impeller using same
JPH0681603A (en) Stationary blade structure of axial flow type turbo machine
JPH1077801A (en) Low aspect patio cascade
JP3397599B2 (en) Axial turbine blade group
CN209012127U (en) Blade and the axial wheel for using it
JP2000045703A (en) Axial flow turbine cascade
JPH09151704A (en) Axial flow rotating machine
JP2000204903A (en) Axial turbine
JP2000179303A (en) Axial-flow turbine nozzle and axial-flow turbine
JPH08135597A (en) Reduction of secondary flow in blade cascade/and blade profile therefor
EP3896291A1 (en) Blade and axial flow impeller using same
JP7232034B2 (en) Turbine blade and steam turbine having the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104