JPH1075542A - Motor for driving compressor - Google Patents

Motor for driving compressor

Info

Publication number
JPH1075542A
JPH1075542A JP26652496A JP26652496A JPH1075542A JP H1075542 A JPH1075542 A JP H1075542A JP 26652496 A JP26652496 A JP 26652496A JP 26652496 A JP26652496 A JP 26652496A JP H1075542 A JPH1075542 A JP H1075542A
Authority
JP
Japan
Prior art keywords
motor
core
stator
content
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26652496A
Other languages
Japanese (ja)
Inventor
Takatoshi Hara
孝俊 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Elec Co
Original Assignee
Aichi Elec Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Elec Co filed Critical Aichi Elec Co
Priority to JP26652496A priority Critical patent/JPH1075542A/en
Publication of JPH1075542A publication Critical patent/JPH1075542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce iron loss of a motor under conditions of high flux density by setting the thickness of silicon steel plate composing the stator core and the rotor core of a motor for driving a compressor comprising a stator and a rotor disposed oppositely through a predetermined gap at a specified dimension or below and setting the content of Si within a specified range. SOLUTION: The rotor core 2 and the stator core 9a of a motor are formed by laminating a large number of thin plates which are punched from one silicon steel plate in order to utilize the core material effectively. In this regard, a nonoriented electromagnetic steel plate of 0.35mm thick or less (e.g. 0.2mm) having content of Si in the range of 0.5-0.7wt.% is employed. This silicon steel plate can exhibit an appropriate hardness at the time of punching by combining the thickness and the content of Si appropriately and thereby the machinability is enhanced while suppressing abrasion of a punching die. Consequently, iron loss of a motor having high flux density can be decreased and power consumption of an airconditioner or the like can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機や空調機の圧縮
機駆動用電動機に関し、特に永久磁石回転子を備えた同
期電動機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor for driving a compressor of a refrigerator or an air conditioner, and more particularly to a synchronous motor having a permanent magnet rotor.

【0002】[0002]

【従来の技術】この種の電動機の一般的な構成を図3及
び図4にそれぞれ平面断面図及び正面断面図として示
す。固定子鉄心2及び回転子鉄心9は、珪素鋼板を所定
形状に打ち抜いて形成した薄板を多数積層して形成され
ており、各薄板に設けた打ち出し突起による凹凸部を積
層方向に隣接する薄板相互で嵌合させて固定する周知の
カシメクランプ手段6,11によって固定されて構成さ
れている。固定子鉄心2の内周部には多数の歯部3とこ
の各歯部間にスロット4がそれぞれ設けられており、こ
のスロットには絶縁15を介して巻線5が装着されて固
定子1が構成されている。
2. Description of the Related Art A general structure of a motor of this kind is shown in FIGS. 3 and 4 as a plan sectional view and a front sectional view, respectively. The stator core 2 and the rotor core 9 are formed by laminating a large number of thin plates formed by punching a silicon steel plate into a predetermined shape. And is fixed by well-known caulking clamp means 6, 11 which are fitted and fixed. A number of teeth 3 are provided in the inner peripheral portion of the stator core 2, and slots 4 are provided between the respective teeth. Is configured.

【0003】回転子鉄心9の内部に設けられた複数の孔
部には永久磁石10が嵌入されており、鉄心9の積層方
向両端部には鉄心9を貫通するカシメピン12によって
端板14が固定されて回転子8が構成されている。この
回転子8は鉄心9に嵌入された軸13によって支持され
て、固定子1の内周部との間に所定の空隙7を介して対
向配置させて電動機が構成されている。
[0003] A plurality of holes provided inside the rotor core 9 are fitted with permanent magnets 10, and end plates 14 are fixed to both ends of the core 9 in the stacking direction by caulking pins 12 penetrating the core 9. Thus, the rotor 8 is configured. The rotor 8 is supported by a shaft 13 fitted into an iron core 9, and is opposed to the inner peripheral portion of the stator 1 via a predetermined gap 7 to constitute an electric motor.

【0004】固定子鉄心2及び回転子鉄心9を構成する
珪素鋼板は、無方向性の電磁鋼板であり、板厚が0.2
mm,0.35mm,0.5mm,0.65mm等のも
のが存在するが、圧縮機駆動用電動機においては、廉価
で且つ積層工数のかからない板厚0.5mm、Si(珪
素)含有率が約0.25wt%(重量パーセント)のも
のが専ら使用されている。
[0004] The silicon steel sheet forming the stator core 2 and the rotor core 9 is a non-oriented electromagnetic steel sheet having a thickness of 0.2.
mm, 0.35 mm, 0.5 mm, 0.65 mm, etc., but in the motor for driving the compressor, the plate thickness is 0.5 mm and the Si (silicon) content is inexpensive and requires no laminating man-hour. 0.25 wt% (weight percent) is exclusively used.

【0005】永久磁石10としては、材質においては、
ストロンチウムフェライト等のフェライト系磁石材が主
流となっており、また平面断面形状においては、図3に
示す内径側と外径側を共に円弧で形成した略C字形状の
もの以外に、外径側を円弧形状にするとともに内径側を
直線状に形成した略蒲鉾形のものや、前述のC字形状の
ものを凹形状側を外径側へ向けて装着したもの等が使用
されている。また図3及び図4に示す永久磁石を回転子
鉄心の内部に装着するもの以外に、永久磁石を回転子鉄
心の外周部に装着して金属管等によって覆って飛散保護
を形成したもの等が存在する。
The material of the permanent magnet 10 is as follows:
Ferrite magnet materials such as strontium ferrite are predominant, and the cross-sectional shape of the ferrite magnet is substantially the same as that shown in FIG. Are generally arc-shaped and the inner side is formed in a straight line, or the above-mentioned C-shaped one is mounted with the concave side facing the outer side. In addition to the permanent magnets shown in FIGS. 3 and 4 which are mounted inside the rotor core, the permanent magnets are mounted on the outer periphery of the rotor core and covered with a metal tube or the like to provide protection against scattering. Exists.

【0006】[0006]

【発明が解決しようとする課題】上記電動機の永久磁石
は減磁耐力と磁束量の関係から適切な性能のものが選択
使用されるが、最大エネルギー積が約4.6MGOe
(メガガウスエルステッド)程度であるため、圧縮機駆
動用電動機において使用されるフェライト系磁石材は、
一般に残留磁束密度が0.4〜0.45T(テスラ)の
ものが適用される。一方Nd−Fe−B(ネオジウム−
鉄−ホウ素)等の希土類系磁石材の場合は、最大エネル
ギー積が30〜40MGOe程度であり、一般に残留磁
束密度1.2〜1.3Tのものが適用されるため、フェ
ライト系の約3倍の磁束量となる。
The permanent magnet of the above-mentioned motor is selected from those having an appropriate performance in view of the relationship between the demagnetization resistance and the amount of magnetic flux, but the maximum energy product is about 4.6 MGOe.
(Mega Gauss Oersted), ferrite magnet materials used in compressor drive motors are:
Generally, those having a residual magnetic flux density of 0.4 to 0.45 T (tesla) are applied. On the other hand, Nd-Fe-B (neodymium-
In the case of a rare earth magnet material such as (iron-boron), the maximum energy product is about 30 to 40 MGOe, and a material having a residual magnetic flux density of 1.2 to 1.3 T is generally applied. Of the magnetic flux.

【0007】従来、フェライト系磁石材を用いる場合
は、電動機の空隙磁束密度が低いために鉄損値はさほど
問題とはならなかったのであるが、上記希土類系磁石材
を用いる場合は、電動機が小型化される反面、空隙磁束
密度が高くなって単位重量当たりの鉄損が非常に大きな
ものとなってしまう欠点がある。この問題を改善するた
めに、鉄心材料である珪素鋼板のSi含有率を多くする
ことにより、電気抵抗が高くなって鉄損値を小さくする
ことができる。また鉄損のうち特に渦電流損について
は、板厚を例えば0.35mm等薄くすることにより減
少し得ることは周知である。
Conventionally, when a ferrite-based magnet material is used, the iron loss value has not been a problem because the air gap magnetic flux density of the motor is low. On the other hand, while the size is reduced, there is a disadvantage that the air gap magnetic flux density becomes high and the iron loss per unit weight becomes very large. In order to improve this problem, by increasing the Si content of the silicon steel plate as the iron core material, the electrical resistance increases and the iron loss value can be reduced. It is well known that eddy current loss in particular among iron losses can be reduced by reducing the plate thickness, for example, to 0.35 mm.

【0008】ところが一般に市販されている板厚0.3
5mm、Si含有率2wt%の高グレードの珪素鋼板の
場合、Si含有率が高いために材質が硬くなって打ち抜
き時の加工性及び連続打ち抜き性が悪くなり、打ち抜き
型の摩耗が大きくなって金型研磨の回数が増して製造工
数を増加させるとともに、金型寿命も短いものとなって
しまう。また金型摩耗により打ち抜きバリも大きくなっ
て寸法精度が悪くなり、さらにこのバリに伴う渦電流損
があらたに生じるようになる。またSi含有率が高くな
ると磁束密度が低下するために、磁石による磁束密度が
高い場合には固定子磁束の漏れが増加し、これを補償す
るために電動機のアンペアターンが増加して銅損が増す
ことになり、特に希土類系磁石材を用いた高磁束密度の
電動機には適用することが困難であった。
However, a commercially available plate thickness of 0.3
In the case of a high-grade silicon steel sheet having a thickness of 5 mm and a Si content of 2 wt%, the material is hardened due to a high Si content, so that the workability and continuous punching property at the time of punching are deteriorated, and the abrasion of the punching die is increased, resulting in an increase in gold. The number of mold polishing increases and the number of manufacturing steps increases, and the life of the mold is shortened. In addition, punch burrs become large due to mold wear, and dimensional accuracy is deteriorated, and eddy current loss accompanying the burrs is newly generated. Also, when the Si content is high, the magnetic flux density decreases, and when the magnetic flux density by the magnet is high, the leakage of the stator magnetic flux increases, and in order to compensate for this, the ampere-turn of the motor increases and copper loss increases. In particular, it has been difficult to apply the present invention to a motor having a high magnetic flux density using a rare earth magnet material.

【0009】逆に、板厚を例えば0.35mm等薄くし
て、Si含有率を0.2〜0.3wt%と従来の板厚
0.5mmの低グレードの珪素鋼板並に低く構成する
と、材料が軟らかいために打ち抜き歪みが大きくなる。
この打ち抜き歪みは焼鈍によって回復してヒステリシス
損は減少するのであるが、結晶が大きくなり過ぎて渦電
流損が増加し、特にインバータ駆動の電動機のような高
周波で運転するものにおいては、渦電流損は周波数の自
乗に比例して増加するために鉄損がかえって悪化する傾
向にある。
Conversely, if the sheet thickness is reduced to, for example, 0.35 mm and the Si content is set to be as low as 0.2 to 0.3 wt%, which is as low as that of a conventional low-grade silicon steel sheet having a sheet thickness of 0.5 mm, Due to the softness of the material, punching distortion increases.
This punching distortion is recovered by annealing, and the hysteresis loss is reduced.However, the eddy current loss increases due to the crystal being too large. Since iron increases in proportion to the square of the frequency, iron loss tends to worsen.

【0010】また、板厚0.5mmの通常材と板厚0.
35mmの高グレード材を交互に積層して鉄損値の減少
と磁束密度の増大の両効果を得るようにしたものが例え
ば特開昭57−156641号公報等によって提案され
ているが、このような構成は多大な製造工数を要すると
いった欠点があり、さらに、鉄心を構成する各薄板を打
ち出し突起によって打ち抜きと同時に金型内で自動的に
かしめて固定するカシメクランプ手段による場合は、単
一の板材しか使用できないために異種材を交互に積層す
る手法は適用することができない。
In addition, a normal material having a thickness of 0.5 mm and a thickness of 0.1 mm are used.
Japanese Patent Laying-Open No. 57-156641 has proposed a structure in which high-grade materials of 35 mm are alternately laminated to obtain both effects of reducing the iron loss value and increasing the magnetic flux density. Such a configuration has the disadvantage of requiring a large number of manufacturing steps.In addition, in the case of caulking clamp means for automatically caulking and fixing each thin plate constituting the iron core in a mold at the same time as punching with a punching projection, a single Since only plate materials can be used, a method of alternately laminating different materials cannot be applied.

【0011】[0011]

【課題を解決するための手段】本発明は、珪素鋼板を所
定形状に打ち抜いて積層した固定子鉄心及び回転子鉄心
を有し、前記固定子鉄心には巻線を装着して固定子を形
成し、前記回転子鉄心には永久磁石を装着して回転子を
形成し、前記固定子と前記回転子とを所定の空隙を介し
て対向配置してなる圧縮機駆動用電動機において、前記
珪素鋼板の板厚を0.35mm以下とするとともに、S
i含有率を0.5〜0.7wt%の範囲とするものであ
る。また積層後の鉄心に焼鈍を施す場合は、前記固定子
鉄心に対してのみ焼鈍を行えば十分な効果が期待でき
る。また前記永久磁石として希土類系磁石材を用いる場
合は、空隙磁束密度が高くなるために効果は一層顕著と
なる。
SUMMARY OF THE INVENTION The present invention has a stator core and a rotor core obtained by stamping and stacking a silicon steel sheet into a predetermined shape, and a stator is formed by attaching windings to the stator core. A permanent magnet is mounted on the rotor core to form a rotor, and the stator and the rotor are arranged to face each other with a predetermined gap therebetween. Not more than 0.35 mm, and S
The i content is in the range of 0.5 to 0.7 wt%. In the case where annealing is performed on the iron core after lamination, a sufficient effect can be expected by annealing only the stator iron core. When a rare earth magnet material is used as the permanent magnet, the effect becomes more remarkable because the air gap magnetic flux density increases.

【0012】[0012]

【作用】珪素鋼板の板厚を0.35mm以下とし、同時
にSi含有率を0.5〜0.7wt%とすることにより
電気抵抗が高くなり、主に渦電流損が低減されて電動機
の鉄損が大幅に低減される。また0.35mm以下の鋼
板の打ち抜きに際しては、上記Si含有率が硬すぎず軟
らかすぎない適度な硬度を形成するために加工性を良好
な状態にする。さらにSi含有率が従来の高グレード珪
素鋼板ほど高くないために磁束密度の低下がなく、電動
機のアンペアターンが削減される。
The electric resistance is increased by reducing the thickness of the silicon steel sheet to 0.35 mm or less and the Si content to 0.5 to 0.7 wt%, and the eddy current loss is reduced. The loss is greatly reduced. Further, when punching a steel sheet having a thickness of 0.35 mm or less, the workability is set to a favorable state in order to form an appropriate hardness in which the Si content is not too hard and not too soft. Further, since the Si content is not as high as that of the conventional high-grade silicon steel sheet, the magnetic flux density does not decrease, and the ampere-turn of the electric motor is reduced.

【0013】[0013]

【実施例】図3及び図4にて示したようなフェライト系
磁石材を用いた電動機に対して本発明を適用することに
より、鉄心の打ち抜き時の加工性が良好で且つ鉄損が低
減された電動機が構成できるものであるが、本発明の効
果が最も顕著に発揮されるのは図1に示すような希土類
系磁石材を用いた場合である。図1に示す電動機は、図
3と比較して永久磁石10aの材質及び形状が異なるの
みであって他の部分は大差なく、従って図3と同一また
は相当部分には図3と同一の符号を付して重複する部分
の説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By applying the present invention to an electric motor using a ferrite magnet material as shown in FIGS. 3 and 4, the workability at the time of punching an iron core is good and the iron loss is reduced. Although the above-described electric motor can be constructed, the effect of the present invention is most remarkably exhibited when a rare earth magnet material as shown in FIG. 1 is used. The electric motor shown in FIG. 1 is different from FIG. 3 only in the material and shape of the permanent magnet 10a, and the other parts are not much different. Therefore, the same or corresponding parts as those in FIG. The description of the overlapping portions will be omitted.

【0014】図1の電動機における永久磁石10aは、
例えば希土類系の中でもNd−Fe−B磁石等の廉価な
ものを使用することが好ましい。この場合、上記永久磁
石の残留磁束密度は1.2〜1.3Tであるため、電動
機の空隙磁束密度は非常に高いものとなっている。他の
希土類系磁石材を使用する場合は、それらの残留磁束密
度に合わせて電動機体格または永久磁石使用量等を適宜
変更して電動機の磁束密度を適正なポイントに調整する
必要があるが、一般には高磁束密度として体格を小さく
構成するのがコスト上有利である。
The permanent magnet 10a in the motor of FIG.
For example, it is preferable to use inexpensive magnets such as Nd-Fe-B magnets among rare earth magnets. In this case, since the residual magnetic flux density of the permanent magnet is 1.2 to 1.3T, the air gap magnetic flux density of the electric motor is very high. When using other rare-earth magnet materials, it is necessary to adjust the magnetic flux density of the motor to an appropriate point by appropriately changing the motor physique or the amount of permanent magnets used in accordance with their residual magnetic flux density. It is advantageous in terms of cost to configure a small physique as a high magnetic flux density.

【0015】永久磁石10aは板状に形成されている
が、これは、この形状がコスト上安価に製作できるため
である。従って回転子8aの鉄心9aには、この永久磁
石10aを収容することのできる形状の孔部が複数設け
てある。複数の永久磁石10aは上記孔部に嵌入され、
図示する構成の場合は隣接するものが互いに異極となる
ように着磁されて4極の界磁を構成する。図中16は上
記孔部に連設された空孔部であり、極間の磁束短絡を防
止するためのものである。11aは積層された鉄心9a
を固定するためのカシメクランプ手段であり、また12
は鉄心9aを積層方向に貫通して両端部に端板を固定保
持するカシメピンである。
The permanent magnet 10a is formed in a plate shape because this shape can be manufactured at a low cost. Therefore, the iron core 9a of the rotor 8a is provided with a plurality of holes having a shape capable of accommodating the permanent magnet 10a. The plurality of permanent magnets 10a are fitted into the holes,
In the case of the configuration shown in the figure, the adjacent ones are magnetized so as to have mutually different polarities to form a four-pole field. In the drawing, reference numeral 16 denotes a hole portion connected to the hole portion to prevent a magnetic flux short circuit between the poles. 11a is a laminated iron core 9a
Caulking clamp means for fixing
Is a caulking pin which penetrates the iron core 9a in the laminating direction and fixes and holds the end plates at both ends.

【0016】図1の電動機における固定子鉄心2及び回
転子鉄心9aは、鉄心材料を有効に利用するために同一
の珪素鋼板から打ち抜かれた薄板を多数積層することに
より形成されている。そして珪素鋼板としては、板厚が
0.35mm、Si含有率が0.5〜0.7wt%の無
方向性電磁鋼板を使用するものである。板厚としては、
例えば0.2mm等であってもよい。
The stator core 2 and the rotor core 9a in the electric motor shown in FIG. 1 are formed by laminating a number of thin plates punched from the same silicon steel plate in order to use the core material effectively. As the silicon steel sheet, a non-oriented electrical steel sheet having a thickness of 0.35 mm and a Si content of 0.5 to 0.7 wt% is used. As the board thickness,
For example, it may be 0.2 mm.

【0017】板厚が0.35mm、Si含有率が0.5
〜0.7wt%の上記珪素鋼板は、この板厚とSi含有
率の組み合わせによって、打ち抜きに際して硬すぎず軟
らかすぎない適度な硬度を形成しているために加工性が
良好な状態となり、打ち抜き型の摩耗が少なく、金型研
磨の回数や金型寿命さらには製品精度は板厚0.5mm
の珪素鋼板を用いた場合とほぼ同等の状態が得られる。
さらに打ち抜き歪みも焼鈍によって良好な状態に回復し
て特性が向上するように作用する。これらの効果が期待
できるのは、上記Si含有率が0.5〜0.7wt%の
範囲であることが必要条件となっている。例えば板厚
0.35mm,Si含有率0.55wt%の珪素鋼板の
50Hz,1.5Tのポイントにおける鉄損値W15/
50は焼鈍品で2.5〜3W/Kgであり、板厚0.5
mm,Si含有率0.25wt%の従来の珪素鋼板にお
ける4.5〜5W/Kgと比較して大幅に低減される。
これは、珪素鋼板の板厚を0.35mm以下とすること
により主に渦電流損がほぼ板厚の自乗に比例して低減さ
れ、同時にSi含有率を0.5〜0.7wt%とするこ
とにより電気抵抗が高くなって渦電流損が低減されるこ
とによるものである。
The sheet thickness is 0.35 mm and the Si content is 0.5
The above-mentioned silicon steel sheet of up to 0.7 wt% has a moderate hardness that is not too hard and not too soft at the time of punching due to the combination of the sheet thickness and the Si content. The wear of the mold is small, the number of times of mold polishing, mold life, and product accuracy are 0.5 mm
A state almost equivalent to the case where the silicon steel sheet is used is obtained.
Further, the punching strain also works to recover the good state by annealing and improve the characteristics. For these effects to be expected, a necessary condition is that the Si content is in the range of 0.5 to 0.7 wt%. For example, an iron loss value W15 / at a point of 50 Hz and 1.5 T of a silicon steel sheet having a sheet thickness of 0.35 mm and a Si content of 0.55 wt%.
50 is an annealed product having a thickness of 2.5 to 3 W / Kg and a thickness of 0.5
mm, the content is significantly reduced as compared with 4.5 to 5 W / Kg in a conventional silicon steel sheet having a Si content of 0.25 wt%.
This is mainly because the eddy current loss is reduced substantially in proportion to the square of the thickness by setting the thickness of the silicon steel sheet to 0.35 mm or less, and at the same time, the Si content is set to 0.5 to 0.7 wt%. This is due to the fact that the electrical resistance is increased and the eddy current loss is reduced.

【0018】図2は、珪素鋼板の25cmエプスタイン
試料における圧延方向及び直角方向の焼鈍後の直流磁化
特性(B−H曲線)を測定したものであり、図中実線a
は板厚0.35mm,Si含有率0.55wt%の本発
明における鋼板、破線bは板厚0.35mm,Si含有
率2wt%の高グレード鋼板、一点鎖線cは板厚0.5
mm,Si含有率0.25wt%の従来使用の鋼板をそ
れぞれ示している。図より明らかなように、本発明にお
ける珪素鋼板aは、Si含有率が従来の高グレード鋼板
bほど高くないために磁束密度の低下がなく、高磁束密
度領域において板厚0.5mm鋼板cとほぼ同等のアン
ペアターンとなっている。従って図1に示した希土類系
磁石材を用いた高磁束密度の電動機であっても固定子磁
束の漏れが大きくならないためアンペアターンが極端に
増加することなく、電動機の銅損の増加が抑制されるこ
とになる。
FIG. 2 shows the measured DC magnetization characteristics (BH curves) of a 25 cm Epstein specimen of a silicon steel sheet after annealing in the rolling direction and the perpendicular direction.
Is a steel sheet of the present invention having a thickness of 0.35 mm and a Si content of 0.55 wt%, a broken line b is a high-grade steel sheet having a thickness of 0.35 mm and a Si content of 2 wt%, and a dashed line c is a thickness of 0.5
mm and a conventionally used steel sheet having a Si content of 0.25 wt% are shown. As is apparent from the figure, the silicon steel sheet a in the present invention has a lower magnetic flux density because the Si content is not as high as that of the conventional high-grade steel sheet b. It is almost the same ampere turn. Therefore, even in the motor having a high magnetic flux density using the rare-earth magnet material shown in FIG. 1, the leakage of the stator magnetic flux does not increase, so that the ampere-turn does not increase extremely and the increase in the copper loss of the motor is suppressed. Will be.

【0019】尚、図1,図3及び図4に示したような同
期電動機の場合は、回転子の界磁磁束によって固定子鉄
心内に発生する鉄損の占める割合が大きいため、積層後
の鉄心に焼鈍を施す場合は、固定子鉄心2に対してのみ
焼鈍を行えば十分な鉄損低減効果が得られ、回転子鉄心
9,9aには焼鈍を施すことなく製造コストを節約する
ように構成することが望ましい。
Incidentally, in the case of the synchronous motor as shown in FIGS. 1, 3 and 4, since the ratio of iron loss generated in the stator core due to the field magnetic flux of the rotor is large, after the lamination, In the case where the core is annealed, a sufficient iron loss reduction effect can be obtained by annealing only the stator core 2 so that the rotor cores 9 and 9a are not subjected to annealing so as to save the manufacturing cost. It is desirable to configure.

【0020】[0020]

【発明の効果】本発明によれば、圧縮機駆動用電動機に
おいて鉄心を構成する珪素鋼板を板厚が0.35mm以
下とするとともに、Si含有率を0.5〜0.7wt%
の範囲とするようにしたため、金型寿命や製品精度さら
には打ち抜き加工性を悪化させることなく、従来の0.
5mm鋼板に代えて0.35mm鋼板等を適用すること
ができ、電動機の鉄損を大幅に低減して空調機器等の消
費電力を削減することができる。また希土類系磁石材を
用いた場合等における高磁束密度の電動機において、銅
損の増加が抑制できることによって、電動機の小型化及
び高効率化が達成される特長を有する。
According to the present invention, the silicon steel plate constituting the iron core in the motor for driving a compressor is made not more than 0.35 mm in thickness and the Si content is 0.5 to 0.7 wt%.
, The mold life, product accuracy, and punching workability are not deteriorated.
A 0.35 mm steel plate or the like can be used instead of the 5 mm steel plate, and the iron loss of the electric motor can be significantly reduced, and the power consumption of an air conditioner and the like can be reduced. Also, in a motor having a high magnetic flux density, such as when a rare earth magnet material is used, an increase in copper loss can be suppressed, so that the motor has a feature of achieving downsizing and high efficiency of the motor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す電動機の平面断面図。FIG. 1 is a sectional plan view of an electric motor showing an embodiment of the present invention.

【図2】珪素鋼板の直流磁化特性を示す特性図。FIG. 2 is a characteristic diagram showing DC magnetization characteristics of a silicon steel sheet.

【図3】電動機の一般的構成を説明する平面断面図。FIG. 3 is a plan sectional view illustrating a general configuration of the electric motor.

【図4】図3の電動機の正面断面図。FIG. 4 is a front sectional view of the electric motor of FIG. 3;

【符号の説明】[Explanation of symbols]

2 固定子鉄心 6,11,11a カシメクランプ手段 7 空隙 9,9a 回転子鉄心 10,10a 永久磁石 2 Stator core 6,11,11a Caulking clamp means 7 Air gap 9,9a Rotor core 10,10a Permanent magnet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 珪素鋼板を所定形状に打ち抜いて積層し
た固定子鉄心及び回転子鉄心を有し、前記固定子鉄心に
は巻線を装着して固定子を形成し、前記回転子鉄心には
永久磁石を装着して回転子を形成し、前記固定子と前記
回転子とを所定の空隙を介して対向配置してなる圧縮機
駆動用電動機において、前記珪素鋼板の板厚を0.35
mm以下とするとともに、珪素含有率を0.5〜0.7
wt%の範囲としたことを特徴とする圧縮機駆動用電動
機。
1. A stator having a stator core and a rotor core formed by punching and stacking a silicon steel sheet into a predetermined shape, a stator is formed by mounting a winding on the stator core, and a stator is formed on the rotor core. In a compressor driving motor in which a rotor is formed by mounting a permanent magnet and the stator and the rotor are arranged to face each other with a predetermined gap therebetween, the thickness of the silicon steel plate is set to 0.35.
mm or less and a silicon content of 0.5 to 0.7
An electric motor for driving a compressor, wherein the amount is in the range of wt%.
【請求項2】 前記固定子鉄心に対して焼鈍を施したこ
とを特徴とする請求項1記載の電動機。
2. The electric motor according to claim 1, wherein the stator core is annealed.
【請求項3】 前記永久磁石として希土類系磁石材を用
いたことを特徴とする請求項1または2記載の電動機。
3. The electric motor according to claim 1, wherein a rare earth magnet material is used as the permanent magnet.
JP26652496A 1996-08-29 1996-08-29 Motor for driving compressor Pending JPH1075542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26652496A JPH1075542A (en) 1996-08-29 1996-08-29 Motor for driving compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26652496A JPH1075542A (en) 1996-08-29 1996-08-29 Motor for driving compressor

Publications (1)

Publication Number Publication Date
JPH1075542A true JPH1075542A (en) 1998-03-17

Family

ID=17432095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26652496A Pending JPH1075542A (en) 1996-08-29 1996-08-29 Motor for driving compressor

Country Status (1)

Country Link
JP (1) JPH1075542A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075307A1 (en) * 2000-03-31 2001-10-11 Daikin Industries, Ltd. High-pressure dome type compressor
KR20040073268A (en) * 2003-02-12 2004-08-19 마츠시타 덴끼 산교 가부시키가이샤 Electric compressor
KR100507786B1 (en) * 1999-07-02 2005-08-17 마쯔시다덴기산교 가부시키가이샤 Electric compressor
WO2005078279A1 (en) * 2004-02-16 2005-08-25 Jtekt Corporation Motor-driven pump unit
WO2008099828A1 (en) * 2007-02-16 2008-08-21 Daikin Industries, Ltd. Motor
JP2013150449A (en) * 2012-01-19 2013-08-01 Mitsui High Tec Inc Method of manufacturing motor core
JP2014087143A (en) * 2012-10-23 2014-05-12 Hitachi Appliances Inc Permanent magnet synchronous motor
CN105610253A (en) * 2016-02-17 2016-05-25 广东美芝制冷设备有限公司 Motor for compressor and compressor with motor
JP2017034819A (en) * 2015-07-31 2017-02-09 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Permanent magnet synchronous machine, compressor and air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507786B1 (en) * 1999-07-02 2005-08-17 마쯔시다덴기산교 가부시키가이샤 Electric compressor
WO2001075307A1 (en) * 2000-03-31 2001-10-11 Daikin Industries, Ltd. High-pressure dome type compressor
US6652238B2 (en) 2000-03-31 2003-11-25 Daikin Industries, Ltd. High-pressure dome type compressor
KR20040073268A (en) * 2003-02-12 2004-08-19 마츠시타 덴끼 산교 가부시키가이샤 Electric compressor
WO2005078279A1 (en) * 2004-02-16 2005-08-25 Jtekt Corporation Motor-driven pump unit
WO2008099828A1 (en) * 2007-02-16 2008-08-21 Daikin Industries, Ltd. Motor
JP2013150449A (en) * 2012-01-19 2013-08-01 Mitsui High Tec Inc Method of manufacturing motor core
JP2014087143A (en) * 2012-10-23 2014-05-12 Hitachi Appliances Inc Permanent magnet synchronous motor
JP2017034819A (en) * 2015-07-31 2017-02-09 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Permanent magnet synchronous machine, compressor and air conditioner
CN105610253A (en) * 2016-02-17 2016-05-25 广东美芝制冷设备有限公司 Motor for compressor and compressor with motor

Similar Documents

Publication Publication Date Title
US6717315B1 (en) Permanent magnet type motor and method of producing permanent magnet type motor
JP5600917B2 (en) Rotor for permanent magnet rotating machine
US7596856B2 (en) Method for manufacturing a soft magnetic metal electromagnetic component
JP5493663B2 (en) Assembling method of rotor for IPM type permanent magnet rotating machine
JP5251219B2 (en) Rotor for permanent magnet rotating machine
WO2005101614A1 (en) Rotor and process for manufacturing the same
JP2010220324A (en) Electric motor, compressor, and air conditioner
JP2000050546A (en) Rotor of permanent magnet motor
JP3301980B2 (en) Centralized winding brushless DC motor
JPH1075542A (en) Motor for driving compressor
EP1956698B1 (en) Permanent magnet rotor and motor using the same
JP2000102202A (en) Rotor for permanent-magnet type electric motor
JP3877620B2 (en) Concentrated winding DC motor and compressor equipped with the same
JP3871873B2 (en) Permanent magnet type rotor
WO2011030409A1 (en) Rotor for permanent magnet type rotary machine
JP2001119877A (en) Permanent magnet embedded rotor
JP2001086675A (en) Self-starting permanent magnet synchronous motor, and its manufacture
JP4238588B2 (en) Motor, motor rotor and composite anisotropic magnet
Tomida et al. Application of fine-grained doubly oriented electrical steel to IPM synchronous motor
JP2000050545A (en) Rotor for generator or motor
JP2000295804A (en) Rare earth sintered magnet and permanent magnet type synchronous motor
CN220692892U (en) Motor, compressor and refrigeration equipment
JP4844139B2 (en) Magnetic steel sheet for permanent magnet motor and permanent magnet motor
KR20090050867A (en) Cylinder type back yoke formed of amorphous alloy, slotless motor using the same, and producing method thereof
CN212784937U (en) Neodymium iron boron magnetic steel for disc motor