JPH1073551A - Co detector - Google Patents

Co detector

Info

Publication number
JPH1073551A
JPH1073551A JP24913896A JP24913896A JPH1073551A JP H1073551 A JPH1073551 A JP H1073551A JP 24913896 A JP24913896 A JP 24913896A JP 24913896 A JP24913896 A JP 24913896A JP H1073551 A JPH1073551 A JP H1073551A
Authority
JP
Japan
Prior art keywords
heating
pulse
temperature
sensor
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24913896A
Other languages
Japanese (ja)
Inventor
Hiroki Fujimori
裕樹 藤森
Masanori Kiko
真紀 木虎
Daisuke Matsuda
大輔 松田
Akihisa Ishida
明久 石田
Toru Nomura
徹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP24913896A priority Critical patent/JPH1073551A/en
Publication of JPH1073551A publication Critical patent/JPH1073551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve the prevention of errors and the increase in CO sensitivity in the high-temperature, high-humidity atmosphere by setting the period, the width and the semiconductor temperature in pulsating heating for a metal oxide semiconductor and the sampling period after the end of the heating in the respective ranges. SOLUTION: After the end of pulse heating to a metal oxide semiconductor, the temperature dependency of a CO sensor becomes small during the period of 100-250 milliseconds, and the relatively high sensitivity for CO is obtained. Then, the output of the CO sensor is sampled during this period and the effect of humidity is decreased. Furthermore, the temperature dependency is decreased when the width of the heating pulse is increased, the pulse period is shortened or the maximum temperature of the metal oxide semiconductor at the pulse heating is increased. Then, the heating pulse width is set at 10-30 milliseconds, and the pulse period is set at 200-500 milliseconds. Furthermore, the maximum temperature of the metal oxide semiconductor in pulse heating is set at 320 deg.C or more. Thus, the temperature dependency of the device is decreased, and the prevention of the erroneous report in the high-temperature, high-humidity environment and the increase in CO sensitivity can be achieved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】この発明は、金属酸化物半導体をパ
ルス的に加熱してCOを検出するようにしたCO検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CO detecting apparatus for detecting a CO by heating a metal oxide semiconductor in a pulsed manner.

【0002】[0002]

【従来技術】出願人は、アルミナ基板上に断熱膜を介し
てヒータを設け、ヒータ上に絶縁膜とSnO2膜とを積
層したCOセンサを開発した。このCOセンサには活性
炭等のフィルターを設け、ヒータは例えば毎秒10m秒
程度ずつパルス的に発熱させる。センサ材料のSnO2
にはPdやPtを添加する(特開平5−340910号
公報)。このようにすると、COセンサの消費電力は極
めて小さくなり、消費電力の小さなCO検出装置が得ら
れる。
2. Description of the Related Art The applicant has developed a CO sensor in which a heater is provided on an alumina substrate via a heat insulating film, and an insulating film and a SnO2 film are stacked on the heater. The CO sensor is provided with a filter of activated carbon or the like, and the heater generates pulses of heat at a rate of, for example, about 10 msec per second. SnO2 for sensor material
Is added with Pd or Pt (JP-A-5-340910). In this case, the power consumption of the CO sensor becomes extremely small, and a CO detection device with low power consumption is obtained.

【0003】しかしながら発明者らは、このCO検出装
置が著しい湿度依存性を持ち、極端な場合、高温高湿の
雰囲気でCOが存在しないにもかかわらず、警報が生じ
ることを見い出した。
[0003] However, the inventors have found that this CO detection device has a remarkable humidity dependency, and in an extreme case, an alarm is generated despite the absence of CO in a high-temperature and high-humidity atmosphere.

【0004】[0004]

【発明の課題】この発明の課題は、CO検出装置の湿度
依存性を減少させて高温高湿雰囲気での誤報を防止し、
かつ高湿雰囲気中でのCO感度を増加させることにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the humidity dependency of a CO detector to prevent false alarms in a high-temperature, high-humidity atmosphere.
Another object of the present invention is to increase the CO sensitivity in a high humidity atmosphere.

【0005】[0005]

【発明の構成】この発明は、ガスにより抵抗値が変化す
る金属酸化物半導体をパルス的に加熱してCOを検出す
るようにしたCO検出装置において、前記パルス加熱終
了後80m秒〜400m秒後の金属酸化物半導体の抵抗
値をサンプリングするための手段と、この手段で求めた
抵抗値からCOを検出するための手段とを設けたことを
特徴とする。
According to the present invention, there is provided a CO detecting apparatus in which a metal oxide semiconductor having a resistance value changed by a gas is heated in a pulsed manner to detect CO, and 80 to 400 ms after the completion of the pulse heating. A means for sampling the resistance value of the metal oxide semiconductor and a means for detecting CO from the resistance value obtained by this means.

【0006】好ましくはサンプリング時の金属酸化物半
導体の温度を室温+30℃〜室温とし、さらに好ましく
はサンプリングを、パルス加熱終了後100m秒〜25
0m秒の間に行う。
[0006] Preferably, the temperature of the metal oxide semiconductor at the time of sampling is from room temperature + 30 ° C to room temperature, and more preferably, the sampling is performed for 100 ms to 25 minutes after the completion of pulse heating.
This is performed during 0 ms.

【0007】パルス加熱終了後のセンサのCO感度は、
パルス加熱時の最高加熱温度と共に増加し、またパルス
加熱の幅と共に増加する。このため好ましくは、パルス
加熱の幅を10m秒以上、パルス加熱時の金属酸化物半
導体の最高温度を320℃以上とする。またパルス加熱
終了後のCO感度は、パルス周期を小さくすると増加す
るので、好ましくはパルス加熱の周期を200m秒〜5
00m秒とする。
[0007] The CO sensitivity of the sensor after the end of the pulse heating is:
It increases with the maximum heating temperature during pulse heating and increases with the width of pulse heating. For this reason, the pulse heating width is preferably set to 10 ms or more, and the maximum temperature of the metal oxide semiconductor during the pulse heating is set to 320 ° C. or more. Since the CO sensitivity after the completion of the pulse heating increases as the pulse cycle is reduced, the pulse heating cycle is preferably set to 200 ms to 5 ms.
00 ms.

【0008】この発明はまた、ガスにより抵抗値が変化
する金属酸化物半導体をパルス的に加熱してCOを検出
するようにしたCO検出装置において、前記パルス加熱
の周期を200m秒〜500m秒とし、パルス加熱の幅
を10m秒〜30m秒とし、かつ前記パルス加熱終了後
100m秒〜250m秒後の、金属酸化物半導体の抵抗
値をサンプリングするための手段と、この手段で求めた
金属酸化物半導体の抵抗値からCOを検出するための手
段とを設けたことを特徴とする。
The present invention also provides a CO detection device in which a metal oxide semiconductor having a resistance value changed by a gas is heated in a pulsed manner to detect CO, wherein the pulse heating cycle is set to 200 ms to 500 ms. Means for sampling the resistance value of the metal oxide semiconductor at a pulse heating width of 10 ms to 30 ms, and for 100 ms to 250 ms after the end of the pulse heating, and a metal oxide obtained by the means. Means for detecting CO from the resistance value of the semiconductor.

【0009】ここで用いるガスセンサの構造や材料は任
意であるが、好ましくは膜厚2〜30μm程度のSnO
2の厚膜を用いる。また好ましくは、アルミナやシリ
カ,チタニア,ジルコニア等の絶縁基板上に、断熱ガラ
ス膜を介してヒータ膜を積層し、このヒータ膜上に絶縁
膜を介して前記のSnO2膜を積層したものとする。S
nO2膜の添加物としては好ましくはPtを用い、Sn
O2100重量部当たり3〜5重量部のPtを添加した
ものが好ましい。なお以下この明細書では、SnO21
00重量部当たりの添加重量部でPt添加量を示し、C
Oセンサの特性は特に断らない限りパルス加熱終了後の
特性を示す。COセンサの出力のサンプリング時期はパ
ルス加熱の終了からの時間で示すが、実施例ではパルス
加熱の開始時を時刻0として示し、この時刻から加熱パ
ルスの幅を引算したものが、パルス加熱終了後の時刻と
なる。
Although the structure and material of the gas sensor used here are arbitrary, it is preferable that the gas sensor has a thickness of about 2 to 30 μm.
2 thick film is used. Preferably, a heater film is laminated on an insulating substrate of alumina, silica, titania, zirconia, etc. via a heat insulating glass film, and the above-mentioned SnO2 film is laminated on this heater film via an insulating film. . S
Pt is preferably used as an additive for the nO2 film,
It is preferable to add 3 to 5 parts by weight of Pt per 100 parts by weight of O2. Hereinafter, in this specification, SnO21
The amount of Pt added is indicated by the added parts by weight per 00 parts by weight,
Unless otherwise specified, the characteristics of the O sensor indicate the characteristics after the end of the pulse heating. Although the sampling time of the output of the CO sensor is indicated by the time from the end of the pulse heating, the start time of the pulse heating is indicated as time 0 in the embodiment, and the value obtained by subtracting the width of the heating pulse from this time is the pulse heating end. It will be a later time.

【0010】[0010]

【発明の作用と効果】発明者は、パルス加熱型金属酸化
物半導体COセンサについて、以下のことを見い出し
た。 1) パルス加熱中のセンサのCO感度は、湿度によって
著しい影響を受け、高温高湿の雰囲気で誤報が生じる。 2) パルス加熱終了後にCOセンサの湿度依存性が小さ
くなる期間があり、これはパルス加熱終了から80m〜
400m秒,特に100m〜250m秒の期間である。
またこの期間では、COに対して比較的大きな感度が得
られる。そこでこの期間にCOセンサの出力をサンプリ
ングすれば、湿度の影響を減少させることができる。 3) COセンサの湿度依存性は、加熱パルスの幅を増
し、パルス周期を短縮し、あるいはパルス加熱時の金属
酸化物半導体の最高温度を増すと、減少する。これらの
ことから、加熱パルスの幅を10m以上、特に10m秒
〜30m秒とし、またパルス周期を200m秒〜500
m秒とするのが好ましい。またパルス加熱時の金属酸化
物半導体の最高温度は320℃以上が好ましい。
The present inventor has found the following about the pulse heating type metal oxide semiconductor CO sensor. 1) The CO sensitivity of the sensor during pulse heating is significantly affected by humidity, causing false alarms in a high-temperature, high-humidity atmosphere. 2) There is a period in which the humidity dependency of the CO sensor becomes small after the end of the pulse heating.
This is a period of 400 msec, especially 100 m-250 msec.
In this period, relatively high sensitivity to CO is obtained. Therefore, if the output of the CO sensor is sampled during this period, the influence of humidity can be reduced. 3) The humidity dependency of the CO sensor decreases when the width of the heating pulse is increased, the pulse period is shortened, or the maximum temperature of the metal oxide semiconductor during pulse heating is increased. From these facts, the width of the heating pulse is set to 10 m or more, particularly 10 msec to 30 msec, and the pulse cycle is set to 200 msec to 500 msec.
Preferably, it is m seconds. The maximum temperature of the metal oxide semiconductor during pulse heating is preferably 320 ° C. or higher.

【0011】このようにすると、CO検出装置の湿度依
存性が減少し、高温高湿雰囲気での誤報を防止すること
ができる。また高湿雰囲気中でのCO感度が増加し、C
O検出の定量性が高まる。
In this way, the humidity dependency of the CO detector is reduced, and false alarms in a high-temperature, high-humidity atmosphere can be prevented. In addition, CO sensitivity in a high humidity atmosphere increases, and C
The quantitativeness of O detection is improved.

【0012】[0012]

【実施例】図1〜図13に実施例とその特性とを示す。
なおセンサ特性は各10個のセンサの平均値で示すもの
とし、製造直後のCOセンサをパルス駆動条件で3日間
通電した後に特性の測定を開始した。
1 to 13 show an embodiment and its characteristics.
Note that the sensor characteristics are indicated by an average value of 10 sensors, and measurement of the characteristics was started after the CO sensor immediately after manufacturing was energized for 3 days under pulse driving conditions.

【0013】図1〜図3にCOセンサの構造を示す。図
において、2はセンサ本体で、4はSnO2膜、6はヒ
ータ膜、8はアルミナ基板で、ジルコニアやチタニア等
の基板でもよく、耐熱絶縁性基板であれば良い。10は
絶縁膜で、SnO2膜4とヒータ膜6とを絶縁し、12
はヒータ膜6をアルミナ基板8から断熱するための断熱
膜である。ここではSnO2膜4の膜厚は約15μmと
し、好ましくは2〜30μmとする。またSnO2には
Ptを添加し、その添加量はSnO2100重量部に対
してPt3〜5重量部とする。Ptは塩化白金酸として
添加したが、添加形態は任意である。ヒータ膜6にはこ
こでは膜厚15μmのRuO2膜を用いたが、これ以外
にPt膜等でも良い。また断熱膜12には膜厚50μm
程度のガラス膜を用い、絶縁膜10にはここでは膜厚1
5μm程度のガラス膜を用いた。絶縁膜10中のMgO
はSnO2膜4を汚染し特性を変化させるので、絶縁膜
10はMgOフリーのものが好ましい。図2はセンサ本
体2の平面図で、アルミナ基板8の全面に断熱膜12を
設け、その上にヒータ膜6を設けて絶縁膜10で覆い、
SnO2膜4を積層したことを示している。SnO2膜4
やヒータ膜6には各一対の電極を接続し、アルミナ基板
8の端部に設けた電極パッドから例えばワイヤボンディ
ングで外部リードに接続する。
1 to 3 show the structure of a CO sensor. In the figure, 2 is a sensor body, 4 is an SnO2 film, 6 is a heater film, 8 is an alumina substrate, and may be a substrate made of zirconia or titania, or a heat-resistant insulating substrate. Reference numeral 10 denotes an insulating film which insulates the SnO2 film 4 from the heater film 6;
Is a heat insulating film for insulating the heater film 6 from the alumina substrate 8. Here, the thickness of the SnO2 film 4 is about 15 μm, preferably 2 to 30 μm. Pt is added to SnO2, and the amount of Pt is 3 to 5 parts by weight based on 100 parts by weight of SnO2. Pt was added as chloroplatinic acid, but the addition form is arbitrary. Here, a RuO2 film having a thickness of 15 μm is used as the heater film 6, but a Pt film or the like may be used instead. The heat insulating film 12 has a thickness of 50 μm.
A glass film having a thickness of about 1.
A glass film of about 5 μm was used. MgO in insulating film 10
Since the film contaminates the SnO2 film 4 and changes its characteristics, it is preferable that the insulating film 10 is free of MgO. FIG. 2 is a plan view of the sensor main body 2, in which a heat insulating film 12 is provided on the entire surface of an alumina substrate 8, a heater film 6 is provided thereon, and the insulating film 10 is covered.
This shows that the SnO2 film 4 is laminated. SnO2 film 4
Each pair of electrodes is connected to the heater film 6 and connected to an external lead from an electrode pad provided at an end of the alumina substrate 8 by, for example, wire bonding.

【0014】ガスセンサ14の全体構造を図3に示し、
16は活性炭フィルターで、ここでは椰子がら系活性炭
を破砕したもの(商品名「白鷺」,白鷺は武田薬品工業
株式会社の商品名)を用いた。また活性炭の粒度分布を
絞るために、8メッシュパスで32メッシュを通過しな
い活性炭を用いた。活性炭の使用量はセンサ1個当たり
130mgである。活性炭フィルター16に代えて、シ
リカゲルや活性白土、あるいは樹脂系の気体選択性透過
膜等のフィルターを用いても良い。18,20は活性炭
フィルター16の上下の金網で、ここでは金網18にス
テンレスの100メッシュの2重金網を用い、金網20
にはステンレスの100メッシュの1重金網を用いた。
FIG. 3 shows the entire structure of the gas sensor 14.
Reference numeral 16 denotes an activated carbon filter, which is obtained by crushing coconut palm activated carbon (trade name “Shirasagi”, Shirasagi is a trade name of Takeda Pharmaceutical Co., Ltd.). In order to narrow the particle size distribution of the activated carbon, activated carbon that does not pass through 32 meshes in an 8 mesh pass was used. The amount of activated carbon used is 130 mg per sensor. Instead of the activated carbon filter 16, a filter such as silica gel, activated clay, or a resin-based gas-selective permeable membrane may be used. Reference numerals 18 and 20 denote wire meshes above and below the activated carbon filter 16. In this case, a double wire mesh of 100 mesh stainless steel is used for the wire mesh 18.
A 100 mesh stainless steel single wire net was used.

【0015】図4に、COセンサ14の駆動波形を示
す。COセンサは250m秒周期で動作し、その内14
m秒を用いて5Vのヒータパルスをヒータ6に加え、S
nO2を最高温度で約340℃まで加熱する。パルス加
熱終了後50m秒後でのSnO2膜の温度は室温+約3
0℃、100m秒後では室温+10〜20℃で、150
m秒後では室温〜室温+10℃となる。この結果、パル
ス加熱終了後80〜236m秒後の範囲では、SnO2
膜の温度は室温〜室温+30℃となる。
FIG. 4 shows a driving waveform of the CO sensor 14. The CO sensor operates at a cycle of 250 ms, of which 14
A 5 V heater pulse is applied to the heater 6 using m seconds, and S
Heat nO2 to a maximum temperature of about 340 ° C. The temperature of the SnO2 film 50 ms after the end of the pulse heating is room temperature + about 3
0 ° C., after 100 ms, room temperature + 10-20 ° C., 150 ° C.
After m seconds, the temperature is from room temperature to room temperature + 10 ° C. As a result, in the range 80 to 236 ms after the end of the pulse heating, SnO2
The temperature of the film is between room temperature and room temperature + 30 ° C.

【0016】図4で250m秒周期でパルス加熱を行う
のは、パルス加熱終了後80m秒〜236m秒の任意の
期間でセンサ出力をサンプリングできるようにするため
で、パルス加熱は例えば1秒に1回でも良い。またパル
ス加熱の幅や最高加熱温度は任意で、最高加熱温度は好
ましくは320〜500℃とし、パルス加熱の幅は好ま
しくは10m秒〜30m秒とする。またパルス加熱の周
期は好ましくは200m秒〜500m秒とする。
In FIG. 4, pulse heating is performed at a cycle of 250 ms so that sensor output can be sampled during an arbitrary period of 80 ms to 236 ms after the completion of pulse heating. May be times. The width of the pulse heating and the maximum heating temperature are arbitrary. The maximum heating temperature is preferably 320 to 500 ° C., and the width of the pulse heating is preferably 10 to 30 msec. The cycle of the pulse heating is preferably 200 to 500 msec.

【0017】図5に、CO検出装置の回路を示す。図に
おいて、20はマイクロコンピュータで、COセンサ1
4の制御とCOの検出に用い、22はADコンバータ
で、負荷抵抗46の電圧からセンサ信号を読み込む。ま
たADコンバータ22は、サーミスタ48と抵抗50を
用いた温度補償回路から温度補償信号を読み込み、かつ
抵抗52,54で定まるCOの警報いき値を読み込む。
24はヒータ制御部で、トランジスタ42を制御して、
ヒータ膜6をパルス的に発熱させる。26はサンプリン
グ制御部でトランジスタ44を用いてサンプリング期間
にSnO2膜4と負荷抵抗46とに検出電圧を加える。
28はタイマで、ADコンバータ22やヒータ制御部2
4,サンプリング制御部26の動作タイミングを制御
し、30は算術論理演算ユニットである。
FIG. 5 shows a circuit of the CO detection device. In the figure, reference numeral 20 denotes a microcomputer, a CO sensor 1
An AD converter 22 reads a sensor signal from the voltage of the load resistor 46, and is used for the control of 4 and the detection of CO. The AD converter 22 reads a temperature compensation signal from a temperature compensation circuit using the thermistor 48 and the resistor 50, and reads an alarm threshold value of CO determined by the resistors 52 and 54.
Reference numeral 24 denotes a heater control unit which controls the transistor 42,
The heater film 6 generates heat in a pulsed manner. A sampling control unit 26 applies a detection voltage to the SnO2 film 4 and the load resistor 46 during the sampling period using the transistor 44.
Reference numeral 28 denotes a timer, which controls the AD converter 22 and the heater control unit 2.
4, the operation timing of the sampling control unit 26 is controlled, and 30 is an arithmetic and logic operation unit.

【0018】32はCO検出部で、抵抗52,54の分
圧点の電圧から求めた警報いき値、例えばCO200p
pmに対応、から低濃度のCO60ppmに対応する警
報いき値を発生させ、ADコンバータ22で読み込んだ
センサ信号からSnO2膜4の抵抗値を求め、200p
pmと60ppmに対応する2つの警報いき値と比較す
る。またCO検出部32は、ADコンバータ22で読み
込んだ温度補償信号から、相対湿度が一定と仮定して、
SnO2膜4の周囲温度依存性を補償する。このため相
対湿度の変化分は、そのまま未補償の誤差要因となる。
CO検出部32は、例えば200ppm以上のCOが1
分以上存在する場合や、60ppm以上のCOが例えば
15分以上存在する場合に、COの検出信号を発生す
る。この信号で警報制御部34は、ドライバ60を介し
てブザー62やLED64等を用いて警報する。なお4
0は定電圧電源である。
Reference numeral 32 denotes a CO detection unit, which is an alarm threshold value obtained from the voltage at the voltage dividing point of the resistors 52 and 54, for example, CO200p.
pm, an alarm threshold corresponding to low-concentration CO of 60 ppm is generated, and the resistance value of the SnO2 film 4 is obtained from the sensor signal read by the AD converter 22.
Compare with two alarm thresholds corresponding to pm and 60 ppm. The CO detection unit 32 also assumes that the relative humidity is constant from the temperature compensation signal read by the AD converter 22,
The ambient temperature dependence of the SnO2 film 4 is compensated. Therefore, the change in the relative humidity directly becomes an uncompensated error factor.
The CO detection unit 32 detects, for example, that
When a CO is present for more than 60 minutes or when CO of 60 ppm or more is present for, for example, 15 minutes or more, a detection signal of CO is generated. With this signal, the alarm control unit 34 issues an alarm using the buzzer 62 and the LED 64 via the driver 60. 4
0 is a constant voltage power supply.

【0019】[0019]

【特性】SnCl4の水溶液をアンモニアで加水分解し
焼成して得たSnO2に、塩化白金酸を加えて焼成し、
Ptを担持させた。Ptの添加方法は任意で、例えば塩
化白金酸に代えてPtレジネートやオクチル酸白金ある
いはテトラアンミンプラチナ(2)ビス(2−エチルヘ
キ酸)等でPtを添加しても、特性はほぼ同等であっ
た。そこで以下では塩化白金酸としてPtを添加した場
合の特性を示す。COセンサ14の駆動条件は特に断ら
ない限り図4に示したもので、毎秒4回14m秒幅の加
熱パルスを加え、SnO2膜4の最高加熱温度を約34
0℃とした。
[Characteristics] Chloroplatinic acid is added to SnO2 obtained by hydrolyzing an aqueous solution of SnCl4 with ammonia and calcining, followed by calcining.
Pt was loaded. The method of adding Pt is arbitrary. For example, even if Pt is added with Pt resinate, platinum octylate, tetraammineplatinum (2) bis (2-ethylhexanoic acid) or the like instead of chloroplatinic acid, the characteristics are almost the same. . Therefore, the characteristics when Pt is added as chloroplatinic acid are shown below. The driving conditions of the CO sensor 14 are as shown in FIG. 4 unless otherwise specified. A heating pulse having a width of 14 ms is applied four times per second, and the maximum heating temperature of the SnO2 film 4 is set to about 34.
0 ° C.

【0020】図6,図7に、SnO2に6wt%のPt
を添加した場合の、パルス加熱終了後の特性を示す。加
熱条件は、パルス幅が14m秒で周期が1秒,SnO2
の最高加熱温度が340℃である、図6は標準雰囲気の
20℃相対湿度65%での特性を示し、図7は高温高湿
雰囲気の50℃相対湿度90%での特性を示す。標準雰
囲気ではパルス加熱中のCO60ppmへの感度、即ち
空気中とCO60ppm中との抵抗値の比は3程度で、
高温高湿中ではこれが1.5程度に減少する。高温高湿
の空気中では、パルス加熱中の抵抗値は著しく減少し、
このためCOが存在しない場合でも警報することが有り
得る。
FIGS. 6 and 7 show that 6 wt% of Pt is added to SnO 2.
Shows the characteristics after the completion of the pulse heating when is added. The heating conditions were a pulse width of 14 ms, a cycle of 1 second, and SnO2.
6 shows the characteristics of a standard atmosphere at 20 ° C. and a relative humidity of 65%, and FIG. 7 shows the characteristics of a high temperature and high humidity atmosphere at 50 ° C. and a relative humidity of 90%. In a standard atmosphere, the sensitivity to CO 60 ppm during pulse heating, that is, the ratio of the resistance value between air and CO 60 ppm is about 3,
This decreases to about 1.5 in high temperature and high humidity. In high-temperature, high-humidity air, the resistance during pulse heating decreases significantly,
For this reason, even if CO does not exist, an alarm may be issued.

【0021】パルス加熱終了後の特性に着目すると、標
準雰囲気では時刻50m秒〜600m秒の空気中での抵
抗値は極めて高く、CO感度も大きい。高温高湿雰囲気
でも時刻100m秒〜400m秒程度の期間にCO感度
が得られ、これはパルス加熱中のCO感度よりも高い。
このことから、パルス加熱終了後80m秒〜400m
秒、より好ましくは100m秒〜250m秒にセンサ信
号をサンプリングすれば、湿度の影響を小さくできるこ
とが分かる。
Focusing on the characteristics after the completion of the pulse heating, in a standard atmosphere, the resistance value in air at a time of 50 ms to 600 ms is extremely high, and the CO sensitivity is high. Even in a high-temperature and high-humidity atmosphere, CO sensitivity is obtained in a period of about 100 ms to 400 ms, which is higher than the CO sensitivity during pulse heating.
From this, 80 msec to 400 m after the end of pulse heating
It can be seen that the effect of humidity can be reduced by sampling the sensor signal in seconds, more preferably in 100 ms to 250 ms.

【0022】図8,図9は、SnO2膜に1.0wt%の
Ptを添加し、図4の駆動条件で動作させた際の特性を
示す。60ppmのCO中(標準雰囲気)での、パルス
加熱中の抵抗値は20〜30kΩ程度である。これに対
して高温高湿雰囲気では、COが存在しない場合でもパ
ルス加熱中の抵抗値は30kΩを下回る。従ってパルス
加熱中のセンサ抵抗をサンプリングすると、高温高湿の
雰囲気で誤報が生じる。しかしながら図8,図9は、時
刻150m秒の付近で大きなCO感度が得られることを
示している。このことは図6,図7と同様である。
FIGS. 8 and 9 show the characteristics when 1.0 wt% of Pt is added to the SnO2 film and operated under the driving conditions of FIG. The resistance during pulse heating in 60 ppm CO (standard atmosphere) is about 20 to 30 kΩ. On the other hand, in a high-temperature, high-humidity atmosphere, the resistance value during pulse heating is lower than 30 kΩ even in the absence of CO. Therefore, if the sensor resistance is sampled during the pulse heating, an erroneous report occurs in a high-temperature, high-humidity atmosphere. However, FIGS. 8 and 9 show that a large CO sensitivity is obtained around 150 ms. This is the same as in FIGS.

【0023】図10,図11は、SnO2膜に4.0wt
%のPtを添加し、図4の駆動条件で動作させた際の特
性を示す。Pt4.0wt%ではパルス加熱終了後のC
O感度はさらに増加し、これに伴ってCOセンサ14の
湿度依存性は減少し、CO濃度依存性が増加する。
FIGS. 10 and 11 show that 4.0 wt.
5 shows characteristics when Pt is added and the device is operated under the driving conditions shown in FIG. At 4.0 wt% Pt, C after pulse heating
The O sensitivity further increases, and accordingly, the humidity dependency of the CO sensor 14 decreases, and the CO concentration dependency increases.

【0024】図12に、Pt添加量の変化によるCO6
0ppmに対する感度と、高温高湿中での抵抗値の変化
とを示す。動作条件は図4のもので、サンプリングは時
刻150m秒に行った。CO感度は各雰囲気での空気中
での抵抗値とCO60ppm中での抵抗値との比で示
し、図に示した数字はSnO2膜4の抵抗値である。ま
た雰囲気は、20℃,相対湿度65%の標準雰囲気と、
50℃,相対湿度90%の高温高湿雰囲気の2種類を用
いた。高温高湿中での抵抗(△の線)はこの雰囲気での
空気中の抵抗値を示し、これが標準雰囲気でのCO60
ppm中に対する線(■の線)を越える場合高温高湿雰
囲気による誤報は生じず、この線を下回る場合、高温高
湿雰囲気による誤報が生じることになる。Pt添加量が
3〜5wt%で、高温高湿中での空気中の抵抗値を標準
雰囲気でのCO60ppm中の抵抗値に対して充分大き
くでき、高温高湿雰囲気による誤報を防止できることが
分かる。また標準雰囲気と高温高湿雰囲気でのCO感度
の差(■と◇の間隔)は、湿度によるCO感度の低下を
表し、Pt量を3wt%以上とすると、湿度によるCO
感度の低下を小さくできることが分かる。
FIG. 12 shows the change in CO6 due to the change in the amount of Pt added.
The graph shows the sensitivity to 0 ppm and the change in resistance value at high temperature and high humidity. The operating conditions were as shown in FIG. 4, and sampling was performed at a time of 150 ms. The CO sensitivity is indicated by the ratio of the resistance value in air in each atmosphere to the resistance value in 60 ppm of CO, and the numbers shown in the figure are the resistance values of the SnO2 film 4. The atmosphere is a standard atmosphere of 20 ° C. and a relative humidity of 65%,
Two types of high-temperature and high-humidity atmospheres having a temperature of 50 ° C. and a relative humidity of 90% were used. The resistance in a high-temperature and high-humidity environment (the line indicated by △) indicates the resistance value in the air in this atmosphere.
If the concentration exceeds the line (ppm line) in ppm, no false report due to the high-temperature and high-humidity atmosphere occurs, and if it is below this line, a false report due to the high-temperature and high-humidity atmosphere occurs. It can be seen that when the amount of Pt added is 3 to 5 wt%, the resistance value in air at high temperature and high humidity can be made sufficiently larger than the resistance value at 60 ppm CO in a standard atmosphere, and false reports due to the high temperature and high humidity atmosphere can be prevented. The difference in the CO sensitivity between the standard atmosphere and the high-temperature and high-humidity atmosphere (the interval between ■ and ◇) indicates a decrease in the CO sensitivity due to humidity.
It can be seen that the reduction in sensitivity can be reduced.

【0025】図13は、Pt添加量とセンサのCO濃度
依存性との関係を示す。この特性は、図4の駆動条件
で、時刻150m秒でのセンサ出力をサンプリングした
際のものである。ここで重要なのはα(60−200)
で、これはCO60ppm中とCO200ppm中とで
の抵抗値の比である。そしてPt添加量を3〜5wt%
とすると、α(60−200)を1.36以上となり、
Pt添加量2wt%での1.25やPt添加量6wt%
での1.26よりも大きくなる。
FIG. 13 shows the relationship between the amount of Pt added and the CO concentration dependence of the sensor. This characteristic is obtained when the sensor output at the time of 150 msec is sampled under the driving conditions of FIG. The important thing here is α (60-200)
This is the ratio of the resistance values in 60 ppm CO and 200 ppm CO. And the Pt addition amount is 3 to 5 wt%
Then, α (60−200) becomes 1.36 or more,
1.25 with Pt addition of 2 wt% and Pt addition of 6 wt%
Is larger than 1.26.

【0026】時刻250m秒後以降のセンサ特性を調べ
るため、毎秒2回500m秒間隔で14m秒幅の加熱パ
ルスを加えることを検討した。この場合、時刻100m
秒〜250m秒でのCO感度は実施例よりも小さく、時
刻250m秒以降では図6,図7と同様にCO感度が徐
々に減少した。時刻250m秒後以降でのCO感度は、
例えばSnO2にPt4重量%を加えた場合、高温高湿
中での空気とCO60ppmでの抵抗値の比で表1のよ
うに変化した。表1から、センサ出力のサンプリングは
パルス加熱終了後80m秒〜400m秒に行うことが好
ましいことが分かり、より好ましくは100m秒〜25
0m秒後とする。
In order to examine the sensor characteristics after 250 ms, it was considered to apply a heating pulse having a width of 14 ms at 500 ms intervals twice per second. In this case, time 100m
The CO sensitivity in the second to 250 ms was smaller than that in the example, and after the time 250 ms, the CO sensitivity gradually decreased as in FIGS. The CO sensitivity after 250 ms is
For example, when Pt 4% by weight was added to SnO2, the ratio between the air at high temperature and high humidity and the resistance at 60 ppm of CO changed as shown in Table 1. Table 1 shows that the sampling of the sensor output is preferably performed 80 ms to 400 ms after the completion of the pulse heating, and more preferably 100 ms to 25 ms.
0 ms later.

【0027】[0027]

【表1】 サンプリング時刻とCO感度 サンプリング 100 114 150 200 264 400 500 時刻(m秒) CO感度 3.2 4.8 6.5 6.2 5.8 2.8 1.5 (空気中とCO60ppm中との抵抗値の比) * SnO2膜4にPt4.0wt%を添加 * パルス加熱は毎秒2回,14m秒幅[Table 1] Sampling time and CO sensitivity sampling 100 114 150 200 264 400 500 Time (msec) CO sensitivity 3.2 4.8 6.5 6.2 5.8 2.8 1.5 (60 ppm in air and CO) * Ratio of Pt 4.0 wt% added to SnO2 film 4 * Pulse heating twice per second, 14 msec width

【0028】SnO2膜4の最高加熱温度とCO感度と
の関係を調べ、表2の結果を得た。この表から、最高加
熱温度は320℃以上が好ましく、特に320〜500
℃が好ましいことが分かる。
The relationship between the maximum heating temperature of the SnO 2 film 4 and the CO sensitivity was examined, and the results shown in Table 2 were obtained. From this table, the maximum heating temperature is preferably 320 ° C. or higher, particularly 320 to 500 ° C.
It turns out that C is preferable.

【0029】[0029]

【表2】 表2 最高加熱温度とCO感度 最高加熱温度(℃) 300 340 410 460 Rair/Rco60 1.5 2.8 6.5 8.0 * 測定条件は、パルス加熱の周期が500m秒,ヒータパルスの幅が14m秒 の14m秒/500m秒で、 SnO2膜4はPt6.0wt%を含有し、 測定雰囲気は50℃相対湿度90%の高湿雰囲気、 結果のRair/Rco60は空気中とCO60ppm中との抵抗値の比を表し、 センサ抵抗のサンプリングはパルス加熱終了後136m秒後. Table 2 Maximum heating temperature and CO sensitivity Maximum heating temperature (° C) 300 340 410 460 Rair / Rco60 1.5 2.8 6.5 8.0 * The measurement conditions are as follows: pulse heating cycle is 500 ms, The heater pulse width is 14 ms, 14 ms / 500 ms, the SnO2 film 4 contains 6.0 wt% Pt, the measurement atmosphere is a high humidity atmosphere at 50 ° C. and 90% relative humidity, and the resulting Rair / Rco60 is in air. Indicates the ratio of the resistance value to that in 60 ppm of CO. Sampling of the sensor resistance is 136 ms after the end of pulse heating.

【0030】加熱パルスの幅とCO感度との関係を調
べ、表3の結果を得た。この表から、加熱パルスの幅は
10m秒〜30m秒が好ましいことが分かる。なお同じ
センサについて、加熱パルスの幅を14m秒とした場
合、時刻150m秒での高温高湿中でのCO60ppm
に対する感度は、以下のようになった。即ちパルス加熱
周期が250m秒で4.4、500m秒で2.8、1秒で
2.0であった。
The relationship between the width of the heating pulse and the CO sensitivity was examined, and the results shown in Table 3 were obtained. From this table, it is understood that the width of the heating pulse is preferably 10 ms to 30 ms. When the width of the heating pulse is set to 14 ms for the same sensor, CO at 60 ppm at high temperature and high humidity at 150 ms is used.
The sensitivity to was as follows. That is, the pulse heating cycle was 4.4 at 250 ms, 2.8 at 500 ms, and 2.0 at 1 second.

【0031】[0031]

【表3】 表3 加熱パルスの幅とCO感度 加熱パルスの幅(m秒) 8 14 20 30 Rair/Rco60 1.2 2.8 4.5 6.0 最高加熱温度(℃) 250 340 410 480 * 測定条件は、パルス加熱の周期が500m秒、 SnO2膜4はPt6.0wt%を含有し、 測定雰囲気は50℃相対湿度90%の高湿雰囲気、 結果のRair/Rco60は空気中とCO60ppm中との抵抗値の比を表し、 センサ抵抗のサンプリングはパルス加熱終了後136m秒後.Table 3 Width of heating pulse and width of CO sensitivity heating pulse (msec) 814 20 30 Rair / Rco60 1.2 2.8 4.5 6.0 Maximum heating temperature (° C) 250 340 410 480 * The measurement conditions are as follows: pulse heating cycle is 500 ms, SnO2 film 4 contains 6.0 wt% Pt, measurement atmosphere is high humidity atmosphere at 50 ° C and relative humidity 90%, and the resulting Rair / Rco60 is in air and CO 60 ppm. 136 ms after the end of pulse heating.

【0032】実施例ではSnO2膜4を金属酸化物半導
体として用いたが、SnO2に代えてIn2O3等を用い
ても良く、加熱パルスは単一のパルスとして加えても、
あるいは多数のサブパルスの集合体として加えても良
い。
Although the SnO2 film 4 is used as a metal oxide semiconductor in the embodiment, In2O3 or the like may be used instead of SnO2, and the heating pulse may be applied as a single pulse.
Alternatively, it may be added as an aggregate of many sub-pulses.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例に用いたCOセンサの要部断面図FIG. 1 is a sectional view of a main part of a CO sensor used in an embodiment.

【図2】 実施例に用いたCOセンサの要部平面図FIG. 2 is a plan view of a main part of a CO sensor used in Examples.

【図3】 実施例に用いたCOセンサの断面図FIG. 3 is a cross-sectional view of a CO sensor used in Examples.

【図4】 実施例でのCOセンサの駆動波形を示す特
性図
FIG. 4 is a characteristic diagram showing a driving waveform of the CO sensor in the embodiment.

【図5】 実施例のCO検出装置の回路図FIG. 5 is a circuit diagram of the CO detection device according to the embodiment.

【図6】 SnO2/Pt6wt%のセンサでの、1
4m秒/1秒駆動時の標準雰囲気での特性図
FIG. 6 shows the relationship between the value of SnO2 / Pt6 wt%
Characteristic diagram in standard atmosphere when driven for 4 ms / 1 second

【図7】 SnO2/Pt6wt%のセンサでの、、
14m秒/1秒駆動時の湿中雰囲気での特性図
FIG. 7 shows the results of a SnO 2 / Pt 6 wt% sensor.
Characteristic diagram in a humid atmosphere when driven for 14 ms / 1 second

【図8】 SnO2/Pt1wt%のセンサでの、1
4m秒/250m秒駆動時の標準雰囲気での特性図
FIG. 8 shows the relationship between the value of SnO2 / Pt1 wt%
Characteristic diagram in standard atmosphere when driven for 4 ms / 250 ms

【図9】 SnO2/Pt1wt%のセンサでの、1
4m秒/250m秒駆動時の湿中雰囲気での特性図
FIG. 9 shows the relationship between the value of SnO2 / Pt1 wt%
Characteristic diagram in a humid atmosphere when driven for 4 ms / 250 ms

【図10】 SnO2/Pt4wt%のセンサでの、1
4m秒/250m秒駆動時の標準雰囲気での特性図
FIG. 10 shows the relationship between the value of SnO2 / Pt4 wt%
Characteristic diagram in standard atmosphere when driven for 4 ms / 250 ms

【図11】 SnO2/Pt4wt%のセンサでの、1
4m秒/250m秒駆動時の湿中雰囲気での特性図
FIG. 11 shows a graph of 1 in a sensor of SnO2 / Pt4 wt%.
Characteristic diagram in a humid atmosphere when driven for 4 ms / 250 ms

【図12】 Pt濃度とCOセンサの湿度依存性との関
係を示す特性図
FIG. 12 is a characteristic diagram showing a relationship between Pt concentration and humidity dependency of a CO sensor.

【図13】 Pt濃度とCOセンサのCO濃度依存性と
の関係を示す特性図
FIG. 13 is a characteristic diagram showing a relationship between Pt concentration and CO concentration dependency of the CO sensor.

【符号の説明】[Explanation of symbols]

2 センサ本体 20 マイクロ
コンピュータ 4 SnO2膜 22 ADコン
バータ 6 ヒータ膜 24 ヒータ制
御部 8 アルミナ基板 26 サンプリ
ング制御部 10 絶縁膜 28 タイマ 12 断熱膜 30 算術論
理演算ユニット 14 COセンサ 32 CO検
出部 16 活性炭フィルター 34 警報制
御部 18,20 金網 40 定電圧
電源 42,44 トランジスタ 46 負荷抵抗 48 サーミスタ 50,52,54 抵抗 60 ドライバ 62 ブザー 64 LED
2 Sensor Body 20 Microcomputer 4 SnO2 Film 22 AD Converter 6 Heater Film 24 Heater Control Unit 8 Alumina Substrate 26 Sampling Control Unit 10 Insulating Film 28 Timer 12 Thermal Insulating Film 30 Arithmetic Logic Operation Unit 14 CO Sensor 32 CO Detection Unit 16 Activated Carbon Filter 34 Alarm controller 18, 20 Wire netting 40 Constant voltage power supply 42, 44 Transistor 46 Load resistance 48 Thermistor 50, 52, 54 Resistance 60 Driver 62 Buzzer 64 LED

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 明久 箕面市船場西1丁目5番3号 フィガロ技 研株式会社内 (72)発明者 野村 徹 箕面市船場西1丁目5番3号 フィガロ技 研株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akihisa Ishida 1-3-5 Senba Nishi, Minoh City Inside Figaro Giken Co., Ltd. (72) Inventor Toru Nomura 1-3-5 Senba Nishi Mino City, Figaro Giken Inside the corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガスにより抵抗値が変化する金属酸化物
半導体をパルス的に加熱してCOを検出するようにした
CO検出装置において、 前記パルス加熱終了後80m秒〜400m秒後の前記半
導体の抵抗値をサンプリングするための手段と、この手
段で求めた抵抗値からCOを検出するための手段とを設
けたことを特徴とする、CO検出装置。
1. A CO detection device configured to detect CO by heating a metal oxide semiconductor having a resistance value changed by a gas in a pulsed manner, wherein the semiconductor is 80 ms to 400 ms after the completion of the pulse heating. A CO detection device comprising: means for sampling a resistance value; and means for detecting CO from the resistance value obtained by the means.
【請求項2】 サンプリング時の金属酸化物半導体の温
度を室温+30℃〜室温としたことを特徴とする、請求
項1のCO検出装置。
2. The CO detection device according to claim 1, wherein the temperature of the metal oxide semiconductor at the time of sampling is between room temperature + 30 ° C. and room temperature.
【請求項3】 サンプリングを、パルス加熱終了後10
0m秒〜250m秒の間に行うことを特徴とする、請求
項1のCO検出装置。
3. Sampling is performed 10 hours after the completion of pulse heating.
2. The CO detection device according to claim 1, wherein the detection is performed between 0 ms and 250 ms.
【請求項4】 前記パルス加熱の幅を10m秒以上、パ
ルス加熱時の金属酸化物半導体の最高温度を320℃以
上としたことを特徴とする、請求項1のCO検出装置。
4. The CO detection device according to claim 1, wherein a width of the pulse heating is 10 ms or more, and a maximum temperature of the metal oxide semiconductor during the pulse heating is 320 ° C. or more.
【請求項5】 パルス加熱周期を200m秒〜500m
秒としたことを特徴とする、請求項1のCO検出装置。
5. A pulse heating cycle of 200 msec to 500 m
The CO detection device according to claim 1, wherein the time is set to seconds.
【請求項6】 ガスにより抵抗値が変化する金属酸化物
半導体をパルス的に加熱してCOを検出するようにした
CO検出装置において、 前記パルス加熱の周期を200m秒〜500m秒とし、
パルス加熱の幅を10m秒〜30m秒とし、 かつ前記パルス加熱終了後100m秒〜250m秒後の
金属酸化物半導体の抵抗値をサンプリングするための手
段と、この手段で求めた抵抗値からCOを検出するため
の手段とを設けたことを特徴とする、CO検出装置。
6. A CO detection device configured to detect a CO by heating a metal oxide semiconductor having a resistance value changed by a gas in a pulsed manner, wherein a cycle of the pulse heating is 200 ms to 500 ms.
Means for sampling the pulse heating width from 10 ms to 30 ms, and sampling the resistance value of the metal oxide semiconductor 100 ms to 250 ms after the end of the pulse heating, and CO from the resistance value obtained by this means. A CO detection device, comprising: means for detecting.
JP24913896A 1996-08-29 1996-08-29 Co detector Pending JPH1073551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24913896A JPH1073551A (en) 1996-08-29 1996-08-29 Co detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24913896A JPH1073551A (en) 1996-08-29 1996-08-29 Co detector

Publications (1)

Publication Number Publication Date
JPH1073551A true JPH1073551A (en) 1998-03-17

Family

ID=17188496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24913896A Pending JPH1073551A (en) 1996-08-29 1996-08-29 Co detector

Country Status (1)

Country Link
JP (1) JPH1073551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304746A (en) * 1998-04-24 1999-11-05 Matsushita Seiko Co Ltd Gas detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304746A (en) * 1998-04-24 1999-11-05 Matsushita Seiko Co Ltd Gas detecting device

Similar Documents

Publication Publication Date Title
US6888467B2 (en) Gas detection instrument and method for its operation
JP3750998B2 (en) Exhalation detection method and apparatus
JP6679859B2 (en) Gas detector
JPH1073551A (en) Co detector
JP3987650B2 (en) Gas detector
JP3723073B2 (en) Gas detection device and gas detection method
JP4050838B2 (en) Gas detector
JP2014132241A (en) Gas detector
JP2791473B2 (en) Gas detection method and device
EP3848702A1 (en) Gas detection device
JP4755365B2 (en) Gas detector
JPH1073552A (en) Co sensor
JP2004028952A (en) Gas detector
JP3757109B2 (en) Gas detection device and gas detection method
JP3868736B2 (en) Gas detection device and gas detection method
JP4497658B2 (en) Gas detection method and apparatus
JP2911928B2 (en) Gas detection method
JP3999831B2 (en) Gas detection method and apparatus
JP5629418B2 (en) Gas alarm device and alarm concentration output setting method of gas alarm device
JP4408553B2 (en) Gas detection device and gas detection method
JP2001175970A (en) Device and method for detecting gas
JP2881316B2 (en) CO gas detector
JP2021173535A (en) Gas detector
JP2000193621A (en) Gas detecting method and device
JP4097473B2 (en) Gas detection method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

A521 Written amendment

Effective date: 20050127

Free format text: JAPANESE INTERMEDIATE CODE: A821

A02 Decision of refusal

Effective date: 20050607

Free format text: JAPANESE INTERMEDIATE CODE: A02