JP5251219B2 - Rotor for permanent magnet rotating machine - Google Patents

Rotor for permanent magnet rotating machine Download PDF

Info

Publication number
JP5251219B2
JP5251219B2 JP2008097797A JP2008097797A JP5251219B2 JP 5251219 B2 JP5251219 B2 JP 5251219B2 JP 2008097797 A JP2008097797 A JP 2008097797A JP 2008097797 A JP2008097797 A JP 2008097797A JP 5251219 B2 JP5251219 B2 JP 5251219B2
Authority
JP
Japan
Prior art keywords
magnet
rotor
permanent magnet
rotating machine
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008097797A
Other languages
Japanese (ja)
Other versions
JP2009254092A5 (en
JP2009254092A (en
Inventor
浩二 宮田
武久 美濃輪
中村  元
晃一 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008097797A priority Critical patent/JP5251219B2/en
Publication of JP2009254092A publication Critical patent/JP2009254092A/en
Publication of JP2009254092A5 publication Critical patent/JP2009254092A5/ja
Application granted granted Critical
Publication of JP5251219B2 publication Critical patent/JP5251219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Hard Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、複数個の永久磁石セグメントがロータコア内部に埋め込まれた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子(いわゆる磁石埋込構造回転機(IPM回転機:IPM:Interior Permanent Magnet))、又は複数個の永久磁石セグメントをロータコア表面に取り付けた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子(いわゆる表面磁石型回転機(SPM回転機:SPM:Surface Permanent Magnet)、特に、高速回転を行う電気自動車用モータや発電機、FAモータ等に最適な永久磁石構造型回転機用回転子に関する。   The present invention is used in a permanent magnet rotating machine in which a rotor in which a plurality of permanent magnet segments are embedded in a rotor core and a stator wound with a stator core having a plurality of slots are arranged with a gap therebetween. A rotor (so-called magnet embedded structure rotating machine (IPM rotating machine: IPM: Interior Permanent Magnet)), or a rotor having a plurality of permanent magnet segments attached to the rotor core surface, and a winding wound around a stator core having a plurality of slots A rotor used for a permanent magnet rotating machine in which a wound stator is arranged through a gap (a so-called surface magnet type rotating machine (SPM: Surface Permanent Magnet), particularly a motor for an electric vehicle that performs high-speed rotation Rotation for permanent magnet structure type rotating machine ideal for motors, generators, FA motors On.

Nd系焼結磁石は、その優れた磁気特性のために、ますます用途が広がってきている。近年、モータや発電機などの回転機の分野においても機器の軽薄短小化、高性能化、省エネルギー化に伴いNd系焼結磁石を利用した永久磁石回転機が開発されている。回転子の内部に磁石を埋め込んだ構造をもつIPM回転機は、磁石の磁化によるトルクに加えてロータヨークの磁化によるリラクタンストルクを利用することができるので、高性能な回転機として研究が進んでいる。珪素鋼板等で作られたロータヨークの内部に磁石が埋め込まれているので、回転中にも遠心力で磁石が飛び出すことがなく、機械的な安全性が高く、電流位相を制御して高トルク運転や広範囲な速度での運転が可能であり、省エネルギー、高効率、高トルクモータとなる。近年は、電気自動車、ハイブリッド自動車、高性能エアコン、産業用、電車用等のモータや発電機としての利用が急速に拡大している。   Nd-based sintered magnets are increasingly used because of their excellent magnetic properties. In recent years, in the field of rotating machines such as motors and generators, permanent magnet rotating machines using Nd-based sintered magnets have been developed along with reductions in the size, performance, and energy saving of equipment. An IPM rotating machine having a structure in which a magnet is embedded in the rotor can utilize a reluctance torque due to the magnetization of the rotor yoke in addition to a torque due to the magnetization of the magnet. Therefore, research is progressing as a high-performance rotating machine. . Since the magnet is embedded inside the rotor yoke made of silicon steel plate, etc., the magnet does not pop out due to centrifugal force even during rotation, the mechanical safety is high, and the current phase is controlled to operate at high torque And can be operated at a wide range of speeds, resulting in an energy saving, high efficiency, high torque motor. In recent years, the use as electric motors, hybrid cars, high-performance air conditioners, industrial motors, electric motors and generators has been rapidly expanding.

また、回転子の表面に磁石を張り合わせた形状をもつSPM回転機は、Nd磁石のもつ強い磁気を効率的に利用でき、モータートルクのリニアリティーがよく、制御性に優れている。磁石形状を最適化すれば、コギングトルクの小さなモータとなる。一部の電気自動車や電動パワーステアリング、その他制御用モータに使われている。   Further, the SPM rotating machine having a shape in which a magnet is bonded to the surface of the rotor can efficiently use the strong magnetism of the Nd magnet, has good linearity of motor torque, and has excellent controllability. If the magnet shape is optimized, the motor has a small cogging torque. Used in some electric vehicles, electric power steering, and other control motors.

回転機中の永久磁石は、巻き線や鉄心の発熱により高温に曝され、更に巻き線からの反磁界により極めて減磁しやすい状況下にある。このため、耐熱性、耐減磁性の指標となる保磁力が一定以上あり、磁力の大きさの指標となる残留磁束密度ができるだけ高いNd系焼結磁石が要求されている。   The permanent magnet in the rotating machine is exposed to a high temperature due to the heat generated by the winding and the iron core, and is in a state where it is very easily demagnetized by the demagnetizing field from the winding. For this reason, there is a demand for Nd-based sintered magnets that have a coercive force that is an index of heat resistance and demagnetization resistance at a certain level and that has as high a residual magnetic flux density as possible that is an index of the magnitude of the magnetic force.

更に、Nd系焼結磁石の電気抵抗は100〜200μΩ・cmの導体であり、回転子が回転すると磁石の磁束密度が変動し、それに伴う渦電流が生じる。渦電流低減のために有効な手段は、渦電流経路を分断するために磁石体を分割することである。細分化するほど渦電流損失低減になるが、製造コストの増加や隙間による磁石体積減少で出力が低下する等を考慮することが必要である。   Furthermore, the electrical resistance of the Nd-based sintered magnet is a conductor of 100 to 200 μΩ · cm, and when the rotor rotates, the magnetic flux density of the magnet fluctuates, and an accompanying eddy current is generated. An effective means for reducing the eddy current is to divide the magnet body in order to break the eddy current path. Although the eddy current loss is reduced as it is subdivided, it is necessary to consider the increase in manufacturing cost and the decrease in output due to the decrease in the magnet volume due to the gap.

渦電流の経路は、磁石の磁化方向に垂直な面内に流れ、外周部ほど電流密度が高くなっている。また、固定子に近い面で電流密度が高くなっている。即ち、渦電流による発熱量は、磁石表面付近ほど大きく、より高温になるため、この部分で特に減磁しやすい状態にある。渦電流による減磁を抑えるために、磁石表面部において耐減磁性の指標となる保磁力が磁石内部より高いNd系焼結磁石が要求される。   The path of the eddy current flows in a plane perpendicular to the magnetization direction of the magnet, and the current density is higher at the outer peripheral portion. In addition, the current density is high on the surface close to the stator. That is, the amount of heat generated by the eddy current is larger near the magnet surface and becomes higher, so that this portion is particularly easily demagnetized. In order to suppress demagnetization due to eddy currents, an Nd-based sintered magnet having a coercive force that is an index of demagnetization resistance at the magnet surface is higher than that inside the magnet.

また、保磁力を向上させるには、いくつかの方法がある。
Nd系焼結磁石の残留磁束密度増大は、Nd2Fe14B化合物の体積率増大と結晶配向度向上により達成され、これまでに種々のプロセスの改善が行われてきている。保磁力の増大に関しては、結晶粒の微細化を図る、Nd量を増やした組成合金を用いる、あるいは効果のある元素を添加する等、様々なアプローチがある中で、現在最も一般的な手法は、DyやTbで、Ndの一部を置換した組成合金を用いることである。Nd2Fe14B化合物のNdをこれらの元素で置換することで、化合物の異方性磁界が増大し、保磁力も増大する。一方で、DyやTbによる置換は、化合物の飽和磁気分極を減少させる。従って、上記手法で保磁力の増大を図る限りでは、残留磁束密度の低下は避けられない。
There are several methods for improving the coercive force.
The increase in the residual magnetic flux density of the Nd-based sintered magnet has been achieved by increasing the volume fraction of Nd 2 Fe 14 B compound and improving the degree of crystal orientation, and various processes have been improved so far. Regarding the increase in coercive force, among the various approaches such as refinement of crystal grains, use of a composition alloy with an increased Nd amount, or addition of an effective element, the most common method at present is , Dy or Tb, and a composition alloy in which a part of Nd is substituted. By substituting Nd of the Nd 2 Fe 14 B compound with these elements, the anisotropic magnetic field of the compound increases and the coercive force also increases. On the other hand, substitution with Dy or Tb reduces the saturation magnetic polarization of the compound. Therefore, as long as the coercive force is increased by the above method, a decrease in the residual magnetic flux density is inevitable.

Nd系焼結磁石は、結晶粒界面で逆磁区の核が生成する外部磁界の大きさが保磁力となる。逆磁区の核生成には結晶粒界面の構造が強く影響しており、界面近傍における結晶構造の乱れが磁気的な構造の乱れを招き、逆磁区の生成を助長する。一般的には、結晶界面から5nm程度の深さまでの磁気的構造が保磁力の増大に寄与していると考えられている(非特許文献1:K. −D. Durst and H. Kronmuller, “THE COERCIVE FIELD OF SINTERED AND MELT−SPUN NdFeB MAGNETS”, Journal of Magnetism and Magnetic Materials 68 (1987) 63−75)。   In the Nd-based sintered magnet, the coercive force is the magnitude of the external magnetic field generated by the nucleus of the reverse magnetic domain at the crystal grain interface. The structure of the crystal grain interface strongly influences the nucleation of the reverse magnetic domain, and the disorder of the crystal structure in the vicinity of the interface causes the disorder of the magnetic structure and promotes the generation of the reverse magnetic domain. In general, it is considered that a magnetic structure from a crystal interface to a depth of about 5 nm contributes to an increase in coercive force (Non-Patent Document 1: K.-D. Durst and H. Kronmuller, “ THE COERCIVE FIELD OF SINTERED AND MELT-SPUN NdFeB MAGNETS ", Journal of Magnetics and Magnetic Materials 68 (1987) 63-75).

本発明者らは、結晶粒の界面近傍のみにわずかなDyやTbを濃化させ、界面近傍のみの異方性磁界を増大させることで、残留磁束密度の低下を抑制しつつ保磁力を増大できることを見出している(特許文献1:特公平5−31807号公報)。更に、Nd2Fe14B化合物組成合金と、DyあるいはTbに富む合金を別に作製した後に混合して焼結する製造方法を確立している(特許文献2:特開平5−21218号公報)。この方法では、DyあるいはTbに富む合金は焼結時に液相となり、Nd2Fe14B化合物を取り囲むように分布する。その結果、化合物の粒界近傍でのみNdとDyあるいはTbが置換され、残留磁束密度の低下を抑制しつつ効果的に保磁力を増大できる。 The present inventors concentrated a small amount of Dy and Tb only in the vicinity of the crystal grain interface, and increased the anisotropy magnetic field only in the vicinity of the interface, thereby increasing the coercive force while suppressing the decrease in the residual magnetic flux density. (Patent Document 1: Japanese Patent Publication No. 5-31807). Furthermore, a manufacturing method has been established in which an Nd 2 Fe 14 B compound composition alloy and an alloy rich in Dy or Tb are separately manufactured and then mixed and sintered (Patent Document 2: JP-A-5-21218). In this method, an alloy rich in Dy or Tb becomes a liquid phase during sintering and is distributed so as to surround the Nd 2 Fe 14 B compound. As a result, Nd and Dy or Tb are replaced only near the grain boundary of the compound, and the coercive force can be effectively increased while suppressing a decrease in the residual magnetic flux density.

しかし、上記方法では、2種の合金微粉末を混合した状態で1,000〜1,100℃という高温で焼結するために、DyあるいはTbがNd2Fe14B結晶粒の界面のみでなく内部まで拡散しやすい。実際に得られる磁石の組織観察からは、結晶粒界表層部で界面から深さ1〜2μm程度まで拡散しており、拡散した領域を体積分率に換算すると60%以上となる。また、結晶粒内への拡散距離が長くなるほど界面近傍におけるDyあるいはTbの濃度は低下してしまう。結晶粒内への過度な拡散を極力抑えるには焼結温度を低下させることが有効であるが、これは同時に焼結による緻密化を阻害するため現実的な手法となり得ない。ホットプレスなどで応力を印加しながら低温で焼結する方法では、緻密化は可能であるが、生産性が極端に低くなるという問題がある。 However, in the above method, since two kinds of alloy fine powders are mixed and sintered at a high temperature of 1,000 to 1,100 ° C., Dy or Tb is not limited to the interface of Nd 2 Fe 14 B crystal grains. Easy to diffuse into the interior. From observation of the structure of the magnet actually obtained, it diffuses from the interface to a depth of about 1 to 2 μm at the surface of the grain boundary, and the diffused region is 60% or more when converted to a volume fraction. Further, the longer the diffusion distance into the crystal grain, the lower the concentration of Dy or Tb in the vicinity of the interface. Although it is effective to lower the sintering temperature in order to suppress excessive diffusion into the crystal grains as much as possible, this cannot be a practical method because it simultaneously inhibits densification by sintering. In the method of sintering at a low temperature while applying stress by hot pressing or the like, densification is possible, but there is a problem that productivity becomes extremely low.

一方、焼結磁石を小型に加工した後、磁石表面にDyやTbをスパッタによって被着させ、磁石を焼結温度より低い温度で熱処理することにより粒界部にのみDyやTbを拡散させて保磁力を増大させる方法が報告されている(非特許文献2:K. T. Park, K. Hiraga and M. Sagawa, “Effect of Metal−Coating and Consecutive Heat Treatment on Coercivity of Thin Nd−Fe−B Sintered Magnets”, Proceedings of the Sixteen International Workshop on Rare−Earth Magnets and Their Applications, Sendai, p.257 (2000)、非特許文献3:町田憲一、川嵜尚志、鈴木俊治、伊東正浩、堀川高志、“Nd−Fe−B系焼結磁石の粒界改質と磁気特性”、粉体粉末冶金協会講演概要集、平成16年度春季大会、p.202参照)。これらの方法では、更に効率的にDyやTbを粒界に濃化できるため、残留磁束密度の低下をほとんど伴わずに保磁力を増大させることが可能である。また、磁石の比表面積が大きい、即ち磁石体が小さいほど供給されるDyやTbの量が多くなるので、この方法は小型あるいは薄型の磁石へのみ適用可能である。しかし、スパッタ等による金属膜の被着には生産性が悪いという問題がある。   On the other hand, after processing the sintered magnet to a small size, Dy and Tb are deposited on the magnet surface by sputtering, and the magnet is heat-treated at a temperature lower than the sintering temperature to diffuse Dy and Tb only at the grain boundary part. A method for increasing the coercive force has been reported (Non-Patent Document 2: K. T. Park, K. Hiraga and M. Sagawa, "Effect of Metal-Coating and Conscientious Heat Treatment on Co-Circency of T Sintered Magnets ", Proceedings of the Sixteen International Works on Rare-Earth Magnets and Ther Application , Sendai, p. 257 (2000), Non-Patent Document 3: Kenichi Machida, Naoshi Kawamata, Toshiharu Suzuki, Masahiro Ito, Takashi Horikawa, “Granular boundary modification and magnetic properties of Nd—Fe—B based sintered magnet”, (Refer to the collection of lectures by the Powder and Powder Metallurgy Association, 2004 Spring Meeting, p. 202). In these methods, since Dy and Tb can be more efficiently concentrated at the grain boundary, it is possible to increase the coercive force with almost no decrease in the residual magnetic flux density. Moreover, since the amount of Dy and Tb supplied increases as the specific surface area of the magnet increases, that is, the magnet body decreases, this method is applicable only to small or thin magnets. However, there is a problem that the productivity is poor in the deposition of the metal film by sputtering or the like.

これらの問題点を解決し、量産性があり、効率よく保磁力を向上することのできる手段として、特許文献3:国際公開第2006/043348号パンフレットが示されている。これは、Nd系焼結磁石に代表されるR1−Fe−B系焼結磁石に対し、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末(なお、R1〜R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)を磁石表面に存在させた状態で加熱することで、粉末に含まれていたR2、R3又はR4が磁石体に吸収され、残留磁束密度の減少を著しく抑制しながら保磁力を増大する。特にR3のフッ化物又はR4の酸フッ化物を用いた場合、R3又はR4がフッ素と共に磁石体に高効率に吸収され、残留磁束密度が高く、保磁力の大きな焼結磁石が得られるものである。 Patent Document 3: International Publication No. 2006/043348 is shown as means for solving these problems, having mass productivity, and improving coercive force efficiently. This is one or two selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride with respect to R 1 —Fe—B based sintered magnet represented by Nd based sintered magnet. It is included in the powder by heating in a state where powder containing one or more species (where R 1 to R 4 are one or more selected from rare earth elements including Y and Sc) is present on the magnet surface. The R 2 , R 3, or R 4 that has been absorbed is absorbed by the magnet body, and the coercive force is increased while significantly suppressing the decrease in the residual magnetic flux density. In particular, when R 3 fluoride or R 4 oxyfluoride is used, R 3 or R 4 is absorbed into the magnet body together with fluorine with high efficiency, and a sintered magnet having a high residual magnetic flux density and a large coercive force is obtained. It is what

特公平5−31807号公報Japanese Patent Publication No. 5-31807 特開平5−21218号公報JP-A-5-21218 国際公開第2006/043348号パンフレットInternational Publication No. 2006/043348 Pamphlet K. −D. Durst and H. Kronmuller, “THE COERCIVE FIELD OF SINTERED AND MELT−SPUN NdFeB MAGNETS”, Journal of Magnetism and Magnetic Materials 68 (1987) 63−75K. -D. Durst and H.M. Kronmuller, “THE COERCIVE FIELD OF SINTERED AND MELT-SPUN NdFeB MAGNETS”, Journal of Magnetics and Magnetic Materials 68 (1987) 63-75. K. T. Park, K. Hiraga and M. Sagawa, “Effect of Metal−Coating and Consecutive Heat Treatment on Coercivity of Thin Nd−Fe−B Sintered Magnets”, Proceedings of the Sixteen International Workshop on Rare−Earth Magnets and Their Applications, Sendai, p.257 (2000)K. T.A. Park, K.M. Hiraga and M.M. Sagawa, "Effect of Metal-Coating and Consecutive Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", Proceedings of the Sixteen International Workshop on Rare-Earth Magnets and Their Applications, Sendai, p. 257 (2000) 町田憲一、川嵜尚志、鈴木俊治、伊東正浩、堀川高志、“Nd−Fe−B系焼結磁石の粒界改質と磁気特性”、粉体粉末冶金協会講演概要集、平成16年度春季大会、p.202Kenichi Machida, Naoshi Kawamata, Toshiharu Suzuki, Masahiro Ito, Takashi Horikawa, “Granular boundary modification and magnetic properties of Nd—Fe—B based sintered magnets”, Proceedings of the Powder and Powder Metallurgy Association, Spring Meeting of 2004, p. 202

本発明は、上記事情に鑑みなされたもので、高い出力と耐熱性を有する永久磁石式回転機用回転子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a rotor for a permanent magnet type rotating machine having high output and heat resistance.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、複数個の永久磁石セグメントを用いるIPM回転機又はSPM回転機において、各永久磁石セグメントをそれぞれ、更に細かく分割した永久磁石の集合体で構成すること、この永久磁石集合体の個々の永久磁石(分割磁石)として、その表面近傍の保磁力乃至耐熱性を該永久磁石(分割磁石)内部の保磁力乃至耐熱性よりも高くしたものを用いることが有効であることを知見した。この場合、本発明者らは、上述した非特許文献3及び特許文献3の方法は、残留磁束密度の低減がなく、高出力回転機に適しており、更に、分割磁石の表面近傍における保磁力を高めることができるので、IPM回転機やSPM回転機の回転子に用いた場合、渦電流発熱による減磁を抑えることが期待できると考えたが、このような方法を上記永久磁石集合体の個々の分割磁石に適用することが本発明の目的を達成する上で有効であり、特にNd系焼結磁石を用い、渦電流の発熱を抑えるために磁石を分割すること、これを永久磁石回転機のIPM回転機又はSPM回転機の回転子用磁石とすること、これにより表面近傍における保磁力が内部の保磁力より大きな磁石で、表面近傍における耐熱性を向上させた分割磁石が永久磁石式回転機用回転子用としてIPM又はSPM回転機に有効であることを知見したものである。   As a result of intensive studies to achieve the above object, the inventors of the present invention have found that each permanent magnet segment is further finely divided in an IPM rotating machine or SPM rotating machine using a plurality of permanent magnet segments. It is composed of an aggregate, and the coercive force or heat resistance in the vicinity of the surface of each permanent magnet (divided magnet) of the permanent magnet aggregate is higher than the coercive force or heat resistance inside the permanent magnet (divided magnet). It was found that it was effective to use what was done. In this case, the present inventors have found that the methods of Non-Patent Document 3 and Patent Document 3 described above are suitable for a high-power rotating machine without reducing the residual magnetic flux density, and further, coercive force in the vicinity of the surface of the split magnet. Therefore, when used in a rotor of an IPM rotating machine or an SPM rotating machine, it was thought that demagnetization due to eddy current heat generation can be suppressed. Applying to individual segmented magnets is effective in achieving the object of the present invention, and in particular, using an Nd-based sintered magnet, segmenting the magnets to suppress eddy current heat generation, and rotating them with permanent magnets The magnet for the rotor of the IPM rotating machine or the SPM rotating machine of the machine is a permanent magnet type in which the coercive force in the vicinity of the surface is larger than the internal coercive force and the heat resistance in the vicinity of the surface is improved. For rotating machine Is obtained by finding that for the rotor is effective in IPM or SPM rotary machine.

更に、詳述すると、本発明者らは、渦電流発熱を低減するために、分割した磁石を用いた永久磁石式回転機の中の磁石が、渦電流発熱によって磁石の表面近傍で特に温度が高くなることを見出した。磁石の耐熱性を上げるためには、温度が高くなる磁石表面近傍の保磁力を上げることが効果的で、特に磁石表面近傍の保磁力向上には、Nd系焼結磁石の表面から内部に向かっての保磁力傾斜が、磁石表面から内部に向かってDy又はTbを拡散させたことによって形成した磁石を用いること、この場合磁石表面から内部に向かってDy又はTbの拡散は、主に結晶粒界を経由しており、例えば、磁石表面から内部に向かってのDy又はTbの拡散反応として、磁石の表面にDy又はTb酸化物粉末あるいはDy又はTbフッ化物の粉末あるいはDy又はTbを含む合金粉末を塗布し、その後高温で拡散させる手法が有効であることを知見し、本発明をなすに至った。   More specifically, the inventors of the present invention have found that in order to reduce eddy current heat generation, a magnet in a permanent magnet type rotating machine using divided magnets has a particularly high temperature near the surface of the magnet due to eddy current heat generation. Found it to be higher. In order to increase the heat resistance of the magnet, it is effective to increase the coercive force in the vicinity of the magnet surface where the temperature increases. In particular, in order to improve the coercive force in the vicinity of the magnet surface, the Nd-based sintered magnet is directed from the surface to the inside. All the coercive force gradients use a magnet formed by diffusing Dy or Tb from the magnet surface toward the inside. In this case, diffusion of Dy or Tb from the magnet surface toward the inside is mainly caused by crystal grains. For example, Dy or Tb oxide powder or Dy or Tb fluoride powder or alloy containing Dy or Tb on the surface of the magnet as a diffusion reaction of Dy or Tb from the magnet surface toward the inside. The inventors have found that a method of applying powder and then diffusing at high temperature is effective, and have come to make the present invention.

従って、本発明は、以下の永久磁石式回転機用回転子及び永久磁石式回転機を提供する。
請求項1:
複数個の永久磁石セグメントがロータコア内部に埋め込まれた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子、又は複数個の永久磁石セグメントをロータコア表面に取り付けた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子において、上記の複数個の永久磁石セグメントのそれぞれが更に分割された永久磁石の集合体で構成され、この分割された永久磁石が焼結磁石ブロックについて表面研削加工のみを行って断面形状を長方形、台形又は弓形としたものであると共に、各分割された個々の永久磁石の表面近傍における保磁力がそれぞれ分割された永久磁石内部の保磁力より大きくなっていることを特徴とする永久磁石式回転機用回転子。
請求項2:
複数個の永久磁石セグメントがロータコア内部に埋め込まれた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子、又は複数個の永久磁石セグメントをロータコア表面に取り付けた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子において、用いられる複数個の永久磁石セグメントのそれぞれが更に分割された永久磁石の集合体で構成され、この分割された永久磁石が焼結磁石ブロックについて表面研削加工のみを行って断面形状を長方形、台形又は弓形としたものであると共に、各分割された個々の永久磁石の表面近傍における耐熱性がそれぞれ分割された磁石内部の耐熱性より高くなっていることを特徴とする永久磁石式回転機用回転子。
請求項3:
上記分割された永久磁石がNd系希土類焼結磁石であることを特徴とする請求項1又は2記載の永久磁石式回転機用回転子。
請求項4:
上記のNd系希土類焼結磁石の表面から内部に向かっての保磁力傾斜が、磁石表面から内部に向かってDy又はTbを拡散させたことによって造られたことを特徴とする請求項3記載の永久磁石式回転機用回転子。
請求項5:
上記のNd系希土類焼結磁石の表面から内部に向かっての保磁力傾斜が、磁石表面から内部に向かってDy又はTbを、主に結晶粒界を経由して拡散させたことを特徴とする請求項3記載の永久磁石式回転機用回転子。
請求項6:
上記のNd系希土類焼結磁石の表面から内部に向かってのDy又はTbの拡散が、磁石の表面にDy又はTb酸化物粉末、Dy又はTbフッ化物の粉末、又はDy又はTbを含む合金粉末を塗布し、その後高温に保持してDy又はTbを拡散させたことを特徴とする請求項4又は5記載の永久磁石式回転機用回転子。
Accordingly, the present invention provides the following rotor for permanent magnet type rotating machine and permanent magnet type rotating machine.
Claim 1:
A rotor used in a permanent magnet rotating machine in which a rotor in which a plurality of permanent magnet segments are embedded in a rotor core and a stator wound around a stator core having a plurality of slots are arranged via a gap, or In a rotor used for a permanent magnet rotating machine in which a rotor having a plurality of permanent magnet segments attached to a rotor core surface and a stator wound around a stator core having a plurality of slots are arranged with a gap therebetween, Each of the plurality of permanent magnet segments is composed of an assembly of permanent magnets that are further divided, and the divided permanent magnets are only subjected to surface grinding on the sintered magnet block so that the cross-sectional shape is rectangular, trapezoidal or arcuate and with the those, coercivity of the internal permanent magnet coercive force is divided respectively in the vicinity of the surface of each divided individual permanent magnets Permanent magnet type rotating machine rotor, characterized in that it is larger.
Claim 2:
A rotor used in a permanent magnet rotating machine in which a rotor in which a plurality of permanent magnet segments are embedded in a rotor core and a stator wound around a stator core having a plurality of slots are arranged via a gap, or In a rotor used in a permanent magnet rotating machine in which a rotor having a plurality of permanent magnet segments attached to a rotor core surface and a stator wound around a stator core having a plurality of slots are arranged with a gap therebetween Each of the plurality of permanent magnet segments is composed of an assembly of further divided permanent magnets, and the divided permanent magnets are only subjected to surface grinding on the sintered magnet block, and the cross-sectional shape is rectangular, trapezoidal or arcuate and with the those, heat inside the magnet heat resistance near the surface of the divided individual permanent magnets are divided respectively Permanent magnet type rotating machine rotor, characterized in that it is higher.
Claim 3:
The rotor for a permanent magnet type rotating machine according to claim 1 or 2, wherein the divided permanent magnet is an Nd-based rare earth sintered magnet.
Claim 4:
The coercive force gradient from the surface to the inside of the Nd-based rare earth sintered magnet is formed by diffusing Dy or Tb from the magnet surface to the inside. Rotor for permanent magnet rotating machine.
Claim 5:
The coercive force gradient from the surface to the inside of the Nd-based rare earth sintered magnet is characterized in that Dy or Tb is diffused mainly through the crystal grain boundary from the magnet surface to the inside. The rotor for a permanent magnet type rotating machine according to claim 3.
Claim 6:
Dy or Tb diffusion from the surface of the Nd-based rare earth sintered magnet toward the inside is Dy or Tb oxide powder, Dy or Tb fluoride powder, or alloy powder containing Dy or Tb on the surface of the magnet The rotor for a permanent magnet type rotating machine according to claim 4, wherein Dy or Tb is diffused by applying the coating and then maintaining the temperature at a high temperature.

本発明によれば、IPM又はSPM永久磁石式回転機の回転子に適した高い残留磁束密度と高い保磁力、特に磁石外周部で高い保磁力を有する永久磁石、特にNd系焼結磁石を分割磁石として回転子に用いた高い出力と耐熱性を有する永久磁石式回転機を提供することができる。   According to the present invention, a high residual magnetic flux density and a high coercive force suitable for a rotor of an IPM or SPM permanent magnet type rotating machine, especially a permanent magnet having a high coercive force at the outer periphery of the magnet, particularly an Nd sintered magnet is divided. A permanent magnet rotating machine having high output and heat resistance used for a rotor as a magnet can be provided.

本発明に係る永久磁石式回転機は、複数個の永久磁石セグメントがロータコア内部に埋め込まれた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子、又は複数個の永久磁石セグメントをロータコア表面に取り付けた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子(いわゆる表面磁石型回転機)であり、本発明においては上記複数個の永久磁石セグメントのそれぞれが更に細かく分割された永久磁石(分割磁石)の集合体で構成されていると共に、各永久磁石集合体の分割磁石の表面近傍における保磁力又は耐熱性が内部の保磁力又は耐熱性より大きく又は高くなっているものである。   In the permanent magnet type rotating machine according to the present invention, a rotor in which a plurality of permanent magnet segments are embedded in a rotor core and a stator wound with a winding around a stator core having a plurality of slots are arranged via a gap. A rotor used in a permanent magnet rotating machine, or a rotor in which a plurality of permanent magnet segments are attached to the surface of a rotor core, and a stator wound around a stator core having a plurality of slots are arranged via a gap. A rotor used in a permanent magnet rotating machine (so-called surface magnet type rotating machine). In the present invention, each of the plurality of permanent magnet segments is composed of an assembly of permanent magnets (divided magnets) that are further finely divided. In addition, the coercive force or heat resistance in the vicinity of the surface of the divided magnet of each permanent magnet assembly is larger or higher than the internal coercive force or heat resistance. Than is.

ここで、このようなIPM回転機としては、図1に示すものが例示される。即ち、図1において、1は回転子(ロータ)、2は固定子であり、回転子(ロータ)1は、電磁鋼板を積層したロータヨーク11に永久磁石セグメント12が埋め込まれた4極構造を示した例示であるが、単に長方形の磁石を4極に配置してもよい。極数は、回転機の目的に合わせて選択する。固定子2は、電磁鋼板を積層した6スロット構造で、各ティースには集中巻きでコイル13が巻かれており、コイル13はU相,V相,W相の3相Y結線となっている。なお、図中14はステータヨークである。図1に示すU,V,Wの添え字の+と−はコイルの巻き方向を示すもので、+は紙面に対し出る方向、−は入る方向を意味する。回転子と固定子の位置関係が図1の状態で、U相に余弦波の交流電流、V相にU相より120°位相の進んだ交流電流、W相にU相より240°位相の進んだ交流電流を流すことで、永久磁石の磁束とコイルの磁束の相互作用で回転子は反時計回りに回転する。なお、図中、永久セグメント12に付随させた矢印方向が磁化方向である。   Here, as such an IPM rotating machine, the one shown in FIG. 1 is exemplified. That is, in FIG. 1, 1 is a rotor (rotor), 2 is a stator, and the rotor (rotor) 1 shows a four-pole structure in which a permanent magnet segment 12 is embedded in a rotor yoke 11 in which electromagnetic steel plates are laminated. For example, a rectangular magnet may be arranged in four poles. The number of poles is selected according to the purpose of the rotating machine. The stator 2 has a 6-slot structure in which electromagnetic steel plates are laminated, and a coil 13 is wound around each tooth by concentrated winding. The coil 13 has a U-phase, V-phase, and W-phase three-phase Y connection. . In the figure, reference numeral 14 denotes a stator yoke. The subscripts + and − of U, V, and W shown in FIG. 1 indicate the winding direction of the coil, + means the direction of exiting from the page, and − means the direction of entry. With the positional relationship between the rotor and the stator shown in FIG. 1, the U-phase is a cosine wave AC current, the V-phase is an AC current that is 120 ° more advanced than the U-phase, and the W-phase is 240 ° more advanced than the U-phase. By passing an alternating current, the rotor rotates counterclockwise due to the interaction between the magnetic flux of the permanent magnet and the magnetic flux of the coil. In the figure, the direction of the arrow attached to the permanent segment 12 is the magnetization direction.

本発明において、上記永久磁石セグメント12は、例えば図3(B)に示すように、それぞれ分割された複数の永久磁石(分割磁石)12aの集合体から構成される。   In the present invention, the permanent magnet segment 12 is composed of an assembly of a plurality of divided permanent magnets (divided magnets) 12a, for example, as shown in FIG. 3B.

この場合、分割磁石12aは、Nd系希土類焼結磁石であることが好ましい。Nd系焼結磁石は、常法に従い、母合金を粗粉砕、微粉砕、成形、焼結させることにより得た焼結磁石が用いられるが、本発明においては、上述したとおり、個々の焼結磁石の表面近傍における保磁力又は耐熱性を内部の保磁力又は耐熱性を大きく又は高くしたものを用いるが、これは磁石表面から内部に向かってDy又はTbを拡散させること、この場合主に結晶粒界を経由して拡散させることによって形成し得る。具体的には、分割磁石表面にDyやTbをスパッタによって被着させ、分割磁石を焼結温度より低い温度で熱処理することにより粒界部にのみDyやTbを拡散させて保磁力を増大させる方法や、DyやTbの酸化物やフッ化物や酸フッ化物の粉末を当該分割磁石の表面に存在させた状態で、当該分割磁石及び粉末を当該分割磁石の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施す方法により得られたものが用いられる。   In this case, the split magnet 12a is preferably an Nd-based rare earth sintered magnet. As the Nd-based sintered magnet, a sintered magnet obtained by roughly pulverizing, finely pulverizing, forming and sintering a mother alloy according to a conventional method is used. In the present invention, as described above, individual sintering is performed. The coercive force or heat resistance in the vicinity of the surface of the magnet is used in which the internal coercive force or heat resistance is increased or increased. This is because Dy or Tb is diffused from the magnet surface toward the inside. It can be formed by diffusing via grain boundaries. Specifically, Dy or Tb is deposited on the surface of the split magnet by sputtering, and the split magnet is heat-treated at a temperature lower than the sintering temperature, so that Dy and Tb are diffused only in the grain boundary portion to increase the coercive force. In a state in which the method, the oxide of Dy or Tb, the powder of fluoride or oxyfluoride is present on the surface of the segmented magnet, the segmented magnet and the powder are vacuumed at a temperature equal to or lower than the sintering temperature of the segmented magnet. What was obtained by the method of heat-processing in an inert gas is used.

より好適には、分割磁石の表面にDy又はTb酸化物粉末、Dy又はTbフッ化物の粉末、又はDy又はTbを含む合金粉末を塗布し、その後高温に保持してDy又はTbを拡散させることによって得ることができる。   More preferably, Dy or Tb oxide powder, Dy or Tb fluoride powder, or alloy powder containing Dy or Tb is applied to the surface of the split magnet, and then held at a high temperature to diffuse Dy or Tb. Can be obtained by:

ここで、IPM回転機に使われる永久磁石(分割磁石)は、焼結磁石ブロックを所定の形状に砥石、切削刃、ワイヤーソー等を用いて研削加工して得られる。その断面形状は、作りやすさの観点から、図2(A)に示すような長方形にすることが多いが、回転機の特性向上のために、図2(B),(C)に示す台形や弓形にすることもある。なお、図2中、矢印方向が磁化方向Mである。   Here, the permanent magnet (divided magnet) used in the IPM rotating machine is obtained by grinding a sintered magnet block into a predetermined shape using a grindstone, a cutting blade, a wire saw or the like. The cross-sectional shape is often rectangular as shown in FIG. 2A from the viewpoint of ease of making, but the trapezoid shown in FIGS. 2B and 2C is used to improve the characteristics of the rotating machine. Or bowed. In FIG. 2, the arrow direction is the magnetization direction M.

分割磁石の大きさは特に限定されないが、本発明において、分割磁石からDyやTbを拡散処理するために、DyやTbの拡散割合が分割磁石の比表面積が大きい、即ち寸法が小さいほど多くなるので、例えば図3(A)、図6(A)、図10(A)において、W、L、Tのうち最も小さい寸法は50mm以下、好ましくは30mm以下、特に好ましくは20mm以下であることが好ましい。なお、上記寸法の下限は特に制限されず、実用的な値として0.1mm以上である。   The size of the split magnet is not particularly limited. In the present invention, in order to diffuse Dy and Tb from the split magnet, the diffusion ratio of Dy and Tb increases as the specific surface area of the split magnet increases, that is, the size decreases. Therefore, for example, in FIGS. 3A, 6A, and 10A, the smallest dimension among W, L, and T is 50 mm or less, preferably 30 mm or less, and particularly preferably 20 mm or less. preferable. In addition, the minimum in particular of the said dimension is not restrict | limited, It is 0.1 mm or more as a practical value.

本発明は、原料磁石を永久磁石体の所望の特性になるように切削加工して適宜分割磁石を形成する。なお、永久磁石セグメントの分割数は2〜50個の分割程度の範囲、好ましくは、4〜25個に分割したものを接着剤により接着して集合体を形成させる。ここで、集合体としては、図3(B)、図6(B)、図10(B)に示したように、直方体状、湾曲板状の分割磁石12aにつき、図中W方向(軸方向乃至長手方向)を水平方向と一致させてその複数個を積み上げることにより形成したもの、あるいは図12(A)に示すように、直方体状の分割磁石12aにつき、軸方向を垂直方向と一致させて配設し、その複数個を一列に並列、集合させたもの、図12(B)に示すように、立方体形状の分割磁石12aを縦方向に積み上げると共に、横方向に一列に並列、集合させたもの、図12(C)に示すように、直方体状の分割磁石12aを図3(B)に示したように積み上げたもの2組を並列、集合させたものなど、種々の態様とすることができ、図示の集合体に限定されない。
積層された磁石集合体は、ロータ内に配置されている穴に挿入されて、磁石埋め込み型のロータが得られる。
IPM回転機は、永久磁石を通る磁束は回転子の回転と共に時々刻々変化しており、この磁場変動により磁石内部に渦電流が発生する。渦電流の経路は、磁石の磁化方向に垂直な面内に流れる。
In the present invention, the material magnet is cut so as to have the desired characteristics of the permanent magnet body, and the divided magnets are appropriately formed. The number of divisions of the permanent magnet segments is in the range of about 2 to 50, preferably 4 to 25, and an aggregate is formed by bonding them with an adhesive. Here, as shown in FIGS. 3 (B), 6 (B), and 10 (B), the aggregate is a rectangular parallelepiped, curved plate-like divided magnet 12a in the W direction (axial direction). Or the longitudinal direction) is aligned with the horizontal direction, or a plurality of the stacked magnets are stacked, or as shown in FIG. 12A, the axial direction of the rectangular parallelepiped segmented magnet 12a is aligned with the vertical direction. As shown in FIG. 12 (B), a plurality of the divided magnets 12a are stacked in the vertical direction and are assembled in parallel in a line in the horizontal direction. As shown in FIG. 12 (C), the rectangular parallelepiped segmented magnets 12a may be arranged in various forms such as two sets of stacked magnets 12a stacked in parallel as shown in FIG. 3 (B). And is not limited to the illustrated assembly.
The laminated magnet assembly is inserted into a hole arranged in the rotor to obtain a magnet-embedded rotor.
In the IPM rotating machine, the magnetic flux passing through the permanent magnet constantly changes with the rotation of the rotor, and an eddy current is generated inside the magnet due to this magnetic field fluctuation. The eddy current path flows in a plane perpendicular to the magnetization direction of the magnet.

分割磁石12aであっても、渦電流は磁化方向に垂直な面に流れる。渦電流の流れ方と磁石内部の温度分布を、図5に模式図としてまとめた。図5に示すように、渦電流の密度が、個々の磁石の外周部で高くなり、温度が上がる。ステータ側での磁場変動が大きいため、磁化方向の温度分布はステータ側の方が回転軸の中心側より若干高くなっている。渦電流による減磁を抑えるためには、磁石外周部にあたる磁石表面近傍で耐減磁性の指標となる保磁力が磁石内部より高いNd磁石が要求される。磁石内部は、渦電流の発熱が少ないので、必要以上の保磁力はいらない。
図3は、分割磁石12aの全表面からDy又はTbを拡散させ(図中、斜線部分がDy又はTbを拡散させた表面である)[図3(A)]、磁石表面近傍の保磁力を上げた5個の分割磁石12aを接着剤で一体化した[図3(B)]例示である。
Even in the divided magnet 12a, the eddy current flows in a plane perpendicular to the magnetization direction. The flow of eddy current and the temperature distribution inside the magnet are summarized as a schematic diagram in FIG. As shown in FIG. 5, the density of the eddy current increases at the outer periphery of each magnet, and the temperature rises. Since the magnetic field fluctuation on the stator side is large, the temperature distribution in the magnetization direction is slightly higher on the stator side than on the center side of the rotating shaft. In order to suppress demagnetization due to eddy current, an Nd magnet having a coercive force that is an index of demagnetization resistance in the vicinity of the magnet surface corresponding to the outer peripheral portion of the magnet is required. The magnet does not generate excessive eddy currents, so it does not require more coercive force.
FIG. 3 is a diagram in which Dy or Tb is diffused from the entire surface of the segmented magnet 12a (the hatched portion is the surface in which Dy or Tb is diffused in FIG. 3) [FIG. FIG. 3B illustrates an example in which five raised magnets 12a are integrated with an adhesive.

図6の分割磁石12aは、図6(A)に示したように、1個の分割磁石において磁化方向に平行な4面からDy又はTbの吸収拡散処理を行った(図中、斜線部分がDy又はTbを拡散させた表面であり、斜線のないXY面の2面は未処理)後、該分割磁石を5個、接着剤で一体化した(図中、斜線部分がDy又はTbを拡散させた表面[図6(B)]ものである。図3又は図6のような形態であっても、磁石外周部にあたる磁石表面近傍で耐減磁性の指標となる保磁力が、磁石内部より高いNd磁石を得ることができる。なお、表面近傍とは表面から6mm程度までの領域を意味する。   As shown in FIG. 6A, the segmented magnet 12a in FIG. 6 was subjected to Dy or Tb absorption / diffusion treatment from four surfaces parallel to the magnetization direction in one segmented magnet (in the figure, the hatched portion is Dy or Tb diffused surface, 2 surfaces of XY surface without hatching are untreated), then 5 of the divided magnets are integrated with adhesive (in the figure, hatched portion diffuses Dy or Tb) 6B. Even in the configuration as shown in Fig. 3 or Fig. 6, the coercive force serving as an index of demagnetization resistance in the vicinity of the magnet surface corresponding to the outer periphery of the magnet is greater than the inside of the magnet. A high Nd magnet can be obtained, and the vicinity of the surface means a region from the surface to about 6 mm.

焼結磁石体の表面から結晶磁気異方性を高める効果の特に大きい元素であるDy、Tbなどの拡散吸収処理の結果、残留磁束密度の低減をほとんど伴わずにNd系焼結磁石の保磁力が効率的に増大されるので、焼結磁石体の保磁力に分布ができる。図3に示した磁石表面全面からの拡散吸収処理で得られた磁石の保磁力分布の様子を図4にまとめた。磁石表面近傍の保磁力が、磁石内部の保磁力より高くなっている。図6に示した磁石表面のうち磁化方向に平行な4面からの拡散吸収処理で得られた磁石の保磁力分布の様子を図7にまとめた。磁石表面近傍の保磁力が、磁石内部の保磁力より高くなっているが、磁化方向に垂直な面からの拡散吸収がないので、これらの面の保磁力は向上していない。IPM回転機の場合、渦電流による発熱は、磁化方向に平行な4面(XZ面、YZ面)で特に大きいので、図7の保磁力分布であっても耐熱性を向上することができる。何れの形態でも磁石表面近傍で保磁力が高まるので、渦電流発熱に対する耐熱性向上に効果的な分布となっている。   As a result of diffusion absorption treatment of elements such as Dy and Tb which are particularly effective in increasing the magnetocrystalline anisotropy from the surface of the sintered magnet body, the coercive force of the Nd-based sintered magnet is hardly accompanied by a reduction in residual magnetic flux density. Is effectively increased, so that the coercivity of the sintered magnet body can be distributed. The state of coercive force distribution of the magnet obtained by the diffusion absorption process from the entire magnet surface shown in FIG. 3 is summarized in FIG. The coercive force in the vicinity of the magnet surface is higher than the coercive force inside the magnet. FIG. 7 shows the coercivity distribution of the magnets obtained by the diffusion absorption process from four surfaces parallel to the magnetization direction among the magnet surfaces shown in FIG. The coercive force in the vicinity of the magnet surface is higher than the coercive force inside the magnet, but since there is no diffusion absorption from the surface perpendicular to the magnetization direction, the coercive force of these surfaces is not improved. In the case of the IPM rotating machine, heat generation due to eddy current is particularly large on the four planes (XZ plane, YZ plane) parallel to the magnetization direction, so that the heat resistance can be improved even with the coercive force distribution of FIG. In any form, since the coercive force is increased near the magnet surface, the distribution is effective in improving the heat resistance against eddy current heat generation.

SPM回転機の一例を図8に示す。回転子(ロータ)1は、ロータヨーク11の表面に、永久磁石セグメント12を貼り付けた構造で、空隙を介して配置された複数のスロットを有する固定子(ステータ)2で構成されている。固定子2はIPM回転機と同様である。この回転機は、高精度のトルク制御を必要とするACサーボモータ等に利用される。トルクは、脈動の小さなものでなければならない。従って、回転子が回転したときに固定子のスロットと永久磁石との位置関係から、空隙の磁束分布が変化することに起因するコギングトルク(コイルに電流を流さない状態でのトルク)やコイルの電流を流して駆動した時のトルクリップルが発生することは好ましくない。トルクリップルは、制御性を悪くする他に騒音の原因にもなる。コギングトルクを低減する方法として、図9(C)及び図10(A)に示すような永久磁石の端部形状が中央部より薄い形状の分割磁石12aを用いる。これにより、磁束分布の変化が大きな磁極の切り替わり部分である永久磁石端部での磁束分布が滑らかになり、コギングトルクを低減することができる。従って、図9(C)及び図10(A)のようなC型の磁石がよく用いられ、その他に図9(B)に示すD型磁石も用いられる。作りやすさの観点から図9(A)の長方形磁石にする場合もある。
An example of the SPM rotating machine is shown in FIG. The rotor (rotor) 1 has a structure in which a permanent magnet segment 12 is bonded to the surface of a rotor yoke 11, and is composed of a stator (stator) 2 having a plurality of slots arranged with gaps. The stator 2 is the same as the IPM rotating machine. This rotating machine is used for an AC servo motor or the like that requires highly accurate torque control. The torque must be small in pulsation. Therefore, when the rotor rotates, the cogging torque (torque in the state where no current flows through the coil) due to the change in the magnetic flux distribution of the air gap from the positional relationship between the stator slot and the permanent magnet, It is not preferable that torque ripple occurs when driven by passing an electric current. Torque ripple causes noise as well as poor controllability. As a method of reducing the cogging torque, a split magnet 12a having a shape in which the end portion of the permanent magnet is thinner than the central portion as shown in FIGS. 9C and 10A is used. As a result, the magnetic flux distribution at the end of the permanent magnet, which is the switching portion of the magnetic poles with a large change in the magnetic flux distribution, becomes smooth, and the cogging torque can be reduced. Therefore, a C-type magnet as shown in FIGS. 9C and 10A is often used, and a D-type magnet shown in FIG. 9B is also used. From the viewpoint of ease of production, the rectangular magnet shown in FIG. 9A may be used.

SPM回転機でも、永久磁石に渦電流が流れ、渦電流低減のために図10(A)に示すような分割磁石12aが効果的である。図10(B)は、磁石の表面からDy又はTbを拡散させた(図中、斜線部分がDy又はTbを拡散させた表面である)4個の分割磁石12aを接着剤で一体化したものである。分割した磁石12aであっても、渦電流は磁化方向に垂直な面に流れる。渦電流の流れ方と磁石内部の温度分布を、図11に模式図としてまとめた。図11に示すように渦電流の密度が、個々の磁石の外周部で高くなり、温度が上がる。ステータ側での磁場変動が大きいため、磁化方向の温度分布はステータ側で高くなっている。磁化方向の温度分布は、IPMモータより大きい。本発明では、渦電流による減磁を抑え、磁石外周部及びステータ側にあたる磁石表面近傍で耐減磁性の指標となる保磁力が磁石内部より高いNd磁石が用いられる。   Even in the SPM rotating machine, an eddy current flows through the permanent magnet, and the split magnet 12a as shown in FIG. 10A is effective for reducing the eddy current. FIG. 10 (B) shows an example in which four divided magnets 12a in which Dy or Tb is diffused from the surface of the magnet (the hatched portion is the surface in which Dy or Tb is diffused) are integrated with an adhesive. It is. Even in the divided magnet 12a, the eddy current flows in a plane perpendicular to the magnetization direction. The flow of eddy current and the temperature distribution inside the magnet are summarized as a schematic diagram in FIG. As shown in FIG. 11, the density of the eddy current increases at the outer periphery of each magnet, and the temperature rises. Since the magnetic field fluctuation on the stator side is large, the temperature distribution in the magnetization direction is high on the stator side. The temperature distribution in the magnetization direction is larger than that of the IPM motor. In the present invention, an Nd magnet that suppresses demagnetization due to eddy current and has a coercive force that is an index of demagnetization resistance in the vicinity of the outer surface of the magnet and in the vicinity of the surface of the stator is used.

IPM回転機と同様に、Nd系焼結磁石の表面から結晶磁気異方性を高め、Dy、Tbなどの元素で分割磁石表面を拡散吸収処理することで、残留磁束密度の低減をほとんど伴わずに磁石の表面近傍の保磁力が高い磁石が得られ、耐熱性を高めたSPM回転機用回転子を得ることができる。   Like the IPM rotating machine, the crystal magnetic anisotropy is increased from the surface of the Nd-based sintered magnet, and the surface of the divided magnet is diffused and absorbed with elements such as Dy and Tb, so that there is almost no reduction in residual magnetic flux density. In addition, a magnet having a high coercive force near the surface of the magnet can be obtained, and a rotor for an SPM rotating machine with improved heat resistance can be obtained.

以下、本発明の具体的態様について実施例をもって詳述するが、本発明の内容はこれに限定されるものではない。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to examples, but the content of the present invention is not limited thereto.

[実施例及び比較例]
<実施例及び比較例の磁気特性>
純度99質量%以上のNd、Co、Al、Feメタルとフェロボロンを所定量秤量してAr雰囲気中で高周波溶解し、この合金溶湯をAr雰囲気中で銅製単ロールに注湯するいわゆるストリップキャスト法により薄板状の合金とした。得られた合金の組成はNdが13.5原子%、Coが1.0原子%、Alが0.5原子%、Bが5.8原子%、Feが残部であり、これを合金Aと称する。合金Aに水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させる、いわゆる水素粉砕により30メッシュ以下の粗粉とした。更に純度99質量%以上のNd、Tb、Fe、Co、Al、Cuメタルとフェロボロンを所定量秤量し、Ar雰囲気中で高周波溶解した後、鋳造した。得られた合金の組成はNdが20原子%、Tbが10原子%、Feが24原子%、Bが6原子%、Alが1原子%、Cuが2原子%、Coが残部であり、これを合金Bと称する。合金Bは窒素雰囲気中、ブラウンミルを用いて30メッシュ以下に粗粉砕された。
[Examples and Comparative Examples]
<Magnetic Characteristics of Examples and Comparative Examples>
Nd, Co, Al, Fe metal having a purity of 99% by mass or more and ferroboron are weighed in predetermined amounts and melted at high frequency in an Ar atmosphere, and this molten alloy is poured into a single copper roll in an Ar atmosphere by a so-called strip casting method. A thin plate-like alloy was used. The composition of the obtained alloy is 13.5 atomic% Nd, 1.0 atomic% Co, 0.5 atomic% Al, 5.8 atomic% B, and the balance Fe. Called. The alloy A was occluded with hydrogen and then heated to 500 ° C. while being evacuated to partially release hydrogen, so that a coarse powder of 30 mesh or less was obtained by so-called hydrogen pulverization. Further, Nd, Tb, Fe, Co, Al, Cu metal having a purity of 99% by mass or more and ferroboron were weighed in predetermined amounts, melted by high frequency in an Ar atmosphere, and then cast. The composition of the resulting alloy is Nd 20 atom%, Tb 10 atom%, Fe 24 atom%, B 6 atom%, Al 1 atom%, Cu 2 atom%, and Co remaining. Is referred to as Alloy B. Alloy B was coarsely pulverized to 30 mesh or less using a brown mill in a nitrogen atmosphere.

続いて、合金A粉末を90質量%、合金B粉末を10質量%秤量して、窒素置換したVブレンダー中で30分間混合した。この混合粉末は高圧窒素ガスを用いたジェットミルにて、粉末の平均粉末粒径4μmに微粉砕された。得られた混合微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm2の圧力で成形した。次いで、この成形体をAr雰囲気の焼結炉内に投入し、1,060℃で2時間焼結し、永久磁石ブロックを作製した。永久磁石ブロックをダイヤモンド砥石により図3に示すような直方体磁石に全面研削加工した。その寸法はL=18mm、W=70mm、T=20mm(Tは磁気異方性化した方向)である。図10に示すようなC型の磁石も全面研削加工にて製作した。その寸法はL=22.5mm、W=100mm、T=11mmである。研削加工された磁石体をアルカリ溶液で洗浄した後、酸洗浄して乾燥させた。各洗浄の前後には純水による洗浄工程が含まれている。 Subsequently, 90% by mass of the alloy A powder and 10% by mass of the alloy B powder were weighed and mixed for 30 minutes in a nitrogen-substituted V blender. This mixed powder was finely pulverized to a mean powder particle size of 4 μm by a jet mill using high-pressure nitrogen gas. The obtained mixed fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into a sintering furnace in an Ar atmosphere and sintered at 1,060 ° C. for 2 hours to produce a permanent magnet block. The permanent magnet block was ground to a rectangular parallelepiped magnet as shown in FIG. 3 with a diamond grindstone. The dimensions are L = 18 mm, W = 70 mm, and T = 20 mm (T is the direction in which magnetic anisotropy is achieved). A C-type magnet as shown in FIG. 10 was also produced by full grinding. The dimensions are L = 22.5 mm, W = 100 mm, and T = 11 mm. The ground magnet body was washed with an alkaline solution, and then washed with an acid and dried. A cleaning process with pure water is included before and after each cleaning.

次に、平均粉末粒径が5μmのフッ化ディスプロシウムを質量分率50%でエタノールと混合し、これに超音波を印加しながら前記の直方体及びC型磁石体を1分間浸した。引き上げた磁石は直ちに熱風により乾燥させた。この時のフッ化ディスプロシウムによる磁石表面空間の占有率は45%であった。これにAr雰囲気中900℃で1時間という条件で吸収処理を施し、更に500℃で1時間時効処理して急冷することで、直方体磁石体M1とC型磁石体M3を得た。比較のために熱処理のみ施した直方体磁石体をP1、C型磁石体をP2とした。   Next, dysprosium fluoride having an average powder particle size of 5 μm was mixed with ethanol at a mass fraction of 50%, and the rectangular parallelepiped and the C-shaped magnet were immersed for 1 minute while applying ultrasonic waves thereto. The magnet pulled up was immediately dried with hot air. The occupation ratio of the magnet surface space by dysprosium fluoride at this time was 45%. This was subjected to an absorption treatment at 900 ° C. for 1 hour in an Ar atmosphere, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling, thereby obtaining a rectangular parallelepiped magnet body M1 and a C-type magnet body M3. For comparison, a rectangular parallelepiped magnet body subjected only to heat treatment was designated as P1, and a C-type magnet body was designated as P2.

M1、M3と同じ形状の磁石体に対し、平均粉末粒径が5μmのフッ化テルビウムを質量分率50%でエタノールと混合し、磁石体の磁化方向に平行な四面に塗った。磁石は直ちに熱風により乾燥させた。この時のフッ化テルビウムによる磁石表面空間の占有率は45%であった。これにAr雰囲気中900℃で1時間という条件で吸収処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。この直方体磁石体をM2、C型磁石体をM4と称する。   To magnets having the same shape as M1 and M3, terbium fluoride having an average powder particle size of 5 μm was mixed with ethanol at a mass fraction of 50% and applied to four surfaces parallel to the magnetization direction of the magnets. The magnet was immediately dried with hot air. At this time, the occupation ratio of the magnet surface space by terbium fluoride was 45%. This was subjected to an absorption treatment at 900 ° C. for 1 hour in an Ar atmosphere, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling to obtain a magnet body. This rectangular parallelepiped magnet body is referred to as M2, and the C-type magnet body is referred to as M4.

これらの磁石体の磁気特性(VSM測定)を表1に示した。下記のように一辺1mmの立方体に磁気特性評価用試料を切り出し、磁石各部の磁気特性を評価した。
磁気特性サンプルの位置
磁気特性サンプルは1mm角であって
表面から1mmまでの1mm角
M1,M2,P1はW方向の中央、T方向の中央、L方向の表面1mmまで
M3,M4,P2はW方向の中央、L方向の中央、T方向の表面1mmまで
中央部
文字通り中央部の1mm角
M1,M2,P1はW方向の中央、T方向の中央、L方向の中央(表面から9mm)
M3,M4,P2はW方向の中央、L方向の中央、T方向の中央(表面から5.5mm)
Table 1 shows the magnetic properties (VSM measurement) of these magnet bodies. A sample for evaluating magnetic properties was cut out into a cube having a side of 1 mm as described below, and the magnetic properties of each part of the magnet were evaluated.
Position of magnetic property sample The magnetic property sample is 1 mm square, 1 mm square from the surface to 1 mm M1, M2, P1 is the center in the W direction, the center in the T direction, and the surface in the L direction is 1 mm M3, M4, P2 is the W Center of direction, center of L direction, center part up to 1mm surface in T direction Literally 1mm square of center part M1, M2, P1 are center of W direction, center of T direction, center of L direction (9mm from surface)
M3, M4, and P2 are the center in the W direction, the center in the L direction, and the center in the T direction (5.5 mm from the surface).

ディスプロシウムの吸収処理を施していない磁石体P1の保磁力に対して本発明による永久磁石体M1は最外周部で500kAm-1の保磁力増大が認められた。磁石内部は、表面から9mmの距離があるので、ディスプロシウムが吸収されず、保磁力に変化がなかった。詳細に保磁力の分布を調べたところ、表面から6mmまで保磁力増大が認められた。また、テルビウムの吸収処理を施した磁石体M2も表面から6mmまで保磁力の増大が認められ、施していない磁石体P1の保磁力に対して800kAm-1の保磁力増大が認められる。本発明の永久磁石の残留磁束密度の低下は5mTと僅かなものであった。次に、本発明による永久磁石体M3は最外周部で500kAm-1の保磁力増大が認められた。磁石内部は、表面からの距離が5.5mmと磁石体M1より小さかったため、磁化方向に垂直の表面からのディスプロシウムの拡散吸収が効いて、100kAm-1の保磁力増大があった。また、テルビウムの吸収処理を施した磁石体M4は、施していない磁石体P1の保磁力に対して表面で800kAm-1、内部で200kAm-1の保磁力増大が認められる。比較のために、合金AのNdの一部をDyで置換した組成合金を用いて永久磁石を作製し、500kAm-1の保磁力増大を図ったところ、残留磁束密度は50mT低下した。 The permanent magnet body M1 according to the present invention showed an increase in coercive force of 500 kAm −1 at the outermost peripheral portion with respect to the coercive force of the magnet body P1 not subjected to the dysprosium absorption treatment. Since the inside of the magnet has a distance of 9 mm from the surface, dysprosium was not absorbed and the coercive force did not change. When the distribution of coercive force was examined in detail, an increase in coercive force was recognized from the surface to 6 mm. Further, the magnet body M2 subjected to the terbium absorption treatment also has an increase in coercive force up to 6 mm from the surface, and an increase in coercive force of 800 kAm −1 with respect to the coercive force of the magnet body P1 which has not been applied. The decrease in the residual magnetic flux density of the permanent magnet of the present invention was a slight 5 mT. Next, in the permanent magnet body M3 according to the present invention, an increase in coercive force of 500 kAm −1 was observed at the outermost periphery. Since the distance from the surface inside the magnet was 5.5 mm, which was smaller than the magnet body M1, dysprosium diffused and absorbed from the surface perpendicular to the magnetization direction, and the coercive force increased by 100 kAm- 1 . Also, the magnet body M4 subjected to absorption treatment terbium performs surface against the coercive force of the magnet P1 not 800KAm -1, internally coercive force increase of 200KAm -1 is observed. For comparison, a permanent magnet was prepared using a composition alloy in which a part of Nd of alloy A was replaced with Dy, and the coercive force was increased by 500 kAm −1 . As a result, the residual magnetic flux density was reduced by 50 mT.

磁石体M1のSEMによる反射電子像とEPMAにより、磁石にはDy及びFが観察された。処理前の磁石にはDy及びFは含まれていないので、磁石体M1におけるDy及びFの存在は、本発明の吸収処理によるものである。吸収されたDyは結晶粒界近傍にのみ濃化している。一方、フッ素(F)も粒界部に存在し、処理前から磁石内に含まれている不可避的不純物である酸化物と結合して酸フッ化物を形成している。このDyの分布により、残留磁束密度の低下を最小限に抑えながら保磁力を増大させることが可能となった。   Dy and F were observed in the magnet from the backscattered electron image and EPMA of the magnet body M1. Since the magnet before processing does not contain Dy and F, the presence of Dy and F in the magnet body M1 is due to the absorption processing of the present invention. The absorbed Dy is concentrated only in the vicinity of the crystal grain boundary. On the other hand, fluorine (F) is also present in the grain boundary part, and forms an oxyfluoride by being combined with an oxide that is an inevitable impurity contained in the magnet before the treatment. This Dy distribution makes it possible to increase the coercive force while minimizing the decrease in residual magnetic flux density.

Figure 0005251219
Figure 0005251219

<実施例1,2及び比較例1の磁石を用いたIPMモータ特性>
本発明の磁石体M1、M2及び比較例の磁石体P1を永久磁石モータに組み込んだ時のモータ特性について説明する。
永久磁石モータは図1に示すIPMモータである。回転子は、0.5mmの電磁鋼板を積層したロータヨークに永久磁石が埋め込まれた4極構造である。ロータヨークの寸法は外径312mm、高さ90mmとなっている。埋め込まれる永久磁石の寸法は、幅70mm、磁気異方性化方向の寸法20mm、軸方向の寸法90mmである。軸方向5分割された磁石を用いた。固定子は、0.5mmの電磁鋼板を積層した6スロット構造で、各ティースには集中巻きでコイルが60ターン巻かれており、コイルはU相,V相,W相の3相Y結線となっている。
<IPM motor characteristics using magnets of Examples 1 and 2 and Comparative Example 1>
The motor characteristics when the magnet bodies M1 and M2 of the present invention and the magnet body P1 of the comparative example are incorporated in a permanent magnet motor will be described.
The permanent magnet motor is the IPM motor shown in FIG. The rotor has a quadrupole structure in which permanent magnets are embedded in a rotor yoke in which 0.5 mm electromagnetic steel plates are laminated. The rotor yoke has an outer diameter of 312 mm and a height of 90 mm. The embedded permanent magnet has a width of 70 mm, a magnetic anisotropy direction of 20 mm, and an axial direction of 90 mm. A magnet divided into five in the axial direction was used. The stator is a 6-slot structure in which 0.5 mm electromagnetic steel plates are laminated, and each coil is wound with concentrated winding for 60 turns, and the coil has a U-phase, V-phase, and W-phase three-phase Y connection. It has become.

図3の本発明の処理を行った磁石体M1、M2と処理なしのP1をそれぞれエポキシ接着剤で5枚貼り合せた後で着磁し、ロータヨークに組み込んだ。各磁石を組み込んだモータをMM1、MM2、MP1とした。各相に実効値電流50A、2,400rpmで1時間連続運転し、運転直後のトルクと連続運転の後、十分冷えた状態で再度運転した時のトルクの比から、永久磁石の減磁率を評価した。結果を表2にまとめた。ここで、A:運転直後のトルク、B:連続運転の後、十分冷えた状態で再度運転した直後のトルクとして
減磁率=(A+B)/A(%)
A、Bの状態とも運転直後なので、磁石の温度は同じである。変化量は、連続運転で渦電流損失により、磁石の温度がより減じた分に相当する。この試験条件で、比較例1のMP1は11%のトルク減少が見られたが、実施例のMM1、MM2では、トルク減少はほとんど見られなかった。このことから磁石表面近傍の保磁力向上で、渦電流損失による減磁が抑えられることが確認できた。
The magnet bodies M1 and M2 subjected to the treatment of the present invention shown in FIG. 3 and P1 without treatment were bonded together with an epoxy adhesive, and then magnetized and assembled into a rotor yoke. Motors incorporating each magnet were designated as MM1, MM2, and MP1. Evaluate the demagnetization factor of the permanent magnet from the ratio of the torque immediately after the operation and the torque when it is operated again in a sufficiently cooled state after continuous operation for 1 hour at an effective current of 50A and 2,400 rpm for each phase. did. The results are summarized in Table 2. Here, A: torque immediately after operation, B: torque immediately after operation again in a sufficiently cooled state after continuous operation, demagnetization factor = (A + B) / A (%)
Since both the states A and B are immediately after operation, the temperature of the magnet is the same. The amount of change corresponds to the amount of decrease in the magnet temperature due to eddy current loss in continuous operation. Under this test condition, MP1 of Comparative Example 1 showed 11% torque reduction, but MM1 and MM2 of Examples showed almost no torque reduction. This confirms that demagnetization due to eddy current loss can be suppressed by improving the coercive force in the vicinity of the magnet surface.

Figure 0005251219
Figure 0005251219

<実施例3,4及び比較例2の磁石を用いたSPMモータ特性>
本発明の磁石体M3、M4及び比較例の磁石体P2を永久磁石モータに組み込んだ時のモータ特性について説明する。
永久磁石モータは図8に示すSPMモータである。回転子は、0.5mmの電磁鋼板を積層したロータヨークの表面に永久磁石が接着剤で固定されている4極構造である。回転子の外径は、312mm、高さ90mmとなっている。埋め込まれる永久磁石の寸法は、幅100mm、磁気異方性化方向の寸法11mm、軸方向の寸法90mmである。軸方向4分割された磁石を用いた。固定子は、実施例1,2及び比較例1と同じものである。
<SPM Motor Characteristics Using Magnets of Examples 3 and 4 and Comparative Example 2>
The motor characteristics when the magnet bodies M3 and M4 of the present invention and the magnet body P2 of the comparative example are incorporated in a permanent magnet motor will be described.
The permanent magnet motor is an SPM motor shown in FIG. The rotor has a four-pole structure in which a permanent magnet is fixed with an adhesive on the surface of a rotor yoke in which 0.5 mm electromagnetic steel plates are laminated. The outer diameter of the rotor is 312 mm and the height is 90 mm. The embedded permanent magnet has a width of 100 mm, a magnetic anisotropy direction of 11 mm, and an axial direction of 90 mm. A magnet divided into four in the axial direction was used. The stator is the same as in Examples 1 and 2 and Comparative Example 1.

図10の本発明の処理を行った磁石体M3、M4と処理なしのP2をそれぞれエポキシ接着剤で4枚貼り合せた後で着磁し、ロータヨークに表面にエポキシ接着剤で固定した。各磁石を組み込んだモータをMM3、MM4、MP2とした。各相に実効値電流50A、2,400rpmで1時間連続運転し、運転直後のトルクと連続運転の後、十分冷えた状態で再度運転した時のトルクの比から、永久磁石の減磁量を評価した。結果を表3にまとめた。この試験条件で、比較例2のMP2は32%のトルク減少が見られたが、実施例のMM3、MM4では、トルク減少はほとんど見られなかった。SPMモータにおいても磁石表面近傍の保磁力向上で、渦電流損失による減磁が抑えられることが確認できた。   The magnet bodies M3 and M4 subjected to the treatment of the present invention in FIG. 10 and P2 without treatment were bonded together with an epoxy adhesive, and then magnetized, and fixed to the rotor yoke on the surface with an epoxy adhesive. The motor incorporating each magnet was designated as MM3, MM4, MP2. Each phase is continuously operated for 1 hour at an effective current of 50A and 2,400 rpm, and the demagnetization amount of the permanent magnet is calculated from the ratio of the torque immediately after the operation and the torque when the operation is restarted in a sufficiently cooled state after the continuous operation. evaluated. The results are summarized in Table 3. Under this test condition, MP2 of Comparative Example 2 showed a torque reduction of 32%, but MM3 and MM4 of Examples showed almost no torque reduction. It was confirmed that demagnetization due to eddy current loss can be suppressed by improving the coercive force in the vicinity of the magnet surface even in the SPM motor.

Figure 0005251219
Figure 0005251219

なお、実施例は永久磁石モータであるが、永久磁石発電機も同じ構造であり、本発明の効果は同様である。   In addition, although an Example is a permanent magnet motor, a permanent magnet generator is also the same structure and the effect of this invention is the same.

本発明に係る4極6スロットのIPMモータの一例を説明する断面図である。It is sectional drawing explaining an example of the 4 pole 6 slot IPM motor based on this invention. (A)〜(C)はそれぞれIPMモータにおける永久磁石集合体を形成する分割磁石の一例を示す断面図である。(A)-(C) are sectional drawings which show an example of the division | segmentation magnet which each forms the permanent magnet assembly in an IPM motor. 本発明のIPMモータに用いる永久磁石セグメントの一例を示し、(A)は全表面からDy又はTbの拡散処理を行った分割磁石の斜視面、(B)は同分割磁石を用いた永久磁石集合体の斜視図である。An example of the permanent magnet segment used for the IPM motor of this invention is shown, (A) is a perspective view of the split magnet which performed the diffusion process of Dy or Tb from the whole surface, (B) is a permanent magnet assembly using the split magnet. It is a perspective view of a body. 図3(A)の分割磁石の保磁力の分布状態の説明図であり、(A)は分割磁石の側面における説明図、(B)は同端面における説明図である。It is explanatory drawing of the distribution state of the coercive force of the split magnet of FIG. 3 (A), (A) is explanatory drawing in the side surface of a split magnet, (B) is explanatory drawing in the end surface. (A)はIPMモータにおいて、図3(B)の永久磁石集合体における渦電流の流れ方を説明する図、(B)は同永久磁石集合体における磁石内部の温度分布を説明する図である。(A) is a figure explaining how the eddy current flows in the permanent magnet assembly of FIG. 3 (B) in the IPM motor, and (B) is a diagram explaining the temperature distribution inside the magnet in the permanent magnet assembly. . 本発明のIPM回転機に用いる永久磁石セグメントの他の例を示し、(A)は磁化方向に平行な4つの表面からDy又はTbの拡散処理を行った分割磁石の斜視図、(B)は同分割磁石を用いた永久磁石集合体の斜視図である。The other example of the permanent magnet segment used for the IPM rotary machine of this invention is shown, (A) is a perspective view of the division magnet which performed the diffusion process of Dy or Tb from four surfaces parallel to a magnetization direction, (B) is It is a perspective view of the permanent magnet assembly using the divided magnet. 図6(A)の分割磁石の保磁力の分布状態の説明図であり、(A)は分割磁石の側面における説明図、(B)は同端面における説明図である。It is explanatory drawing of the distribution state of the coercive force of the split magnet of FIG. 6 (A), (A) is explanatory drawing in the side surface of a split magnet, (B) is explanatory drawing in the end surface. 本発明に係る4極6スロットのSPMモータの一例を説明する断面図である。It is sectional drawing explaining an example of the 4 pole 6 slot SPM motor based on this invention. (A)〜(C)はそれぞれSPMモータにおける永久磁石集合体を形成する分割磁石の一例を示す断面図である。(A)-(C) are sectional drawings which show an example of the split magnet which each forms the permanent magnet aggregate | assembly in a SPM motor. 本発明のSPMモータに用いる永久磁石セグメントの一例を示し、(A)は全表面からDy又はTbの拡散処理を行った分割磁石の斜視図、(B)は同分割磁石を用いた永久磁石集合体の斜視図である。An example of the permanent magnet segment used for the SPM motor of this invention is shown, (A) is a perspective view of the split magnet which performed the diffusion process of Dy or Tb from the whole surface, (B) is a permanent magnet assembly using the split magnet It is a perspective view of a body. (A)はSPMモータにおいて、図9(B)の永久磁石集合体における渦電流の流れ方を説明する図、(B)は同永久磁石集合体における磁石内部の温度分布を説明する図である。(A) is a figure explaining how the eddy current flows in the permanent magnet assembly of FIG. 9 (B) in the SPM motor, and (B) is a diagram explaining the temperature distribution inside the magnet in the permanent magnet assembly. . (A)〜(C)はそれぞれ永久磁石集合体の例を示す斜視図である。(A)-(C) are perspective views which show the example of a permanent magnet assembly, respectively.

符号の説明Explanation of symbols

1 回転子
2 固定子
11 ロータヨーク
12 永久磁石セグメント
12a 分割磁石
13 コイル
14 ステータヨーク
DESCRIPTION OF SYMBOLS 1 Rotor 2 Stator 11 Rotor yoke 12 Permanent magnet segment 12a Split magnet 13 Coil 14 Stator yoke

Claims (6)

複数個の永久磁石セグメントがロータコア内部に埋め込まれた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子、又は複数個の永久磁石セグメントをロータコア表面に取り付けた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子において、上記の複数個の永久磁石セグメントのそれぞれが更に分割された永久磁石の集合体で構成され、この分割された永久磁石が焼結磁石ブロックについて表面研削加工のみを行って断面形状を長方形、台形又は弓形としたものであると共に、各分割された個々の永久磁石の表面近傍における保磁力がそれぞれ分割された永久磁石内部の保磁力より大きくなっていることを特徴とする永久磁石式回転機用回転子。 A rotor used in a permanent magnet rotating machine in which a rotor in which a plurality of permanent magnet segments are embedded in a rotor core and a stator wound around a stator core having a plurality of slots are arranged via a gap, or In a rotor used for a permanent magnet rotating machine in which a rotor having a plurality of permanent magnet segments attached to a rotor core surface and a stator wound around a stator core having a plurality of slots are arranged with a gap therebetween, Each of the plurality of permanent magnet segments is composed of an assembly of permanent magnets that are further divided, and the divided permanent magnets are only subjected to surface grinding on the sintered magnet block so that the cross-sectional shape is rectangular, trapezoidal or arcuate and with the those, coercivity of the internal permanent magnet coercive force is divided respectively in the vicinity of the surface of each divided individual permanent magnets Permanent magnet type rotating machine rotor, characterized in that it is larger. 複数個の永久磁石セグメントがロータコア内部に埋め込まれた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子、又は複数個の永久磁石セグメントをロータコア表面に取り付けた回転子と、複数のスロットを有するステータコアに巻き線を巻いた固定子とが空隙を介して配置された永久磁石回転機に用いる回転子において、用いられる複数個の永久磁石セグメントのそれぞれが更に分割された永久磁石の集合体で構成され、この分割された永久磁石が焼結磁石ブロックについて表面研削加工のみを行って断面形状を長方形、台形又は弓形としたものであると共に、各分割された個々の永久磁石の表面近傍における耐熱性がそれぞれ分割された磁石内部の耐熱性より高くなっていることを特徴とする永久磁石式回転機用回転子。 A rotor used in a permanent magnet rotating machine in which a rotor in which a plurality of permanent magnet segments are embedded in a rotor core and a stator wound around a stator core having a plurality of slots are arranged via a gap, or In a rotor used in a permanent magnet rotating machine in which a rotor having a plurality of permanent magnet segments attached to a rotor core surface and a stator wound around a stator core having a plurality of slots are arranged with a gap therebetween Each of the plurality of permanent magnet segments is composed of an assembly of further divided permanent magnets, and the divided permanent magnets are only subjected to surface grinding on the sintered magnet block, and the cross-sectional shape is rectangular, trapezoidal or arcuate and with the those, heat inside the magnet heat resistance near the surface of the divided individual permanent magnets are divided respectively Permanent magnet type rotating machine rotor, characterized in that it is higher. 上記分割された永久磁石がNd系希土類焼結磁石であることを特徴とする請求項1又は2記載の永久磁石式回転機用回転子。   The rotor for a permanent magnet type rotating machine according to claim 1 or 2, wherein the divided permanent magnet is an Nd-based rare earth sintered magnet. 上記のNd系希土類焼結磁石の表面から内部に向かっての保磁力傾斜が、磁石表面から内部に向かってDy又はTbを拡散させたことによって造られたことを特徴とする請求項3記載の永久磁石式回転機用回転子。   The coercive force gradient from the surface to the inside of the Nd-based rare earth sintered magnet is formed by diffusing Dy or Tb from the magnet surface to the inside. Rotor for permanent magnet rotating machine. 上記のNd系希土類焼結磁石の表面から内部に向かっての保磁力傾斜が、磁石表面から内部に向かってDy又はTbを、主に結晶粒界を経由して拡散させたことを特徴とする請求項3記載の永久磁石式回転機用回転子。   The coercive force gradient from the surface to the inside of the Nd-based rare earth sintered magnet is characterized in that Dy or Tb is diffused mainly through the crystal grain boundary from the magnet surface to the inside. The rotor for a permanent magnet type rotating machine according to claim 3. 上記のNd系希土類焼結磁石の表面から内部に向かってのDy又はTbの拡散が、磁石の表面にDy又はTb酸化物粉末、Dy又はTbフッ化物の粉末、又はDy又はTbを含む合金粉末を塗布し、その後高温に保持してDy又はTbを拡散させたことを特徴とする請求項4又は5記載の永久磁石式回転機用回転子。   Dy or Tb diffusion from the surface of the Nd-based rare earth sintered magnet toward the inside is Dy or Tb oxide powder, Dy or Tb fluoride powder, or alloy powder containing Dy or Tb on the surface of the magnet The rotor for a permanent magnet type rotating machine according to claim 4, wherein Dy or Tb is diffused by applying the coating and then maintaining the temperature at a high temperature.
JP2008097797A 2008-04-04 2008-04-04 Rotor for permanent magnet rotating machine Active JP5251219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097797A JP5251219B2 (en) 2008-04-04 2008-04-04 Rotor for permanent magnet rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097797A JP5251219B2 (en) 2008-04-04 2008-04-04 Rotor for permanent magnet rotating machine

Publications (3)

Publication Number Publication Date
JP2009254092A JP2009254092A (en) 2009-10-29
JP2009254092A5 JP2009254092A5 (en) 2012-02-02
JP5251219B2 true JP5251219B2 (en) 2013-07-31

Family

ID=41314230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097797A Active JP5251219B2 (en) 2008-04-04 2008-04-04 Rotor for permanent magnet rotating machine

Country Status (1)

Country Link
JP (1) JP5251219B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381889B2 (en) 2014-06-27 2019-08-13 General Electric Company Permanent magnet machine with segmented sleeve for magnets
US10720804B2 (en) 2014-06-27 2020-07-21 General Electric Company Permanent magnet machine with segmented sleeve for magnets
WO2023048223A1 (en) 2021-09-27 2023-03-30 株式会社デンソー Magnet, rotor, and method for manufacturing magnet

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332335B2 (en) * 2008-06-19 2013-11-06 ダイキン工業株式会社 Rotor
JP5262643B2 (en) * 2008-12-04 2013-08-14 信越化学工業株式会社 Nd-based sintered magnet and manufacturing method thereof
JP5493663B2 (en) 2009-10-01 2014-05-14 信越化学工業株式会社 Assembling method of rotor for IPM type permanent magnet rotating machine
EP2533403B1 (en) * 2010-02-05 2019-09-04 Shin-Etsu Chemical Co., Ltd. Permanent magnet rotary machine
US8987965B2 (en) 2010-03-23 2015-03-24 Shin-Etsu Chemical Co., Ltd. Rotor and permanent magnet rotating machine
WO2011122638A1 (en) * 2010-03-30 2011-10-06 Tdk株式会社 Sintered magnet, motor, automobile, and method for producing sintered magnet
JP2011211071A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor, automobile, and method for producing the sintered magnet
JP5786735B2 (en) * 2012-01-30 2015-09-30 ダイキン工業株式会社 Permanent magnet manufacturing method and field element manufacturing method
JP6331317B2 (en) 2013-10-04 2018-05-30 大同特殊鋼株式会社 Coupled RFeB magnet and method for manufacturing the same
JP6450588B2 (en) * 2014-12-26 2019-01-09 ダイキン工業株式会社 Rotating electrical machine
JP2016096719A (en) * 2016-01-06 2016-05-26 アスモ株式会社 Rotor and motor
CN109818466A (en) * 2019-03-19 2019-05-28 上海电气风电集团有限公司 Manufacturing method, rotor and the motor of rotor
CN113451036B (en) * 2021-04-09 2022-10-25 宁波科田磁业有限公司 High-coercivity and high-resistivity neodymium-iron-boron permanent magnet and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656325B2 (en) * 2005-07-22 2011-03-23 信越化学工業株式会社 Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
JP2007329250A (en) * 2006-06-07 2007-12-20 Ulvac Japan Ltd Permanent magnet, and manufacturing method of permanent magnet
JP2009225608A (en) * 2008-03-18 2009-10-01 Nitto Denko Corp Permanent magnet for motor and method of manufacturing the permanent magnet for motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381889B2 (en) 2014-06-27 2019-08-13 General Electric Company Permanent magnet machine with segmented sleeve for magnets
US10720804B2 (en) 2014-06-27 2020-07-21 General Electric Company Permanent magnet machine with segmented sleeve for magnets
WO2023048223A1 (en) 2021-09-27 2023-03-30 株式会社デンソー Magnet, rotor, and method for manufacturing magnet

Also Published As

Publication number Publication date
JP2009254092A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5251219B2 (en) Rotor for permanent magnet rotating machine
JP5600917B2 (en) Rotor for permanent magnet rotating machine
JP5493663B2 (en) Assembling method of rotor for IPM type permanent magnet rotating machine
JP5262643B2 (en) Nd-based sintered magnet and manufacturing method thereof
JP5440079B2 (en) Rotor for axial gap type permanent magnet type rotating machine and axial gap type permanent magnet type rotating machine
JP4656325B2 (en) Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
JP4737431B2 (en) Permanent magnet rotating machine
US8638017B2 (en) Rotor for permanent magnet rotating machine
US20070017601A1 (en) Rare earth permanent magnet, making method, and permanent magnet rotary machine
WO2011030409A1 (en) Rotor for permanent magnet type rotary machine
JP4919109B2 (en) Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine
JP2014171387A (en) Rotor for permanent magnet type rotating machine
JP2011019401A (en) Method of manufacturing permanent magnet segment for permanent magnet rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3