JPH1074512A - Nickel hydrogen secondary battery and positive electrode thereof - Google Patents

Nickel hydrogen secondary battery and positive electrode thereof

Info

Publication number
JPH1074512A
JPH1074512A JP8219565A JP21956596A JPH1074512A JP H1074512 A JPH1074512 A JP H1074512A JP 8219565 A JP8219565 A JP 8219565A JP 21956596 A JP21956596 A JP 21956596A JP H1074512 A JPH1074512 A JP H1074512A
Authority
JP
Japan
Prior art keywords
nickel
oxyhydroxide
cobalt
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8219565A
Other languages
Japanese (ja)
Other versions
JP3617203B2 (en
Inventor
Fumio Kato
文生 加藤
Yoshitaka Dansui
慶孝 暖水
Koji Yamamura
康治 山村
Koji Yuasa
浩次 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21956596A priority Critical patent/JP3617203B2/en
Publication of JPH1074512A publication Critical patent/JPH1074512A/en
Application granted granted Critical
Publication of JP3617203B2 publication Critical patent/JP3617203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high energy density by using nickel oxyhydroxide particles whose surfaces are coated with cobalt oxyhydroxide, or solid solution particles mainly comprising nickel oxyhydroxide particles as active material particles. SOLUTION: In the manufacture of a positive electrode, nickel hydroxide powder is stirred in an aqueous solution containing an oxidizing agent to oxidize 'the nickel hydroxide, nickel oxyhydroxide obtained is washed, stirred in an alkaline aqueous solution, a cobalt salt aqueous solution is dropped therein to obtain nickel oxyhydroxide particles whose surfaces are coated with cobalt oxyhydroxide, obtained particles are washed and dried, then formed in a pasty material, and the pasty material is filled in a substrate. By coating the surfaces of the nickel oxyhydroxide particles of an active material with the cobalt oxyhydroxide of a conductive material, the amount of conductive material is reduced compared with the use of only powdery cobalt hydroxide as the conductive material, the physical filling capability of the active material is enhanced, irreversible electric capacity is reduced, and energy density is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素二次
電池と、その正極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen secondary battery and its positive electrode.

【0002】[0002]

【従来の技術】近年、アルカリ蓄電池は、携帯機器の普
及に伴いその電源として高容量の二次電池が要望されて
いる。特にニッケル−水素電池は、水酸化ニッケルを主
体とした活物質からなる正極と、水素吸蔵合金を活物質
とした負極からなる二次電池であり、高容量で高信頼性
の二次電池として急速に普及してきている。
2. Description of the Related Art In recent years, with the spread of portable devices, high-capacity secondary batteries have been demanded as power sources for portable devices. In particular, nickel-hydrogen batteries are secondary batteries consisting of a positive electrode made of an active material mainly composed of nickel hydroxide and a negative electrode made of a hydrogen storage alloy as an active material. It is becoming popular.

【0003】以下、上記した従来のアルカリ蓄電池用正
極について説明する。アルカリ蓄電池用の正極として
は、大別して焼結式と非焼結式とがある。前者はニッケ
ル粉末を焼結して得た多孔度80%程度の多孔質ニッケ
ル焼結基板に、硝酸ニッケル水溶液等のニッケル塩溶液
を含浸し、次いで、アルカリ水溶液に浸漬するなどして
多孔質ニッケル焼結基板中に水酸化ニッケル活物質を生
成させて製造するものである。この電極は基板の多孔度
をこれ以上大きくする事が困難であるため、充填される
活物質量を増加させる事ができず、高容量化には限界が
ある。
Hereinafter, the above-mentioned conventional positive electrode for an alkaline storage battery will be described. The positive electrode for an alkaline storage battery is roughly classified into a sintered type and a non-sintered type. In the former, a porous nickel sintered substrate obtained by sintering nickel powder and having a porosity of about 80% is impregnated with a nickel salt solution such as a nickel nitrate aqueous solution and then immersed in an alkaline aqueous solution. It is manufactured by producing a nickel hydroxide active material in a sintered substrate. Since it is difficult to further increase the porosity of the substrate in this electrode, the amount of the filled active material cannot be increased, and there is a limit to increasing the capacity.

【0004】また後者の非焼結式正極としては、例え
ば、特開昭50−36935号公報に開示された、ニッ
ケル金属よりなる三次元的に連続した多孔度95%以上
のスポンジ状多孔体基板に、活物質である水酸化ニッケ
ルを充填するものが提案され、現在高容量の二次電池の
正極として広く用いられている。この非焼結式正極にお
いては高容量化の点から、球状の水酸化ニッケルを充填
することが提案されている。スポンジ状多孔体基板の孔
部(ポア)サイズは200〜500μm程度であり、こ
のポアに粒径が数μm〜数10μmの球状水酸化ニッケ
ルを充填するため、導電ネットワークが保たれるニッケ
ル金属骨格近傍の水酸化ニッケルは充放電反応がスムー
ズに進行するが、骨格から離れた水酸化ニッケルの反応
は十分に進まない。そこでこの非焼結式正極では充填し
た水酸化ニッケルの利用率を向上させるために、活物質
である水酸化ニッケル以外に導電剤を用いて、これで球
状の水酸化ニッケル粒子間を電気的に接続させている。
この導電剤としては、水酸化コバルト、一酸化コバルト
のようなコバルト化合物や、金属コバルト、金属ニッケ
ル等が用いられる。これにより、非焼結式正極では活物
質を高密度に充填することが可能となり、焼結式正極に
比較し高容量化が図れる。
As the latter non-sintered type positive electrode, for example, a sponge-like porous substrate made of nickel metal and having a three-dimensionally continuous porosity of 95% or more disclosed in Japanese Patent Application Laid-Open No. 50-36935 is disclosed. In addition, a battery filled with nickel hydroxide, which is an active material, has been proposed, and is now widely used as a positive electrode of a high-capacity secondary battery. In this non-sintered positive electrode, it has been proposed to fill spherical nickel hydroxide from the viewpoint of increasing the capacity. The pore (pore) size of the sponge-like porous substrate is about 200 to 500 μm, and since the pores are filled with spherical nickel hydroxide having a particle size of several μm to several tens μm, a nickel metal skeleton that maintains a conductive network The charge / discharge reaction proceeds smoothly in the vicinity of nickel hydroxide, but the reaction of nickel hydroxide separated from the skeleton does not sufficiently proceed. Therefore, in order to improve the utilization rate of the filled nickel hydroxide in this non-sintered positive electrode, a conductive agent is used in addition to the active material nickel hydroxide, thereby electrically connecting the spherical nickel hydroxide particles. Connected.
As the conductive agent, a cobalt compound such as cobalt hydroxide or cobalt monoxide, metallic cobalt, metallic nickel or the like is used. Thus, the non-sintered positive electrode can be filled with the active material at a high density, and the capacity can be increased as compared with the sintered positive electrode.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成の非焼結式正極においても、これら導電剤の添
加は、活物質の利用率は向上させるが導電剤自体は活物
質として働かないため、基板への活物質の充填密度を実
質的に下げてしまい、結果として正極板の容量密度は6
00mAh/cc程度になる。
However, even in the non-sintered positive electrode having the above structure, the addition of these conductive agents improves the utilization of the active material, but the conductive agent itself does not work as the active material. As a result, the packing density of the active material in the substrate is substantially reduced, and as a result, the capacity density of the positive electrode plate becomes 6
It becomes about 00 mAh / cc.

【0006】また、ここで水酸化コバルトが導電剤とし
て用いられた場合、水酸化コバルトは強アルカリの電解
液にコバルト酸イオンとして溶解する。溶解したコバル
ト酸イオンは水酸化ニッケル粒子表面や水酸化コバルト
粒子表面に再析出して水酸化コバルトとなり、さらに初
期の充電によって導電体であるオキシ水酸化コバルトに
なって、水酸化ニッケル粒子同士を電気的に結合してい
ると考えられている。また溶解しなかった水酸化コバル
トも初期充電によりオキシ水酸化コバルトに変化し、こ
れも導電剤として働くこととなる。
When cobalt hydroxide is used as a conductive agent, the cobalt hydroxide dissolves in a strongly alkaline electrolyte as cobaltate ions. The dissolved cobaltate ion is re-deposited on the surface of the nickel hydroxide particles or the surface of the cobalt hydroxide particles to become cobalt hydroxide, and further becomes cobalt oxyhydroxide, which is a conductor by initial charging, and causes the nickel hydroxide particles to be separated from each other. It is believed that they are electrically coupled. Also, the undissolved cobalt hydroxide changes into cobalt oxyhydroxide upon initial charging, and this also acts as a conductive agent.

【0007】しかしながら水酸化コバルト等の溶解度は
電解液に対して100〜200ppm程度であり、この
溶解析出により水酸化ニッケル粒子表面上に形成される
コバルト層は薄く微弱である。またこのコバルト層は水
酸化ニッケル粒子表面上のみだけでなく、水酸化ニッケ
ル間の導電網に関与しないスポンジ状多孔体基板骨格表
面にも形成される。しかもこのオキシ水酸化コバルトか
らなる導電網は薄く微弱であるため高放電率条件下では
その集電が放電反応に追いつけなかったり、高温で保存
した場合等ではアルカリ電解液に溶解して導電層がそこ
なわれ、安定した電池特性を維持する事が困難であっ
た。
However, the solubility of cobalt hydroxide and the like is about 100 to 200 ppm with respect to the electrolytic solution, and the cobalt layer formed on the surface of the nickel hydroxide particles by the dissolution and deposition is thin and weak. The cobalt layer is formed not only on the surface of the nickel hydroxide particles, but also on the surface of the sponge-like porous substrate skeleton which does not participate in the conductive network between the nickel hydroxides. Moreover, since the conductive network made of cobalt oxyhydroxide is thin and weak, the current collection cannot catch up with the discharge reaction under high discharge rate conditions, or when stored at a high temperature, etc., it dissolves in an alkaline electrolyte to form a conductive layer. For this reason, it has been difficult to maintain stable battery characteristics.

【0008】また、水酸化ニッケルと、これに導電剤と
して添加した水酸化コバルト等を混合してスポンジ状多
孔体基板に充填したときの物理的混合状態にも利用率は
影響され、安定した特性を常に得ることができないと言
う問題点があった。
The utilization factor is also affected by the physical mixing state when nickel hydroxide and cobalt hydroxide or the like added as a conductive agent are mixed and filled in a sponge-like porous substrate, and stable characteristics are obtained. There is a problem that you can not always get.

【0009】また、密閉型ニッケル水素二次電池では、
正極が満充電状態になると、正極から酸素ガスが発生し
内部圧力が増加するのを防ぐため、正極に対する負極の
電気容量比率が1.5から1.8倍の極板を用いてい
る。これは満充電時に負極の水素吸蔵合金に過剰の水素
が吸蔵できるようにしておき、その水素と正極から発生
する酸素とが反応して電池内のガス圧力を低減させるた
めに容量を過剰にしておかなければならないからであ
る。ここで実際に負極容量の正極のそれに対する過剰量
を1.5から1.8倍にしなければならないのは、正極
の活物質である水酸化ニッケルは、通常のニッケル水素
二次電池の動作範囲において放電状態で水酸化ニッケル
の平均原子価数で2.2価付近までしか放電することが
できないからである。
In a sealed nickel-metal hydride secondary battery,
When the positive electrode is fully charged, an electrode plate having an electric capacity ratio of the negative electrode to the positive electrode of 1.5 to 1.8 times is used in order to prevent the internal pressure from increasing due to the generation of oxygen gas from the positive electrode. This is to allow excess hydrogen to be stored in the hydrogen storage alloy of the negative electrode at the time of full charge, and that the hydrogen reacts with oxygen generated from the positive electrode to increase the capacity to reduce the gas pressure inside the battery. Because you have to put it. Here, the fact that the excess amount of the negative electrode capacity to that of the positive electrode must be increased by 1.5 to 1.8 times is that nickel hydroxide, which is the active material of the positive electrode, is in the operating range of a normal nickel-metal hydride secondary battery. In this case, it is possible to discharge only in the vicinity of 2.2 in terms of the average valence of nickel hydroxide in the discharged state.

【0010】すなわち、この正極に対向する負極も放電
時に0.2価相当の水素を吸蔵しておりその分の電気容
量は不可逆で電池容量に寄与しない。従って密閉型ニッ
ケル水素二次電池の容量を向上させるためにはこの不可
逆容量を削減して実質的な電池容量を向上することが必
要となる。
That is, the negative electrode opposite to the positive electrode also absorbs hydrogen equivalent to 0.2 valence at the time of discharging, and its electric capacity is irreversible and does not contribute to the battery capacity. Therefore, in order to improve the capacity of the sealed nickel-metal hydride secondary battery, it is necessary to reduce the irreversible capacity and to substantially improve the battery capacity.

【0011】本発明は上記問題点に鑑み、高エネルギー
密度のニッケル水素二次電池とその正極を提供すること
を主たる目的としたものである。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a nickel hydrogen secondary battery having a high energy density and a positive electrode thereof.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明のニッケル水素二次電池用正極は、スポンジ
状多孔体基板に、オキシ水酸化コバルトもしくは水酸化
コバルトで被覆されたオキシ水酸化ニッケル粒子または
オキシ水酸化ニッケルを主成分とした固溶体粒子を活物
質として充填した構成を備えたものである。ここでのオ
キシ水酸化ニッケルの平均原子価数は2〜2.3価が好
ましい。
In order to solve the above problems, a positive electrode for a nickel-metal hydride secondary battery according to the present invention is provided on a sponge-like porous substrate by using oxyhydroxide coated with cobalt oxyhydroxide or cobalt hydroxide. It has a structure in which nickel oxide particles or solid solution particles containing nickel oxyhydroxide as a main component are filled as an active material. Here, the average valence of nickel oxyhydroxide is preferably from 2 to 2.3.

【0013】上記した構成によって、あらかじめ活物質
である水酸化ニッケル粒子表面に導電剤であるオキシ水
酸化コバルトを被覆させているため、強固で均一な導電
剤の物理的配置がなされるとともに、導電剤として粒子
状の水酸化コバルト等のみを用いる場合よりも活物質の
物理的充填性が向上し、さらにこの正極は部分的に酸化
された状態であるので不可逆電気容量を削減した電池を
構成することができ、高エネルギー密度で安定した電池
特性が得られることとなる。
According to the above-mentioned structure, the surface of the nickel hydroxide particles as the active material is coated in advance with cobalt oxyhydroxide as the conductive agent. The physical filling property of the active material is improved as compared with the case where only particulate cobalt hydroxide or the like is used as the agent, and furthermore, since this positive electrode is partially oxidized, a battery having reduced irreversible electric capacity is constituted. As a result, stable battery characteristics with high energy density can be obtained.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、オキシ水酸化コバルトで被覆されたオキシ水酸化ニ
ッケル粒子またはオキシ水酸化ニッケルを主成分とした
固溶体粒子を活物質粒子としたので、高エネルギー密度
で安定した電池特性が得られるニッケル水素二次電池用
の正極を提供する。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, active material particles are nickel oxyhydroxide particles coated with cobalt oxyhydroxide or solid solution particles containing nickel oxyhydroxide as a main component. Therefore, the present invention provides a positive electrode for a nickel-metal hydride secondary battery, which has high energy density and stable battery characteristics.

【0015】(実施の形態)本発明のアルカリ蓄電池用
正極の製造工程を以下に示す。第一工程は、 水酸化ニ
ッケル粉末を酸化剤を含む水溶液中で混合、攪拌し水酸
化ニッケルを酸化させる工程である。第二工程は、この
オキシ水酸化ニッケル粉末を水洗する工程であり、第三
工程は、この粉末をアルカリ水溶液中で攪拌しながらこ
のアルカリ水溶液中にコバルト塩水溶液を所定量滴下す
る工程である。第四工程は、この水酸化ニッケル粉末を
水洗、乾燥させる工程であり、第五工程は、このオキシ
水酸化ニッケル粉末を多孔性金属基板に充填する工程で
ある。
(Embodiment) A process for manufacturing a positive electrode for an alkaline storage battery according to the present invention will be described below. The first step is a step of mixing and stirring the nickel hydroxide powder in an aqueous solution containing an oxidizing agent to oxidize the nickel hydroxide. The second step is a step of washing the nickel oxyhydroxide powder with water, and the third step is a step of dropping a predetermined amount of a cobalt salt aqueous solution into the alkaline aqueous solution while stirring the powder in the alkaline aqueous solution. The fourth step is a step of washing and drying the nickel hydroxide powder, and the fifth step is a step of filling the nickel oxyhydroxide powder into a porous metal substrate.

【0016】つぎにニッケル水素二次電池用正極の製造
工程およびこの正極を用いたニッケル水素二次電池につ
いて更に詳しく説明する。
Next, a process for producing a positive electrode for a nickel-metal hydride secondary battery and a nickel-hydrogen secondary battery using the positive electrode will be described in more detail.

【0017】[0017]

【実施例】【Example】

(実施例1)まず第一の工程では、反応容器に純水を所
定量入れ、そこに水酸化ニッケル粉末100gを投入し
攪拌器で水酸化ニッケル粉末を撹拌分散させた。この分
散液を攪拌しながら水酸化ニッケルを酸化してオキシ水
酸化ニッケルにするために、酸化剤として次亜塩素酸ナ
トリウムを加え十分に撹拌した。添加した次亜塩素酸ナ
トリウムの量は、2価の水酸化ニッケルをその10wt
%だけ3価に酸化させる量とした。この時水酸化ニッケ
ルの平均酸化価数は2.1価であることを化学分析法を
用いて確認した。
(Example 1) First, in the first step, a predetermined amount of pure water was charged into a reaction vessel, and 100 g of nickel hydroxide powder was charged therein, and the nickel hydroxide powder was stirred and dispersed by a stirrer. In order to oxidize nickel hydroxide to nickel oxyhydroxide while stirring the dispersion, sodium hypochlorite was added as an oxidizing agent and stirred sufficiently. The amount of sodium hypochlorite added was 10% by weight of divalent nickel hydroxide.
% To be oxidized to trivalent. At this time, it was confirmed by chemical analysis that the average oxidation valence of nickel hydroxide was 2.1.

【0018】第二の工程では、得られたオキシ水酸化ニ
ッケルを純水で中性付近まで水洗して不純物を除去し
た。
In the second step, the obtained nickel oxyhydroxide was washed with pure water to near neutrality to remove impurities.

【0019】第三の工程は、水洗したオキシ水酸化ニッ
ケル粉末を水酸化ナトリウム5mol/lの水溶液に投
入し、この水溶液を攪拌器で攪拌しながらヒーターによ
り65℃に加温した。この水溶液に硫酸コバルト1mo
l/lの水溶液を滴下しながら十分に攪拌した。
In the third step, the washed nickel oxyhydroxide powder was put into an aqueous solution of 5 mol / l sodium hydroxide, and the aqueous solution was heated to 65 ° C. by a heater while being stirred by a stirrer. This aqueous solution contains 1 mol of cobalt sulfate.
The mixture was sufficiently stirred while a 1 / l aqueous solution was added dropwise.

【0020】この工程において加温した水酸化ナトリウ
ムの溶液中に硫酸コバルトを滴下すると、コバルトはコ
バルト酸イオンHCoO2 -となり、同様に水酸化アルカ
リの溶液中で標準水素電極電位より貴な電位となるオキ
シ水酸化ニッケルと次の(化1)で示す酸化還元反応が
起き、オキシ水酸化ニッケル表面に導電性の高いオキシ
水酸化コバルトが成長することとなる。
[0020] added dropwise a solution of cobalt sulfate in sodium hydroxide was heated in this process, cobalt cobalt ion HCoO 2 - next, a solution noble potential than the standard hydrogen electrode potential in the same manner alkali hydroxide The oxidation-reduction reaction shown in the following (Chemical Formula 1) occurs with the resulting nickel oxyhydroxide, and cobalt oxyhydroxide having high conductivity grows on the surface of the nickel oxyhydroxide.

【0021】[0021]

【化1】 Embedded image

【0022】この際滴下する硫酸コバルトの量は被覆さ
せる量に影響するが、ここではオキシ水酸化ニッケルに
対して10wt%のオキシ水酸化コバルトを被覆させる
量をした。
At this time, the amount of the dropped cobalt sulfate affects the amount to be coated. Here, the amount of the cobalt oxyhydroxide to be coated is 10 wt% with respect to the nickel oxyhydroxide.

【0023】ここでアルカリの温度、硫酸コバルトの濃
度、滴下速度が適正な値になされていないと、アルカリ
溶液中に水酸化コバルト粒子が析出する。析出した水酸
化コバルト粒子は、オキシ水酸化ニッケル粒子とアルカ
リ溶液中で接触すると酸化されてしまいオキシ水酸化コ
バルト粒子として溶液中に分散する。オキシ水酸化コバ
ルトは溶解してコバルト酸イオンを生成しないので、酸
化還元反応を伴ってオキシ水酸化ニッケル表面に被覆さ
れる事はない。また、コバルト酸イオンの原料としてア
ルカリ中に水酸化コバルト粒子を用いた場合も、硫酸コ
バルト溶液の適正な滴下を行なわなかった場合と同様
に、オキシ水酸化ニッケルの表面をオキシ水酸化コバル
トで被覆する事はできない。
If the alkali temperature, the concentration of cobalt sulfate, and the dropping rate are not set to appropriate values, cobalt hydroxide particles precipitate in the alkaline solution. The precipitated cobalt hydroxide particles are oxidized when they come into contact with nickel oxyhydroxide particles in an alkaline solution, and are dispersed in the solution as cobalt oxyhydroxide particles. Since the cobalt oxyhydroxide does not dissolve to form cobaltate ions, the surface of the nickel oxyhydroxide is not coated with the oxidation-reduction reaction. Also, when using cobalt hydroxide particles in an alkali as a raw material for cobalt acid ions, the surface of nickel oxyhydroxide is coated with cobalt oxyhydroxide in the same manner as when the cobalt sulfate solution is not properly dropped. I can't.

【0024】第四の工程では、オキシ水酸化コバルトで
被覆されたオキシ水酸化ニッケルの粒子を、不純物を除
去するために純水で水洗し乾燥を行なった。
In the fourth step, the nickel oxyhydroxide particles coated with cobalt oxyhydroxide were washed with pure water and dried to remove impurities.

【0025】第五の工程は、得られた粉末に2wt%の
酸化亜鉛を加え、純水で含水率を整えペースト状とし、
これをスポンジ状多孔体基板に充填しニッケル水素二次
電池用正極とした。
In the fifth step, 2 wt% of zinc oxide is added to the obtained powder, the water content is adjusted with pure water to form a paste,
This was filled into a sponge-like porous substrate to obtain a positive electrode for a nickel-metal hydride secondary battery.

【0026】上記オキシ水酸化コバルトで10wt%表
面を被覆した活物質からなる正極と水素吸蔵合金よりな
る負極と組み合わせて、ニッケル水素電池を構成した。
この本発明の電池をA,比較のためにオキシ水酸化コバ
ルトで被覆しないオキシ水酸化ニッケルに水酸化コバル
トを10wt%加えた活物質で正極を作成しこれを用い
てニッケル水素電池を構成したものを電池B、水酸化ニ
ッケル活物質に水酸化コバルトを10wt%加えて正極
を作成し、これを用いてニッケル水素電池を構成したも
のを電池Cとする。
A nickel-metal hydride battery was constructed by combining a positive electrode made of an active material whose surface was coated with 10% by weight of cobalt oxyhydroxide and a negative electrode made of a hydrogen storage alloy.
The battery of the present invention was prepared as A. For comparison, a nickel hydride battery was prepared by using a positive electrode made of an active material obtained by adding 10 wt% of cobalt hydroxide to nickel oxyhydroxide not coated with cobalt oxyhydroxide. A battery B was prepared by adding 10 wt% of cobalt hydroxide to a nickel hydroxide active material to form a positive electrode, and using this to form a nickel hydrogen battery.

【0027】上記電池A,B,Cを充電レート0.1C
mAで15時間充電し、放電レート0.2CmAで終止
電圧1.0Vまで放電するサイクルを5回行ったときの
電池容量を測定した。それぞれの電池容量を理論容量
(正極に充填した水酸化活物質重量に水酸化ニッケルが
1電子反応をするとしたときの電気量289mAh/g
を掛けた値)で割った利用率を(表1)に示す。
The batteries A, B and C were charged at a charge rate of 0.1 C.
The battery capacity was measured when the battery was charged at mA for 15 hours and discharged at a discharge rate of 0.2 CmA to a final voltage of 1.0 V five times. The respective battery capacities were calculated as the theoretical capacities (electricity of 289 mAh / g when nickel hydroxide reacts one electron with the weight of the hydroxide active material filled in the positive electrode).
(A value multiplied by) is shown in (Table 1).

【0028】[0028]

【表1】 [Table 1]

【0029】次に電池A,Cについて高温での充電効率
を測定した。充電は温度45℃で充電レート0.1Cm
Aで15時間充電し、放電は20℃で0.2CmAで終
止電圧1.0Vまで放電した時の利用率を(表2)に示
す。
Next, the charging efficiency of the batteries A and C at a high temperature was measured. Charging at a temperature of 45 ° C and a charging rate of 0.1 Cm
A was charged for 15 hours at A, and the discharge rate was 0.2 CmA at 20 ° C. to a final voltage of 1.0 V.

【0030】[0030]

【表2】 [Table 2]

【0031】以上のように本実施例によれば、酸化還元
反応を用いることによりオキシ水酸化ニッケルの表面に
選択的に化学結合した高導電性のオキシ水酸化コバルト
を形成できるため、高エネルギー密度で、安定した電池
特性が得られた。
As described above, according to the present embodiment, a highly conductive cobalt oxyhydroxide selectively chemically bonded to the surface of nickel oxyhydroxide can be formed by using an oxidation-reduction reaction, so that a high energy density is obtained. As a result, stable battery characteristics were obtained.

【0032】なお、実施例において第一の工程では、酸
化剤は次亜塩素酸ナトリウムを用いたが、酸化剤はK2
28,Na228,(NH4228またはH22
等中性もしくはアルカリ性の酸化剤であればなんでもよ
い。また酸化量は、2価の水酸化ニッケルをその10w
t%だけ3価に酸化させる量としたが、被覆させるオキ
シ水酸化コバルトの被覆量以上であればよく30wt%
以下が望ましい。
In the example, sodium chlorite was used as the oxidizing agent in the first step, but the oxidizing agent was K 2
S 2 O 8 , Na 2 S 2 O 8 , (NH 4 ) 2 S 2 O 8 or H 2 O 2
Any neutral or alkaline oxidizing agent may be used. The oxidation amount is 10w of divalent nickel hydroxide.
The amount of oxidation to be trivalent by t% was used, but it may be 30 wt% as long as it is equal to or more than the coating amount of cobalt oxyhydroxide to be coated.
The following is desirable.

【0033】また、第三の工程では、水酸化ナトリウム
の水溶液を用いたが水酸化カリウム、水酸化リチウムで
もよく、その濃度は1mol/l以上8.5mol/l
以下の範囲であればよく、また温度も80℃以下であれ
ばよい。また、コバルトの原料として硫酸コバルトを用
いたが、硝酸コバルト、塩化コバルト等のコバルト塩水
溶液なら何でも良い。その濃度は常温で析出が起こらな
い2mol/l以下が望ましい。
In the third step, an aqueous solution of sodium hydroxide was used, but potassium hydroxide or lithium hydroxide may be used, and its concentration is 1 mol / l to 8.5 mol / l.
The temperature may be in the following range, and the temperature may be 80 ° C. or less. Although cobalt sulfate was used as a raw material for cobalt, any cobalt salt aqueous solution such as cobalt nitrate or cobalt chloride may be used. The concentration is desirably 2 mol / l or less at which precipitation does not occur at room temperature.

【0034】また、第五の工程では、添加物として酸化
亜鉛を用いたが、酸化カドミウム、水酸化亜鉛等でもよ
く、特に限定するものではない。
In the fifth step, zinc oxide is used as an additive, but cadmium oxide, zinc hydroxide, or the like may be used, and there is no particular limitation.

【0035】(実施例2)第一の工程では、実施例1の
第一および第二の工程と同様にしてオキシ水酸化ニッケ
ルを作製した。
Example 2 In the first step, nickel oxyhydroxide was produced in the same manner as in the first and second steps of Example 1.

【0036】第二の工程では、第一の工程で作製したオ
キシ水酸化ニッケル粒子に対して水酸化コバルト粒子を
10wt%混合して、乾式機械的混合法によりオキシ水
酸化ニッケル粒子表面に水酸化コバルト粒子を被覆させ
た。
In the second step, 10 wt% of cobalt hydroxide particles are mixed with the nickel oxyhydroxide particles prepared in the first step, and the surface of the nickel oxyhydroxide particles is hydroxylated by dry mechanical mixing. Cobalt particles were coated.

【0037】第三の工程では、実施例1の第五の工程と
同様に第二の工程で得られた水酸化コバルトで被覆され
たオキシ水酸化ニッケルを活物質として、ニッケル水素
二次電池用正極を作製した。
In the third step, the nickel oxyhydroxide coated with cobalt hydroxide obtained in the second step was used as an active material in the same manner as the fifth step of Example 1 for a nickel-hydrogen secondary battery. A positive electrode was produced.

【0038】第四の工程では、上記ニッケル水素二次電
池用正極と、セパレータと水素吸蔵合金よりなる負極を
用いて、スパイラル状に電極群を構成した。
In the fourth step, an electrode group was formed in a spiral shape using the above-mentioned positive electrode for a nickel-hydrogen secondary battery, a negative electrode made of a separator and a hydrogen storage alloy.

【0039】第五の工程では、上記電極群を電池ケース
内に挿入し、所定の電解液を注液し、封口板で封口して
密閉型ニッケル水素二次電池を作製した。
In the fifth step, the above-mentioned electrode group was inserted into a battery case, a predetermined electrolytic solution was injected, and the battery was sealed with a sealing plate to produce a sealed nickel-metal hydride secondary battery.

【0040】第六の工程では、電解液を注液し、封口し
た後、室温以上80℃以下で24時間以内で放置した後
の電池に初期の充放電を行なった。
In the sixth step, after the electrolyte was injected and sealed, the battery was left to stand at room temperature or higher and 80 ° C. or lower within 24 hours, and then subjected to initial charge and discharge.

【0041】この工程の放置時間中にオキシ水酸化ニッ
ケル表面を被覆した水酸化コバルトは電解液に溶解して
コバルト酸イオンとなり、実施例1のメカニズムと同様
にオキシ水酸化ニッケルの表面に選択的にオキシ水酸化
コバルトを形成する。
During the standing time of this step, the cobalt hydroxide coated on the surface of the nickel oxyhydroxide is dissolved in the electrolytic solution to form cobaltate ions. To form cobalt oxyhydroxide.

【0042】本発明の乾式機械的混合法により、オキシ
水酸化ニッケル粒子表面に水酸化コバルト粒子を被覆さ
せた活物質で正極を作成し、ニッケル水素二次電池を構
成した電池をD,比較のためにオキシ水酸化ニッケル粒
子に水酸化コバルト粒子を10wt%加え乳鉢で混合し
た活物質で正極を作成し、ニッケル水素二次電池を構成
したものを電池E、乾式機械的混合法により水酸化ニッ
ケル粒子表面に水酸化コバルトを10wt%被覆させた
活物質で正極を作成し、ニッケル水素二次電池を構成し
たものを電池Fとする。
A positive electrode was prepared from an active material in which nickel oxyhydroxide particles were coated with cobalt hydroxide particles by the dry mechanical mixing method of the present invention. For this purpose, a positive electrode was prepared from an active material obtained by adding 10 wt% of cobalt hydroxide particles to nickel oxyhydroxide particles and mixing in a mortar, and a nickel-hydrogen secondary battery was formed as a battery E, and nickel hydroxide was formed by dry mechanical mixing. A positive electrode was prepared from an active material in which 10% by weight of cobalt hydroxide was coated on the particle surface, and a nickel-hydrogen secondary battery was designated as battery F.

【0043】上記電池D,E,Fを充電レート0.1C
mAで15時間充電し、放電レート0.2CmAで終止
電圧1.0Vまで放電したときの電池容量を測定した。
それぞれの電池容量を理論容量(正極に充填した水酸化
活物質重量に水酸化ニッケルが1電子反応をするとした
ときの電気量289mAh/gを掛けた値)で割った利
用率を(表3)に示す。
The batteries D, E and F were charged at a charge rate of 0.1 C.
The battery capacity was measured when the battery was charged at 15 mA for 15 hours and discharged at a discharge rate of 0.2 CmA to a final voltage of 1.0 V.
The utilization rate obtained by dividing each battery capacity by the theoretical capacity (a value obtained by multiplying the weight of the hydroxide active material filled in the positive electrode by the amount of electricity of 289 mAh / g when nickel hydroxide performs a one-electron reaction) (Table 3) Shown in

【0044】[0044]

【表3】 [Table 3]

【0045】上記の結果から、化学結合を有するオキシ
水酸化コバルトと機械的混合法で均一に物理分散した水
酸化コバルトを具備することにより、高エネルギー密度
で、安定した電池特性が得られる。
From the above results, it is possible to obtain high energy density and stable battery characteristics by using cobalt oxyhydroxide having a chemical bond and cobalt hydroxide uniformly and physically dispersed by a mechanical mixing method.

【0046】ここで第二の工程で水酸化コバルトの添加
量を10wt%としたが、10wt%に限定するもので
はなくそれ以下であってもよい。
Here, in the second step, the addition amount of cobalt hydroxide is set to 10 wt%, but is not limited to 10 wt% and may be less.

【0047】(実施例3)第一の工程では、実施例1の
第一工程から第四工程と同様の処理により、オキシ水酸
化コバルトで被覆されたオキシ水酸化ニッケルの活物質
を作製した。
(Example 3) In the first step, an active material of nickel oxyhydroxide coated with cobalt oxyhydroxide was prepared in the same manner as in the first to fourth steps of Example 1.

【0048】第二の工程では、上記オキシ水酸化コバル
トで被覆されたオキシ水酸化ニッケル粒子を用いて、実
施例2と同様の工程でこのオキシ水酸化コバルトで被覆
されたオキシ水酸化ニッケルを、さらに水酸化コバルト
で被覆した活物質を用いてニッケル水素二次電池を作製
した。
In the second step, the nickel oxyhydroxide coated with cobalt oxyhydroxide in the same step as in Example 2 was used by using the nickel oxyhydroxide particles coated with cobalt oxyhydroxide. Further, a nickel-metal hydride secondary battery was manufactured using the active material coated with cobalt hydroxide.

【0049】このようにしてオキシ水酸化コバルトで5
wt%、さらに水酸化コバルトで5wt%それぞれ被覆
した活物質を用いた正極と水素吸蔵合金よりなる負極と
組み合わせて、ニッケル水素二次電池Gを構成した。こ
の電池を充電レート0.1CmAで15時間充電し、放
電レート0.2CmAで終止電圧1.0Vまで放電した
ときの電池容量を測定した。その電池容量を理論容量
(正極に充填した水酸化活物質重量に水酸化ニッケルが
1電子反応をするとしたときの電気量289mAh/g
を掛けた値)で割った利用率は97.6%であった。
In this manner, 5
A nickel-hydrogen secondary battery G was constructed by combining a positive electrode using an active material coated with 5% by weight and further 5% by weight of cobalt hydroxide with a negative electrode made of a hydrogen storage alloy. The battery was charged at a charge rate of 0.1 CmA for 15 hours, and the battery capacity when discharged at a discharge rate of 0.2 CmA to a final voltage of 1.0 V was measured. The battery capacity was calculated as the theoretical capacity (electrical quantity of 289 mAh / g when nickel hydroxide was subjected to a one-electron reaction with the weight of the hydroxide active material filled in the positive electrode).
Was multiplied by 97.6%.

【0050】以上により本実施例では化学結合を持った
オキシ水酸化コバルトと物理的に配置した水酸化コバル
トとにより、高エネルギー密度で、安定した電池特性が
得られる。
As described above, in this embodiment, high energy density and stable battery characteristics can be obtained by using cobalt oxyhydroxide having a chemical bond and cobalt hydroxide physically disposed.

【0051】[0051]

【発明の効果】以上のように本発明は、あらかじめ活物
質である水酸化ニッケル粒子表面に導電剤であるオキシ
水酸化コバルトを被覆させることにより、強固で均一な
導電剤の物理的配置がなされるとともに、導電剤として
粒子状の水酸化コバルト等のみを用いる場合よりも導電
剤量を削減することができ、活物質の物理的充填性が向
上し、さらに不可逆電気容量を削減した電池を構成する
ことができるため、高エネルギー密度で安定した電池特
性を得ることができるニッケル水素二次電池を提供する
ことができる。
As described above, according to the present invention, a strong and uniform physical arrangement of the conductive agent is achieved by previously coating the surface of nickel hydroxide particles as the active material with cobalt oxyhydroxide as the conductive agent. In addition, the amount of the conductive agent can be reduced as compared with the case where only particulate cobalt hydroxide or the like is used as the conductive agent, the physical filling of the active material is improved, and the battery has a further reduced irreversible electric capacity. Therefore, it is possible to provide a nickel-metal hydride secondary battery capable of obtaining stable battery characteristics at a high energy density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯浅 浩次 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Koji Yuasa 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】オキシ水酸化コバルトで表面が被覆された
オキシ水酸化ニッケル粒子またはオキシ水酸化ニッケル
を主成分とした固溶体粒子を活物質粒子としたことを特
徴とするニッケル水素二次電池用正極。
1. A positive electrode for a nickel-metal hydride secondary battery, characterized in that nickel oxyhydroxide particles whose surface is coated with cobalt oxyhydroxide or solid solution particles containing nickel oxyhydroxide as a main component are used as active material particles. .
【請求項2】水酸化コバルトで表面が被覆されたオキシ
水酸化ニッケル粒子またはオキシ水酸化ニッケルを主成
分とした固溶体粒子を活物質粒子としたことを特徴とす
るニッケル水素二次電池用正極。
2. A nickel-hydrogen secondary battery positive electrode comprising nickel oxyhydroxide particles whose surface is coated with cobalt hydroxide or solid solution particles containing nickel oxyhydroxide as a main component, as active material particles.
【請求項3】オキシ水酸化コバルトで表面が被覆された
オキシ水酸化ニッケル粒子またはオキシ水酸化ニッケル
を主成分とした固溶体粒子を、水酸化コバルトでさらに
被覆した活物質粒子を用いたことを特徴とするニッケル
水素二次電池用正極。
3. An active material particle, wherein nickel oxyhydroxide particles whose surface is coated with cobalt oxyhydroxide or solid solution particles mainly containing nickel oxyhydroxide are further coated with cobalt hydroxide. Positive electrode for nickel-metal hydride secondary batteries.
【請求項4】水酸化ニッケルを酸化剤で酸化して得た、
オキシ水酸化ニッケル粒子を用いることを特徴とする請
求項1または2記載のニッケル水素二次電池用正極。
4. Obtained by oxidizing nickel hydroxide with an oxidizing agent,
3. The positive electrode for a nickel-metal hydride secondary battery according to claim 1, wherein nickel oxyhydroxide particles are used.
【請求項5】オキシ水酸化ニッケルの平均原子価数が
2.3価以下であることを特徴とする請求項4記載のニ
ッケル水素二次電池用正極。
5. The positive electrode for a nickel hydride secondary battery according to claim 4, wherein the average valence of nickel oxyhydroxide is 2.3 or less.
【請求項6】オキシ水酸化コバルトで表面被覆されたオ
キシ水酸化ニッケルを活物質とした正極と、水素吸蔵合
金からなる負極と、セパレータと、アルカリ電解液とを
組み合わせてなるニッケル水素二次電池。
6. A nickel-hydrogen secondary battery comprising a combination of a positive electrode using nickel oxyhydroxide surface-coated with cobalt oxyhydroxide as an active material, a negative electrode made of a hydrogen storage alloy, a separator, and an alkaline electrolyte. .
【請求項7】オキシ水酸化ニッケルの酸化価数が2.3
価以下であることを特徴とする請求項6記載のニッケル
水素二次電池。
7. The nickel oxyhydroxide having an oxidation valence of 2.3.
7. The nickel-metal hydride secondary battery according to claim 6, wherein the secondary battery has a charge of not more than the valence.
【請求項8】水酸化コバルトで表面が被覆されたオキシ
水酸化ニッケルを活物質とした正極と、水素吸蔵合金か
らなる負極と、セパレータと、アルカリ電解液とを組み
合わせてなるニッケル水素二次電池。
8. A nickel-hydrogen secondary battery comprising a combination of a positive electrode made of nickel oxyhydroxide whose surface is coated with cobalt hydroxide as an active material, a negative electrode made of a hydrogen storage alloy, a separator, and an alkaline electrolyte. .
【請求項9】オキシ水酸化ニッケルの酸化価数が2.3
価以下であることを特徴とする請求項8記載のニッケル
水素二次電池。
9. The nickel oxyhydroxide having an oxidation valence of 2.3.
9. The nickel-metal hydride secondary battery according to claim 8, wherein the secondary battery has a charge of not more than the valence.
【請求項10】オキシ水酸化コバルトで被覆されたオキ
シ水酸化ニッケル粒子またはオキシ水酸化ニッケルを主
成分とした固溶体粒子を水酸化コバルトでさらに被覆し
た正極と、水素吸蔵合金からなる負極と、セパレータ
と、アルカリ電解液とを組み合わせてなるニッケル水素
二次電池。
10. A positive electrode further coated with cobalt oxyhydroxide-coated nickel oxyhydroxide particles or solid solution particles containing nickel oxyhydroxide as a main component, a negative electrode made of a hydrogen storage alloy, and a separator. And a nickel-hydrogen secondary battery obtained by combining an alkaline electrolyte.
【請求項11】オキシ水酸化ニッケルの酸化価数が2.
3価以下であることを特徴とする請求項10記載のニッ
ケル水素二次電池。
11. The nickel oxyhydroxide having an oxidation valence of 2.
The nickel-metal hydride secondary battery according to claim 10, wherein the secondary battery has three or less valences.
JP21956596A 1996-07-04 1996-08-21 Manufacturing method of nickel metal hydride secondary battery Expired - Lifetime JP3617203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21956596A JP3617203B2 (en) 1996-07-04 1996-08-21 Manufacturing method of nickel metal hydride secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-174710 1996-07-04
JP17471096 1996-07-04
JP21956596A JP3617203B2 (en) 1996-07-04 1996-08-21 Manufacturing method of nickel metal hydride secondary battery

Publications (2)

Publication Number Publication Date
JPH1074512A true JPH1074512A (en) 1998-03-17
JP3617203B2 JP3617203B2 (en) 2005-02-02

Family

ID=26496222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21956596A Expired - Lifetime JP3617203B2 (en) 1996-07-04 1996-08-21 Manufacturing method of nickel metal hydride secondary battery

Country Status (1)

Country Link
JP (1) JP3617203B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778023A1 (en) * 1998-04-28 1999-10-29 Japan Storage Battery Co Ltd Anode active material for alkaline secondary cell having improved discharge capacity
JP2002110154A (en) * 2000-07-14 2002-04-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive pole active material for alkaline battery
JP2002121029A (en) * 2000-10-10 2002-04-23 Tanaka Chemical Corp Conductive cobalt coated nickel hydroxide and method for manufacturing the same
JP2003068293A (en) * 2001-08-23 2003-03-07 Hitachi Maxell Ltd Nonsintered positive electrode, its manufacturing method and alkali storage battery using the positive electrode
WO2003021698A1 (en) * 2001-09-03 2003-03-13 Yuasa Corporation Nickel electrode material and production method therefor, and nickel electrode and alkaline battery
US6576368B1 (en) 1998-10-02 2003-06-10 Sanyo Electric Co., Ltd. Positive active material for use in sealed alkaline storage batteries
US6602640B1 (en) 1999-09-28 2003-08-05 Sanyo Electric Co., Ltd. Alkaline storage battery and process for the production thereof
JP2005327564A (en) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd Alkaline battery, and manufacturing method of cathode activator for the same
EP1182719A3 (en) * 2000-08-08 2006-08-02 Sanyo Electric Co., Ltd. Manufacturing method of positive active material for alkaline storage battery, nickel electrode using the same material and alkaline storage battery using the same nickel electrode
CN1303705C (en) * 2003-06-09 2007-03-07 日立麦克赛尔株式会社 Positive electrode for alkaline battery and alkaline battery using the same
CN100336249C (en) * 2005-11-11 2007-09-05 河南新飞科隆电源有限公司 Method of cladding hydroxy cobalt oxide on spherical nickel hydroxide surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095544A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Positive plate for alkaline secondary battery and alkaline secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778023A1 (en) * 1998-04-28 1999-10-29 Japan Storage Battery Co Ltd Anode active material for alkaline secondary cell having improved discharge capacity
US6576368B1 (en) 1998-10-02 2003-06-10 Sanyo Electric Co., Ltd. Positive active material for use in sealed alkaline storage batteries
US6602640B1 (en) 1999-09-28 2003-08-05 Sanyo Electric Co., Ltd. Alkaline storage battery and process for the production thereof
US6471890B2 (en) 2000-07-14 2002-10-29 Matsushita Electrical Industrial Co., Ltd. Method for producing a positive electrode active material for an alkaline storage battery
JP2002110154A (en) * 2000-07-14 2002-04-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive pole active material for alkaline battery
EP1182719A3 (en) * 2000-08-08 2006-08-02 Sanyo Electric Co., Ltd. Manufacturing method of positive active material for alkaline storage battery, nickel electrode using the same material and alkaline storage battery using the same nickel electrode
JP2002121029A (en) * 2000-10-10 2002-04-23 Tanaka Chemical Corp Conductive cobalt coated nickel hydroxide and method for manufacturing the same
JP2003068293A (en) * 2001-08-23 2003-03-07 Hitachi Maxell Ltd Nonsintered positive electrode, its manufacturing method and alkali storage battery using the positive electrode
WO2003021698A1 (en) * 2001-09-03 2003-03-13 Yuasa Corporation Nickel electrode material and production method therefor, and nickel electrode and alkaline battery
US7635512B2 (en) 2001-09-03 2009-12-22 Yuasa Corporation Nickel electrode material, and production method therefor, and nickel electrode and alkaline battery
CN1303705C (en) * 2003-06-09 2007-03-07 日立麦克赛尔株式会社 Positive electrode for alkaline battery and alkaline battery using the same
JP2005327564A (en) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd Alkaline battery, and manufacturing method of cathode activator for the same
CN100336249C (en) * 2005-11-11 2007-09-05 河南新飞科隆电源有限公司 Method of cladding hydroxy cobalt oxide on spherical nickel hydroxide surface

Also Published As

Publication number Publication date
JP3617203B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JPH01260762A (en) Nickel electrode for alkaline battery and battery using same
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JPH08227712A (en) Alkaline storage battery and manufacture thereof
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
JP2002117842A (en) Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
JP3543607B2 (en) Alkaline storage battery
JP3543601B2 (en) Alkaline storage battery
JP3198891B2 (en) Positive electrode for alkaline storage battery
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3454274B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3942253B2 (en) Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term