JP2014132241A - Gas detector - Google Patents

Gas detector Download PDF

Info

Publication number
JP2014132241A
JP2014132241A JP2013000494A JP2013000494A JP2014132241A JP 2014132241 A JP2014132241 A JP 2014132241A JP 2013000494 A JP2013000494 A JP 2013000494A JP 2013000494 A JP2013000494 A JP 2013000494A JP 2014132241 A JP2014132241 A JP 2014132241A
Authority
JP
Japan
Prior art keywords
voltage
heater
gas
resistor
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013000494A
Other languages
Japanese (ja)
Other versions
JP6244562B2 (en
Inventor
Ryo Inazawa
領 稲澤
Kazuo Okinaga
一夫 翁長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIS Inc
Original Assignee
FIS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIS Inc filed Critical FIS Inc
Priority to JP2013000494A priority Critical patent/JP6244562B2/en
Publication of JP2014132241A publication Critical patent/JP2014132241A/en
Application granted granted Critical
Publication of JP6244562B2 publication Critical patent/JP6244562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas detector capable of supplying the amount of electric power necessary for a resistor for a heater even when a battery voltage varies while a pulse voltage is being applied to the resistor for a heater.SOLUTION: A gas detector includes: a gas sensitive body 20 in which a value of resistance changes according to gas concentration; a resistor 21 for a heater which heats the gas sensitive body 20; a heater drive part 13 which supplies a pulse voltage to the resistor 21 for a heater with a battery 14 being a power source; a gas detection part 10c; a voltage measurement part 10b; and a control part 10a. The voltage measurement part 10b measures the pulse voltage applied to the resistor 21 for a heater. Based on the voltage value measured by the voltage measurement part 10b while the pulse voltage is being applied to the resistor 21 for a heater, the control part 10a controls time width of the pulse voltage applied to the resistor 21 for a heater next time in such a manner that the amount of electric power supplied to the resistor 21 for a heater becomes constant.

Description

本発明は、ガス検出装置に関するものである。   The present invention relates to a gas detection device.

従来、ヒータ用抵抗線に印加される電池電圧を測定し、この電圧値を基にヒータ用抵抗線に供給する電力量が一定となるようヒータ用抵抗線に印加するパルス電圧のパルス印加時間を制御する電池駆動式のガス検出警報器があった(例えば特許文献1参照)。   Conventionally, the battery voltage applied to the heater resistance wire is measured, and the pulse application time of the pulse voltage applied to the heater resistance wire is set so that the amount of power supplied to the heater resistance wire is constant based on this voltage value. There was a battery-driven gas detection alarm to be controlled (see, for example, Patent Document 1).

特開平11−248659号公報JP-A-11-248659

上述したガス検出警報器は、ヒータ用抵抗線に直前に印加された電池電圧を基にパルス電圧のパルス印加時間を制御していた。   The gas detection alarm described above controls the pulse application time of the pulse voltage based on the battery voltage applied immediately before the heater resistance wire.

ところで、電池の出力電圧はエネルギー消費の増加によって内部抵抗が上昇することにより降下する。そのため、電池によってヒータ用抵抗に供給される電力量が、ヒータ用抵抗を所定の温度に加熱するために必要な電力量よりも低くなる可能性があった。   By the way, the output voltage of the battery drops as the internal resistance increases due to an increase in energy consumption. Therefore, the amount of power supplied to the heater resistor by the battery may be lower than the amount of power required to heat the heater resistor to a predetermined temperature.

所定の電力量がヒータ用抵抗に供給されなければ感ガス体が目的の温度に加熱されず、ガス感度特性に影響が出る。   If a predetermined amount of electric power is not supplied to the heater resistor, the gas sensitive body is not heated to the target temperature, which affects the gas sensitivity characteristics.

本発明は上記課題に鑑みて為されたものであり、その目的とするところは、ヒータ用抵抗へパルス電圧を印加している間に電池電圧が変動しても、ヒータ用抵抗に必要な電力量を供給できるガス検出装置を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to provide power necessary for the heater resistor even if the battery voltage fluctuates while the pulse voltage is applied to the heater resistor. An object of the present invention is to provide a gas detection device capable of supplying a quantity.

請求項1の発明は、感ガス体と、ガス検出部と、ヒータ用抵抗と、ヒータ駆動部と、電圧測定部と、制御部とを備えることを特徴とする。前記感ガス体は、ガス濃度に応じて抵抗値が変化する。前記ガス検出部は、前記感ガス体の抵抗値からガスを検出する。前記ヒータ用抵抗は、前記感ガス体を加熱する。前記ヒータ駆動部は、前記ヒータ用抵抗にパルス電圧を供給する。前記電圧測定部は、前記ヒータ用抵抗に印加されるパルス電圧を測定する。前記ヒータ用抵抗にパルス電圧が印加されている間に前記電圧測定部によって測定された電圧値に基づいて、前記制御部は前記ヒータ用抵抗に供給する電力量が一定となるように前記ヒータ用抵抗に次回印加するパルス電圧の時間幅を制御する。   The invention of claim 1 includes a gas sensitive body, a gas detection unit, a heater resistor, a heater driving unit, a voltage measurement unit, and a control unit. The resistance value of the gas sensitive body changes according to the gas concentration. The gas detection unit detects gas from a resistance value of the gas sensitive body. The heater resistor heats the gas sensitive body. The heater driving unit supplies a pulse voltage to the heater resistor. The voltage measuring unit measures a pulse voltage applied to the heater resistor. Based on the voltage value measured by the voltage measuring unit while a pulse voltage is being applied to the heater resistor, the control unit controls the heater power so that the amount of power supplied to the heater resistor is constant. Controls the time width of the next pulse voltage applied to the resistor.

請求項2の発明は、請求項1の発明において、前記ヒータ駆動部は、電池を電源として前記ヒータ用抵抗にパルス電圧を供給し、前記電圧測定部は、前記ヒータ用抵抗に印加中のパルス電圧の電圧値を継続的に測定することを特徴とする。尚、継続的に測定するとは、前記ヒータ駆動部がパルス電圧を印加している間に前記電圧測定部がパルス電圧の電圧値を常時測定することや一定の時間間隔で測定することを意味する。   According to a second aspect of the present invention, in the first aspect of the invention, the heater driving unit supplies a pulse voltage to the heater resistor using a battery as a power source, and the voltage measuring unit applies a pulse being applied to the heater resistor. The voltage value of the voltage is continuously measured. The continuous measurement means that the voltage measuring unit constantly measures the voltage value of the pulse voltage or measures at a constant time interval while the heater driving unit is applying the pulse voltage. .

請求項3の発明は、請求項1の発明において、前記ヒータ駆動部は、電池を電源として前記ヒータ用抵抗にパルス電圧を供給し、前記電圧測定部は、前記ヒータ用抵抗へ印加中のパルス電圧の電圧値を、パルス電圧の印加開始時及び印加終了時に測定することを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the heater driving unit supplies a pulse voltage to the heater resistor using a battery as a power source, and the voltage measuring unit applies a pulse being applied to the heater resistor. The voltage value of the voltage is measured at the start and end of application of the pulse voltage.

請求項4の発明は、請求項1の発明において、前記ヒータ駆動部は、電池を電源として前記ヒータ用抵抗にパルス電圧を供給し、前記電圧測定部は、前記ヒータ用抵抗へ印加中のパルス電圧の電圧値を、印加時間の半分が経過した時点で測定することを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the invention, the heater driving unit supplies a pulse voltage to the heater resistor using a battery as a power source, and the voltage measuring unit applies a pulse being applied to the heater resistor. The voltage value of the voltage is measured when half of the application time has elapsed.

請求項1の発明によれば、電源電圧が徐々に変化する場合でも、ヒータ用抵抗に印加中のパルス電圧の電圧値を基に制御部が次回印加するパルス電圧の時間幅を決定しヒータ駆動部を動作させることで、感ガス体を所定の温度に加熱するために必要な電力量を電源がヒータ用抵抗に供給する。   According to the first aspect of the present invention, even when the power supply voltage gradually changes, the control unit determines the time width of the pulse voltage to be applied next time based on the voltage value of the pulse voltage being applied to the heater resistor, and drives the heater. By operating the unit, the power source supplies the heater resistor with the amount of power necessary to heat the gas sensitive body to a predetermined temperature.

請求項2の発明によれば、ヒータ用抵抗へ印加中の電池電圧を電圧測定部が継続的に測定し、測定された電圧値を基に次回パルス電圧をヒータ用抵抗に印加する時間幅を制御部がより正確に推定してヒータ駆動部を動作させることで、感ガス体を所定の温度に加熱するために必要な電力量を電池電源がヒータ用抵抗に確実に供給する。   According to the invention of claim 2, the voltage measuring unit continuously measures the battery voltage being applied to the heater resistor, and the time width for applying the next pulse voltage to the heater resistor based on the measured voltage value is determined. When the control unit estimates more accurately and operates the heater driving unit, the battery power supply reliably supplies the electric power necessary for heating the gas sensitive body to a predetermined temperature to the heater resistor.

請求項3の発明によれば、パルス電圧の印加開始時及び印加終了時の電池電圧を電圧測定部が測定し、測定された2点の電圧値を基に制御部がパルス電圧の時間幅を決定する。多点の電圧値から時間幅を求める場合に比べて測定値の処理を簡略化でき、測定部の駆動に必要な消費電力が抑えられる。   According to the invention of claim 3, the voltage measuring unit measures the battery voltage at the start and end of application of the pulse voltage, and the control unit determines the time width of the pulse voltage based on the measured two voltage values. decide. Compared with the case where the time width is obtained from the multipoint voltage values, the processing of the measurement values can be simplified, and the power consumption required for driving the measurement unit can be suppressed.

請求項4の発明によれば、パルス電圧の印加時間の半分が経過した時点で電池電圧を測定し、この時点の電圧値を基に制御部が電池電圧の電圧降下を推定してパルス電圧の時間幅を決定する。電池電圧の測定回数は1回でよいので、2点の電圧値から時間幅を求める場合に比べて測定値の処理をさらに簡略化でき、測定部の駆動に必要な消費電力がさらに抑えられる。   According to the invention of claim 4, the battery voltage is measured at the time when half of the application time of the pulse voltage has elapsed, and the control unit estimates the voltage drop of the battery voltage based on the voltage value at this time, and the pulse voltage Determine the time span. Since the battery voltage may be measured once, the processing of the measured value can be further simplified as compared with the case where the time width is obtained from the two voltage values, and the power consumption required for driving the measuring unit can be further suppressed.

本実施形態の概略的な回路図である。It is a schematic circuit diagram of this embodiment. 同上に用いられる感ガス体を収納したパッケージの断面図である。It is sectional drawing of the package which accommodated the gas sensitive body used for the same as the above. 同上に用いられるパッケージが外ケースに収納された状態の一部を破断した斜視図である。It is the perspective view which fractured | ruptured a part of the state in which the package used for the same was stored in the outer case. 同上の電池電圧の印加時期および測定時期を示し、(a)はヒータ駆動部13の動作タイミング、(b)はヒータ用抵抗に印加される電圧V2、(c)〜(e)は電圧測定部10bが電圧V2を測定するタイミングおよび制御部10aに出力する電圧値Vhを示す図である。The application time and measurement time of the battery voltage are shown, (a) is the operation timing of the heater drive unit 13, (b) is the voltage V2 applied to the heater resistance, and (c) to (e) are voltage measurement units. It is a figure which shows the voltage value Vh output to the timing which 10b measures the voltage V2, and the control part 10a. 同上の動作を説明するタイムチャートであり、(a)は感ガス体の抵抗値Rsの変化、(b)は報知出力のタイミングを示す図である。It is a time chart explaining operation | movement same as the above, (a) is a figure which shows the change of resistance value Rs of a gas sensitive body, (b) is a figure which shows the timing of alerting | reporting output.

以下に、本発明を、燃焼ガス(例えばメタンなど)の濃度が警報レベルを超えるとガス漏れ警報を発するガス警報器に適用した実施形態について図1〜図5を参照して説明する。尚、本発明に係るガス検出装置はガス警報器に限定されるものではなく、空気の汚れ度合いを検出するものや、匂いガスを検出するものに適用してもよいことは言うまでもない。   Hereinafter, an embodiment in which the present invention is applied to a gas alarm that issues a gas leak alarm when the concentration of combustion gas (for example, methane) exceeds an alarm level will be described with reference to FIGS. Needless to say, the gas detection device according to the present invention is not limited to a gas alarm, and may be applied to a device that detects the degree of air contamination or a device that detects odor gas.

図1はガス検出装置のブロック図であり、ガス検出装置は、感ガス体20と、ヒータ用抵抗21と、中心電極22と、スイッチング素子Q1と、信号処理回路10と、報知回路11と、電圧安定化回路12とを備えている。   FIG. 1 is a block diagram of a gas detection device. The gas detection device includes a gas sensitive body 20, a heater resistor 21, a center electrode 22, a switching element Q1, a signal processing circuit 10, a notification circuit 11, And a voltage stabilizing circuit 12.

感ガス体20は、例えば酸化錫(SnO)等の金属酸化物半導体の焼結体からなり、雰囲気中の感応ガスに感応して電気的特性値である電気抵抗が変化する。燃焼ガスの濃度が高くなるほど、感ガス体20の酸化還元反応によって、感ガス体20の電気抵抗は小さくなる。この種の感ガス体20では、ガスの種類によって、ガス感度が高感度となる温度範囲が異なっている。例えば400℃付近の比較的高温の温度範囲では、不完全燃焼ガスである一酸化炭素の感度に比べて、燃焼ガスであるメタンの感度が十分高感度であり、この温度範囲における抵抗値変化からメタンを選択的に検出することが可能となっている。また80℃付近の比較的低温の温度範囲では、燃焼ガスであるメタンの感度に比べて、不完全燃焼ガスである一酸化炭素の感度が十分高感度であり、この温度範囲における抵抗値変化から一酸化炭素を選択的に検出することが可能となっている。尚、ガスに対して感度を有する温度範囲は、要求されるガス検出精度、感ガス体20の組成、ガスの種類やそのガスに対して想定されるガス検出時の濃度(すなわち警報判定レベルの濃度)などに応じて適宜設定される。 The gas sensitive body 20 is made of, for example, a sintered body of a metal oxide semiconductor such as tin oxide (SnO 2 ), and the electrical resistance, which is an electrical characteristic value, changes in response to the sensitive gas in the atmosphere. As the concentration of the combustion gas increases, the electric resistance of the gas sensitive body 20 decreases due to the oxidation-reduction reaction of the gas sensitive body 20. In this type of gas sensitive body 20, the temperature range in which the gas sensitivity is high depends on the type of gas. For example, in a relatively high temperature range around 400 ° C., the sensitivity of methane, which is a combustion gas, is sufficiently high compared to the sensitivity of carbon monoxide, which is an incomplete combustion gas. From the resistance value change in this temperature range, It is possible to selectively detect methane. In addition, in the relatively low temperature range around 80 ° C., the sensitivity of carbon monoxide, which is an incomplete combustion gas, is sufficiently high compared to the sensitivity of methane, which is a combustion gas. From the resistance value change in this temperature range, It is possible to selectively detect carbon monoxide. It should be noted that the temperature range sensitive to the gas is the required gas detection accuracy, the composition of the gas sensitive body 20, the type of gas, and the concentration at the time of gas detection assumed for that gas (that is, the alarm judgment level). (Concentration) and the like.

感ガス体20の材料である金属酸化物半導体には、雑ガスに対する感度を低減させる触媒を担持していることが好ましい。このような触媒としては、パラジウム(Pd)、タングステン(W)、白金(Pt)、ロジウム(Rh)、セリウム(Ce)、モリブデン(Mo)、バナジウム(V)等がある。これらの触媒は一種類が単独で用いられてもよいし、2種類以上が併用して用いられてもよい。特に触媒としてPdが用いられる場合、感ガス体20の応答性が向上する。すなわち、ガス濃度が上昇するのに伴って、感ガス体20の電気抵抗が変化し始めてから、電気抵抗が安定するまでに要する時間が短縮される。   The metal oxide semiconductor that is the material of the gas sensitive body 20 preferably supports a catalyst that reduces the sensitivity to various gases. Examples of such catalysts include palladium (Pd), tungsten (W), platinum (Pt), rhodium (Rh), cerium (Ce), molybdenum (Mo), vanadium (V), and the like. One type of these catalysts may be used alone, or two or more types may be used in combination. In particular, when Pd is used as the catalyst, the responsiveness of the gas sensitive body 20 is improved. That is, as the gas concentration increases, the time required for the electric resistance to stabilize after the electric resistance of the gas sensitive body 20 starts to change is shortened.

ヒータ用抵抗21は貴金属線(例えば白金線)をコイル状に巻回して形成され、感ガス体20の内部に埋設されており、その両端は感ガス体20の外部に露出している。そして、ヒータ用抵抗21はスイッチング素子Q1を介して電池14の両端間に接続されている。   The heater resistor 21 is formed by winding a noble metal wire (for example, platinum wire) in a coil shape and is embedded in the gas sensitive body 20, and both ends thereof are exposed to the outside of the gas sensitive body 20. The heater resistor 21 is connected between both ends of the battery 14 via the switching element Q1.

中心電極22は棒状の貴金属線(例えば白金線)からなり、コイル状に形成されたヒータ用抵抗21の中心を貫通するようにして感ガス体20の内部に埋設され、その両端は感ガス体20の外部にそれぞれ露出している。中心電極22の一方の端部は、信号処理回路10の入力端子T3に接続されるとともに、負荷抵抗R1とトランジスタQ2を介して電圧安定化回路12の出力端に接続される。尚、トランジスタQ2のベースは信号処理回路10の出力端子T2に接続されている。図1中に感ガス体20の等価回路を示してあり、ヒータ用抵抗21の一端と中心電極22との間の感ガス体20の抵抗値をRsとする。   The center electrode 22 is made of a rod-like noble metal wire (for example, platinum wire) and is embedded in the gas sensitive body 20 so as to penetrate the center of the heater resistor 21 formed in a coil shape, and both ends thereof are gas sensitive bodies. 20 are exposed to the outside. One end of the center electrode 22 is connected to the input terminal T3 of the signal processing circuit 10 and to the output terminal of the voltage stabilizing circuit 12 via the load resistor R1 and the transistor Q2. The base of the transistor Q2 is connected to the output terminal T2 of the signal processing circuit 10. An equivalent circuit of the gas sensitive body 20 is shown in FIG. 1, and the resistance value of the gas sensitive body 20 between one end of the heater resistor 21 and the center electrode 22 is Rs.

スイッチング素子Q1は例えばFET(FieldEffect Transistor)からなり、そのゲート電極は信号処理回路10の出力端子T1に接続され、信号処理回路10からの出力信号に応じてオン/オフが切り替えられる。ここにおいてスイッチング素子Q1と後述する信号処理回路10の制御部10aとでヒータ駆動部13が構成される。   The switching element Q1 is composed of, for example, an FET (Field Effect Transistor), and its gate electrode is connected to the output terminal T1 of the signal processing circuit 10 and is switched on / off according to the output signal from the signal processing circuit 10. Here, the heater drive unit 13 is configured by the switching element Q1 and a control unit 10a of the signal processing circuit 10 described later.

信号処理回路10はマイクロコンピュータからなり、その演算機能が組み込みの制御プログラムを実行することによって、制御部10aと、電圧測定部10bと、ガス検出部10cを実現している。   The signal processing circuit 10 is composed of a microcomputer, and a control unit 10a, a voltage measurement unit 10b, and a gas detection unit 10c are realized by executing a control program whose calculation function is built in.

電圧測定部10bはヒータ用抵抗21に印加される電圧V2を入力端子T4から取り込んでA/D変換し、電圧値Vhとして信号処理回路10aに出力する。   The voltage measuring unit 10b takes in the voltage V2 applied to the heater resistor 21 from the input terminal T4, performs A / D conversion, and outputs the voltage value Vh to the signal processing circuit 10a.

電圧測定部10bによって出力された電圧値Vhに応じて、感ガス体20が所定の温度に加熱されるように制御部10aはヒータ用抵抗21に印加するパルス電圧の時間幅を決定する。その決定された時間幅のデューティ信号を制御部10aが出力端子T1からスイッチング素子Q1のゲート電極に出力することで、感ガス体20を所定の温度に加熱するために必要な電力量を電池電源がヒータ用抵抗21に供給する。例えば、メタンのような燃焼ガスの場合では、感ガス体20の温度が約400℃付近で感ガス体20の感度が他のガスに対する感度よりも大きくなるので、ヒータ用抵抗21の消費電力が約150mWとなるようにパルス電圧の時間幅を信号処理回路10aが電圧値Vhに応じて決定し、出力端子T1の出力をオンにする。   In accordance with the voltage value Vh output by the voltage measuring unit 10b, the control unit 10a determines the time width of the pulse voltage applied to the heater resistor 21 so that the gas sensitive body 20 is heated to a predetermined temperature. The control unit 10a outputs the duty signal having the determined time width from the output terminal T1 to the gate electrode of the switching element Q1, so that the amount of electric power necessary to heat the gas sensitive body 20 to a predetermined temperature is supplied to the battery power source. Is supplied to the heater resistor 21. For example, in the case of a combustion gas such as methane, the sensitivity of the gas sensitive body 20 becomes higher than the sensitivity to other gases when the temperature of the gas sensitive body 20 is about 400 ° C. Therefore, the power consumption of the heater resistor 21 is reduced. The signal processing circuit 10a determines the time width of the pulse voltage so as to be about 150 mW according to the voltage value Vh, and turns on the output of the output terminal T1.

ガス検出部10cは、出力端子T2からの出力信号によってトランジスタQ2をオンにし、負荷抵抗R1と感ガス体20との直列回路に一定電圧を印加した状態で入力端子T3に入力される電圧V1をA/D変換して取り込む。ここで、感ガス体20の電気抵抗がガス濃度に応じて変化すると、負荷抵抗R1と感ガス体20との分圧比が変化して、中心電極22の電圧V1が変化する。例えばメタン等の燃焼ガスの場合ではガス濃度が上昇すると、感ガス体20の電気抵抗が減少するので、分圧比の変化によって中心電極22の電圧V1は低下する。ガス検出部10cは、入力端子T3に入力される電圧V1から感ガス体20の抵抗値Rsを求め、この抵抗値Rsからガス濃度を求めている。   The gas detection unit 10c turns on the transistor Q2 by the output signal from the output terminal T2, and applies the voltage V1 input to the input terminal T3 in a state where a constant voltage is applied to the series circuit of the load resistor R1 and the gas sensitive body 20. A / D convert and capture. Here, when the electric resistance of the gas sensitive body 20 changes according to the gas concentration, the voltage division ratio between the load resistance R1 and the gas sensitive body 20 changes, and the voltage V1 of the center electrode 22 changes. For example, in the case of a combustion gas such as methane, when the gas concentration increases, the electric resistance of the gas sensing body 20 decreases, so that the voltage V1 of the center electrode 22 decreases due to the change in the partial pressure ratio. The gas detection unit 10c obtains the resistance value Rs of the gas sensitive body 20 from the voltage V1 input to the input terminal T3, and obtains the gas concentration from the resistance value Rs.

電圧安定化回路12はダイオードD1およびコンデンサC1からなり、ダイオードD1を介して電池14がコンデンサC1を一定電圧に充電する。この電圧安定化回路12が信号処理回路10などに一定電圧を供給する。   The voltage stabilization circuit 12 includes a diode D1 and a capacitor C1, and the battery 14 charges the capacitor C1 to a constant voltage via the diode D1. The voltage stabilizing circuit 12 supplies a constant voltage to the signal processing circuit 10 and the like.

報知回路11は、例えばブザー音や音声メッセージなどの報知音(警報音)を出力するスピーカからなり、信号処理回路10からの出力信号に応じて所定の報知音を出力する。   The notification circuit 11 includes a speaker that outputs a notification sound (alarm sound) such as a buzzer sound or a voice message, for example, and outputs a predetermined notification sound according to an output signal from the signal processing circuit 10.

図2に示すように、感ガス体20の内部にはヒータ用抵抗21と中心電極22とが埋設される。中心電極22は、コイル状に形成されたヒータ用抵抗21の中心を貫通するように配置されている。   As shown in FIG. 2, a heater resistor 21 and a center electrode 22 are embedded in the gas sensitive body 20. The center electrode 22 is disposed so as to penetrate the center of the heater resistor 21 formed in a coil shape.

この感ガス体20は図2及び図3に示すようにベース31とケース32とからなるパッケージ30内に収納されている。ベース31は絶縁性の樹脂により円盤状に形成され、3本のリード端子33a,33b,33cがベース31を厚み方向に貫通するように設けられている。ヒータ用抵抗21の両端はそれぞれリード端子33a,33bに溶接され、中心電極22の一端はリード端子33cに溶接されている。ケース32は金属材料により、円筒状の筒部32aと、筒部32aの上端部から内側に張り出すように設けられた上板部32bとを一体に備えている。上板部32bの中央には通気用の貫通孔32cが設けられ、この貫通孔32cには塵や埃の進入を抑制するために例えばステンレス製の金網34が取り付けられている。   As shown in FIGS. 2 and 3, the gas sensitive body 20 is housed in a package 30 including a base 31 and a case 32. The base 31 is formed in a disc shape with an insulating resin, and three lead terminals 33a, 33b, 33c are provided so as to penetrate the base 31 in the thickness direction. Both ends of the heater resistor 21 are welded to the lead terminals 33a and 33b, respectively, and one end of the center electrode 22 is welded to the lead terminal 33c. The case 32 is integrally provided with a cylindrical tube portion 32a and an upper plate portion 32b provided so as to project inward from the upper end portion of the tube portion 32a, using a metal material. A ventilation through hole 32c is provided at the center of the upper plate portion 32b, and a stainless steel wire mesh 34, for example, is attached to the through hole 32c in order to suppress entry of dust and dirt.

そして、このパッケージ30は、合成樹脂製の外ケース40内に収納されている。外ケース40は、筒部32aの外径よりも内径が若干大きめに形成された円筒状の筒部40aと、筒部40aの上端部から内側に張り出すように設けられた上板部40bとを一体に備えている。上板部40bの中央には通気用の開口40cが設けられ、この開口40cには例えばステンレス製の金網41が取り付けられている。外ケース40の内部には、貫通孔32cを内側に向けた状態でパッケージ30が収納されており、貫通孔32cと開口40cとの間のガス流路にはフィルタ42が配置されている。このフィルタ42は例えば活性炭、シリカゲル等で形成され、また活性炭とシリカゲルとを組み合わせた材料で形成されても良い。フィルタ42が設けられていると、開口40cから外ケース40内に流入したガスに含まれる雑ガス(例えばNOx、アルコールのような有機溶剤の蒸気等)や被毒ガス(例えばシリコン蒸気等)がフィルタ42に除去される。これにより、パッケージ30内に流入する雑ガスや被毒ガスが低減されるから、雑ガスによる誤検出が抑制され、また感ガス体20が被毒ガスによって被毒されにくくなる。   The package 30 is housed in an outer case 40 made of synthetic resin. The outer case 40 includes a cylindrical tube portion 40a having an inner diameter slightly larger than the outer diameter of the tube portion 32a, and an upper plate portion 40b provided so as to project inward from the upper end portion of the tube portion 40a. Is integrated. An opening 40c for ventilation is provided in the center of the upper plate portion 40b, and a stainless steel wire mesh 41 is attached to the opening 40c. The package 30 is housed inside the outer case 40 with the through hole 32c facing inward, and a filter 42 is disposed in the gas flow path between the through hole 32c and the opening 40c. The filter 42 is formed of, for example, activated carbon, silica gel, or the like, or may be formed of a material combining activated carbon and silica gel. When the filter 42 is provided, miscellaneous gas (for example, NOx, vapor of organic solvent such as alcohol) or poisonous gas (for example, silicon vapor) contained in the gas flowing into the outer case 40 from the opening 40c is filtered. 42 is removed. Thereby, since miscellaneous gas and poisonous gas flowing into the package 30 are reduced, erroneous detection due to miscellaneous gas is suppressed, and the gas sensitive body 20 is not easily poisoned by poisonous gas.

ところで、上述の感ガス体20は適宜の手法で作製される。例えば感ガス体20に含まれる酸化物半導体がSnOである場合、適宜の手法で調製されたSnOの粉末が用いられる。例えばSnClの水溶液をNHで加水分解してスズ酸ゾルを調製する。このスズ酸ゾルを風乾した後、例えば550〜700℃の空気雰囲気中で0.5〜3時間焼成する。この焼成により得られたSnOの塊状物が粉砕されると、SnOの粉末が得られる。粉末状のSnOにパラジウム(Pd)を担持させるためには、SnOの粉末にPdの王水溶液を含浸させ、例えば500℃の空気雰囲気中で1時間焼成する。Pdの担持量は例えばSnOに対して1.7質量%とすることができる。またPdに加えて、タングステン(W)をSnOに対して5質量%担持させても良い。またPd及びWに加えて、SnOに白金(Pt)、ロジウム(Rh)、セリウム(Ce)、モリブデン(Mo)の内の1つ又は複数を、SnOに対して0.5質量%程度担持させても良い。骨材が使用される場合は、SnOの粉末とアルミナ(α−アルミナ)等の骨材の粉末とを混合する。この混合物に、ポリエチレングリコール、グリセリン、テルピネオール等の有機溶剤が加えられると、ペースト状の混合物が調製される。このペースト状の混合物が、リード端子33a〜33cに支持されたヒータ用抵抗21及び中心電極22の周囲に塗布され、例えば500℃の空気雰囲気中で1時間焼成されると、感ガス体20が形成される。 By the way, the above-mentioned gas sensitive body 20 is produced by an appropriate method. For example, when the oxide semiconductor contained in the gas sensitive body 20 is SnO 2 , SnO 2 powder prepared by an appropriate technique is used. For example, an aqueous solution of SnCl 4 is hydrolyzed with NH 4 to prepare a stannic acid sol. The stannic acid sol is air-dried and then baked in an air atmosphere at 550 to 700 ° C. for 0.5 to 3 hours. When the SnO 2 lump obtained by this firing is pulverized, SnO 2 powder is obtained. To the powdered SnO 2 is supported palladium (Pd) is impregnated with an aqua regia solution of Pd in the SnO 2 powder, calcined 1 hour at for example 500 ° C. in air atmosphere. The amount of Pd supported can be 1.7% by mass with respect to SnO 2, for example. In addition to Pd, tungsten (W) may be supported at 5% by mass with respect to SnO 2 . In addition to Pd and W, SnO 2 contains one or more of platinum (Pt), rhodium (Rh), cerium (Ce), and molybdenum (Mo) at about 0.5 mass% with respect to SnO 2 . It may be supported. When aggregate is used, SnO 2 powder and aggregate powder such as alumina (α-alumina) are mixed. When an organic solvent such as polyethylene glycol, glycerin or terpineol is added to this mixture, a paste-like mixture is prepared. When this paste-like mixture is applied around the heater resistor 21 and the center electrode 22 supported by the lead terminals 33a to 33c and baked in an air atmosphere at 500 ° C. for 1 hour, for example, the gas sensitive body 20 is formed. It is formed.

尚、感ガス体20は平板状、球状(楕円球状を含む)等の適宜の形状に形成でき、また感ガス体20の寸法も適宜設計される。本実施形態では、図2に示すように感ガス体20は長手方向の径が略0.5mm、短手方向の径が略0.3mmの楕円球状に形成されている。感ガス体20が球状に形成されると、感ガス体20が平板状や円筒状に形成される場合と比べて感ガス体20の小型化が可能であり、その結果、感ガス体20の熱容量を低減することができる。また本実施形態では、球状の感ガス体20にヒータ用抵抗21と中心電極22とを埋設し、ヒータ用抵抗21により感ガス体20を直接加熱するガスセンサを例に説明したが、上記の構造のガスセンサに限定されるものではなく、アルミナなどの絶縁基板上に感ガス体を配置し、絶縁基板の裏面に配置したヒータで感ガス体を間接加熱するガスセンサでもよい。   The gas sensitive body 20 can be formed in an appropriate shape such as a flat plate shape or a spherical shape (including an elliptical spherical shape), and the size of the gas sensitive body 20 is also designed appropriately. In this embodiment, as shown in FIG. 2, the gas sensitive body 20 is formed in an elliptical shape having a diameter in the longitudinal direction of about 0.5 mm and a diameter in the short side direction of about 0.3 mm. When the gas sensitive body 20 is formed in a spherical shape, the gas sensitive body 20 can be reduced in size as compared with the case where the gas sensitive body 20 is formed in a flat plate shape or a cylindrical shape. The heat capacity can be reduced. In the present embodiment, the heater 21 and the center electrode 22 are embedded in the spherical gas sensitive body 20, and the gas sensor 20 that directly heats the gas sensitive body 20 with the heater resistance 21 is described as an example. The gas sensor may be a gas sensor in which a gas sensitive body is disposed on an insulating substrate such as alumina and the gas sensitive body is indirectly heated by a heater disposed on the back surface of the insulating substrate.

本実施形態のガス検出装置は、以上のような構成を有しており、その動作について以下に説明する。   The gas detection device of this embodiment has the above-described configuration, and the operation thereof will be described below.

電池14が回路に接続され、電圧安定化回路12から信号処理回路10に電圧が供給されると、信号処理回路10は初期化動作を行った後、燃焼ガスの検出を開始する。   When the battery 14 is connected to the circuit and a voltage is supplied from the voltage stabilization circuit 12 to the signal processing circuit 10, the signal processing circuit 10 performs an initialization operation and then starts detection of combustion gas.

制御部10aは、初期動作時はヒータ抵抗21に印加するパルス電圧の時間幅Tを初期値とし、オン期間が時間幅Tとなるようなデューティ信号を出力端子T1から出力することでスイッチング素子Q1をオンにして、ヒータ用抵抗21に電池電圧を印加する。   In the initial operation, the control unit 10a sets the time width T of the pulse voltage applied to the heater resistor 21 as an initial value, and outputs a duty signal from the output terminal T1 so that the ON period becomes the time width T, thereby switching the switching element Q1. Is turned on, and the battery voltage is applied to the heater resistor 21.

ヒータ駆動部13によってヒータ用抵抗21に電池電圧が印加されている間に、電圧測定部10bは入力端子T4から電圧V2を取り込み、A/D変換して得た電圧値Vhを制御部10aに出力する。図4に電圧V2の取り込みタイミングおよび電圧値Vhを示す。   While the battery voltage is being applied to the heater resistor 21 by the heater driving unit 13, the voltage measuring unit 10b takes in the voltage V2 from the input terminal T4 and supplies the voltage value Vh obtained by A / D conversion to the control unit 10a. Output. FIG. 4 shows the take-in timing of the voltage V2 and the voltage value Vh.

図4(a)はヒータ駆動部13の動作タイミングである。   FIG. 4A shows the operation timing of the heater driving unit 13.

図4(b)はヒータ駆動部13によって印加される電圧V2の推移を表したものであり、エネルギー消費に伴う内部抵抗の増加によって電池電圧が漸減し、それに応じて電圧V2は漸減している。   FIG. 4B shows the transition of the voltage V2 applied by the heater driving unit 13, and the battery voltage is gradually decreased due to the increase in internal resistance accompanying energy consumption, and the voltage V2 is gradually decreased accordingly. .

電圧測定部10bは図4(c)のように所定の測定間隔dtが経過する毎に電池電圧V2を複数回取り込む。電圧測定部10bによって取り込まれたそれらの電圧値Vhはそれぞれ電圧値vi(i=1,2,…,n−1,n)として制御部10aに出力され、電圧値viとヒータ用抵抗21の抵抗値から求めた電力を時間積分することで制御部10aはヒータ用抵抗21に供給される電力量を推定する。   As shown in FIG. 4C, the voltage measurement unit 10b takes in the battery voltage V2 a plurality of times every time a predetermined measurement interval dt elapses. The voltage values Vh taken in by the voltage measuring unit 10b are respectively output to the control unit 10a as voltage values vi (i = 1, 2,..., N−1, n), and the voltage values vi and the heater resistance 21 are output. The control unit 10a estimates the amount of power supplied to the heater resistor 21 by time-integrating the power obtained from the resistance value.

制御部10aは、電圧測定部10bから出力される電圧値Vhを基に、実際にヒータ用抵抗21に供給される電力量を求めると、ヒータ用抵抗21に所定の電力量を供給するために必要な印加時間Trを決定し、この印加時間Trを次回印加するパルス電圧の時間幅Tとする。   When the controller 10a obtains the amount of power actually supplied to the heater resistor 21 based on the voltage value Vh output from the voltage measuring unit 10b, the controller 10a supplies the heater resistor 21 with a predetermined amount of power. A necessary application time Tr is determined, and this application time Tr is set as a time width T of a pulse voltage to be applied next time.

以上のように、制御部10aはヒータ用抵抗21にパルス電圧を印加する毎に電圧V2を測定した結果から次回印加するパルス電圧の時間幅Tを決定しており、ヒータ用抵抗21に所定の電力量が供給され、感ガス体20が所定の温度に加熱される。   As described above, the control unit 10a determines the time width T of the pulse voltage to be applied next time from the result of measuring the voltage V2 every time the pulse voltage is applied to the heater resistor 21, and the heater resistor 21 has a predetermined width. The amount of electric power is supplied, and the gas sensitive body 20 is heated to a predetermined temperature.

ここで、測定間隔dtが短いほど電池電圧V2の取り込み回数が増えるため、制御部10aは電池電圧の変動およびヒータ用抵抗21に供給される電力量をより正確に推定できる。なお、電圧測定部10bは所定の測定間隔dtが経過する毎に電圧V2を測定しているが、電圧測定部10bをアナログ回路で構成して電圧V2を常時測定してもよい。   Here, as the measurement interval dt is shorter, the number of times of taking in the battery voltage V2 increases, so that the control unit 10a can estimate the fluctuation of the battery voltage and the amount of power supplied to the heater resistor 21 more accurately. The voltage measurement unit 10b measures the voltage V2 every time a predetermined measurement interval dt elapses. However, the voltage measurement unit 10b may be configured by an analog circuit to constantly measure the voltage V2.

上述のようにしてヒータ用抵抗21に所定の電力量が供給されて感ガス体20が所定の温度に加熱されると、ガス検出部10cは感ガス体20の抵抗値Rsを基にガス濃度を測定する。このガス検出部10cの動作を図5のタイムチャートにしたがって説明する。図5(a)は感ガス体20の抵抗値Rsを、図5(b)は報知出力をそれぞれ示す。感ガス体20の加熱後、制御部10aはスイッチング素子Q1をオフにし、ガス検出部10cはトランジスタQ2をオンさせた状態で電圧V1を取り込み、その電圧V1から抵抗値Rsを求める。ガス濃度が上昇するにつれて感ガス体20の抵抗値Rsが低下し、時刻t1において抵抗値Rsが警報判定レベルLV1を下回ると、ガス検出部10cはガス濃度が警報レベルを超えたと判断し、報知回路11に報知動作を行わせる。その後、ガス濃度が低下し、時刻t2において抵抗値Rsが警報判定レベルLV1を上回ると、信号処理回路10はガス濃度が警報レベルを下回ったと判断し、報知回路11に報知動作を停止させる。   As described above, when a predetermined amount of electric power is supplied to the heater resistor 21 and the gas sensitive body 20 is heated to a predetermined temperature, the gas detection unit 10c determines the gas concentration based on the resistance value Rs of the gas sensitive body 20. Measure. The operation of the gas detector 10c will be described with reference to the time chart of FIG. FIG. 5A shows the resistance value Rs of the gas sensitive body 20, and FIG. 5B shows the notification output. After heating the gas sensitive body 20, the control unit 10a turns off the switching element Q1, and the gas detection unit 10c takes in the voltage V1 with the transistor Q2 turned on, and obtains the resistance value Rs from the voltage V1. As the gas concentration increases, the resistance value Rs of the gas sensitive body 20 decreases. When the resistance value Rs falls below the alarm determination level LV1 at time t1, the gas detection unit 10c determines that the gas concentration has exceeded the alarm level, and notifies the user. The circuit 11 is caused to perform a notification operation. Thereafter, when the gas concentration decreases and the resistance value Rs exceeds the alarm determination level LV1 at time t2, the signal processing circuit 10 determines that the gas concentration has fallen below the alarm level, and causes the notification circuit 11 to stop the notification operation.

ところで、上記の説明では電圧測定部10bが電池電圧を継続的に測定しているが、図4(d)に示すように電圧測定部10bはパルス電圧印加開始時およびパルス電圧印加終了時の電圧V2をそれぞれ電圧値vs、電圧値veとして取り込むようにしてもよい。この場合、電圧測定部10bから制御部10aに入力された電圧vs,veを基に、制御部10aは電圧値vsから電圧値veまで一定の割合で電圧降下が起こっていると推定する。ヒータ用抵抗21に印加されるパルス電圧の時間幅Tにおける平均的な電圧値が(vs+ve)/2であると制御部10aは推定し、この電圧値とヒータ用抵抗21の抵抗値からヒータ用抵抗21に供給される電力量を求める。パルス電圧の印加開始時及び印加終了時の2回だけの電圧測定でよいので、3回以上の複数回の電圧測定を行う場合に比べて制御部10aの処理を簡略化できる。   In the above description, the voltage measuring unit 10b continuously measures the battery voltage. However, as shown in FIG. 4D, the voltage measuring unit 10b is a voltage at the start of pulse voltage application and at the end of pulse voltage application. You may make it take in V2 as voltage value vs and voltage value ve, respectively. In this case, based on the voltages vs and ve input from the voltage measurement unit 10b to the control unit 10a, the control unit 10a estimates that a voltage drop occurs at a constant rate from the voltage value vs to the voltage value ve. The control unit 10a estimates that the average voltage value of the pulse voltage applied to the heater resistor 21 in the time width T is (vs + ve) / 2, and the heater value is determined from the voltage value and the resistance value of the heater resistor 21. The amount of power supplied to the resistor 21 is obtained. Since only two voltage measurements are required at the start and end of application of the pulse voltage, the processing of the control unit 10a can be simplified as compared with the case of performing voltage measurement three or more times.

また、図4(e)に示すように、パルス電圧の印加開始時から前回印加時に決定した時間幅Tの半分が経過した時点の電圧V2を電圧測定部10bは電圧値vmとして取り込み、制御部10aに出力してもよい。この場合、制御部10aはパルス電圧の印加開始時から一定の割合で電圧降下が起こっていると推定する。パルス電圧の印加開始時から時間幅Tの半分が経過したときの電圧値vmが印加期間中の平均電圧になると制御部10aは推定し、この電圧値vmとヒータ用抵抗21の抵抗値を基にヒータ用抵抗21に供給される電力量を求める。このように、1回だけの電圧値の測定でヒータ用抵抗21に印加される電力量を推定できるので、複数回電圧測定を行う場合に比べて制御部10aの処理を簡略化できる。   Further, as shown in FIG. 4E, the voltage measurement unit 10b takes in the voltage V2 at the time when half of the time width T determined at the previous application from the start of application of the pulse voltage as a voltage value vm, and the control unit You may output to 10a. In this case, the controller 10a estimates that a voltage drop has occurred at a constant rate from the start of pulse voltage application. The control unit 10a estimates that the voltage value vm when half of the time width T has elapsed from the start of application of the pulse voltage becomes the average voltage during the application period, and based on this voltage value vm and the resistance value of the heater resistor 21. The amount of power supplied to the heater resistor 21 is obtained. As described above, since the amount of electric power applied to the heater resistor 21 can be estimated by measuring the voltage value only once, the processing of the control unit 10a can be simplified as compared with the case where the voltage measurement is performed a plurality of times.

10 信号処理回路(制御部、電圧測定部、ガス検出部)
12 電圧安定化回路
13 ヒータ駆動部
14 電池
20 感ガス体
21 ヒータ用抵抗
22 中心電極
Q1 スイッチング素子(ヒータ駆動部)
Q2 トランジスタ
R1 負荷抵抗
10 Signal processing circuit (control unit, voltage measurement unit, gas detection unit)
DESCRIPTION OF SYMBOLS 12 Voltage stabilization circuit 13 Heater drive part 14 Battery 20 Gas sensitive body 21 Resistance for heaters 22 Center electrode Q1 Switching element (heater drive part)
Q2 Transistor R1 Load resistance

Claims (4)

ガス濃度に応じて抵抗値が変化する感ガス体と、
前記感ガス体の抵抗値からガスを検出するためのガス検出部と、
前記感ガス体を加熱するヒータ用抵抗と、
前記ヒータ用抵抗にパルス電圧を供給するヒータ駆動部と、
前記ヒータ用抵抗に印加されるパルス電圧を測定する電圧測定部と、
前記ヒータ用抵抗にパルス電圧が印加されている間に前記電圧測定部によって測定された電圧値に基づいて前記ヒータ用抵抗に供給する電力量が一定となるように前記ヒータ駆動部が前記ヒータ用抵抗に次回印加するパルス電圧の時間幅を制御する制御部と、
を備えたことを特徴とするガス検出装置。
A gas sensitive body whose resistance value changes according to the gas concentration;
A gas detector for detecting gas from the resistance value of the gas sensitive body;
A heater resistance for heating the gas sensitive body;
A heater driving section for supplying a pulse voltage to the heater resistor;
A voltage measuring unit for measuring a pulse voltage applied to the heater resistor;
The heater driving unit is configured to provide a constant amount of power to be supplied to the heater resistor based on a voltage value measured by the voltage measuring unit while a pulse voltage is applied to the heater resistor. A control unit for controlling the time width of the pulse voltage to be applied next to the resistor;
A gas detection device comprising:
前記ヒータ駆動部は、電池を電源として前記ヒータ用抵抗にパルス電圧を供給し、
前記電圧測定部は、前記ヒータ用抵抗へ印加中のパルス電圧の電圧値を継続的に測定することを特徴とする請求項1記載のガス検出装置。
The heater driving unit supplies a pulse voltage to the heater resistor using a battery as a power source,
2. The gas detection device according to claim 1, wherein the voltage measurement unit continuously measures a voltage value of a pulse voltage being applied to the heater resistor.
前記ヒータ駆動部は、電池を電源として前記ヒータ用抵抗にパルス電圧を供給し、
前記電圧測定部は、前記ヒータ用抵抗へ印加中のパルス電圧の電圧値を、パルス電圧の印加開始時及び印加終了時に測定することを特徴とする請求項1記載のガス検出装置。
The heater driving unit supplies a pulse voltage to the heater resistor using a battery as a power source,
2. The gas detection device according to claim 1, wherein the voltage measurement unit measures a voltage value of a pulse voltage being applied to the heater resistor at the start and end of application of the pulse voltage.
前記ヒータ駆動部は、電池を電源として前記ヒータ用抵抗にパルス電圧を供給し、
前記電圧測定部は、前記ヒータ用抵抗へ印加中のパルス電圧の電圧値を、印加時間の半分が経過した時点で測定することを特徴とする請求項1記載のガス検出装置。
The heater driving unit supplies a pulse voltage to the heater resistor using a battery as a power source,
2. The gas detection device according to claim 1, wherein the voltage measurement unit measures a voltage value of a pulse voltage being applied to the heater resistor at a time when half of the application time has elapsed.
JP2013000494A 2013-01-07 2013-01-07 Gas detector Active JP6244562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013000494A JP6244562B2 (en) 2013-01-07 2013-01-07 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013000494A JP6244562B2 (en) 2013-01-07 2013-01-07 Gas detector

Publications (2)

Publication Number Publication Date
JP2014132241A true JP2014132241A (en) 2014-07-17
JP6244562B2 JP6244562B2 (en) 2017-12-13

Family

ID=51411380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013000494A Active JP6244562B2 (en) 2013-01-07 2013-01-07 Gas detector

Country Status (1)

Country Link
JP (1) JP6244562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550295A1 (en) * 2018-04-05 2019-10-09 Alpha M.O.S. Gas sensor with a configurable heating element, and methods exploiting the configurability
IT201800004621A1 (en) * 2018-04-17 2019-10-17 HIGH SENSITIVITY OPTOELECTRONIC DEVICE FOR THE DETECTION OF CHEMICAL SPECIES AND RELATED MANUFACTURING METHOD
US10797196B2 (en) 2018-04-17 2020-10-06 Stmicroelectronics S.R.L. Photodetector including a Geiger mode avalanche photodiode and an integrated resistor and related manufacturing method
US11139411B2 (en) 2018-04-17 2021-10-05 Stmicroelectronics S.R.L. High sensitivity semiconductor device for detecting fluid chemical species and related manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331584A (en) * 1993-05-21 1994-12-02 Nohmi Bosai Ltd Environmental sensor
JPH08278279A (en) * 1994-08-05 1996-10-22 Nippondenso Co Ltd Heater controller of oxygen sensor
JPH11248659A (en) * 1998-03-04 1999-09-17 Fuji Electric Co Ltd Gas detecting alarm
JP2007309751A (en) * 2006-05-17 2007-11-29 Ngk Spark Plug Co Ltd Gas detector
JP2009210341A (en) * 2008-03-03 2009-09-17 Osaka Gas Co Ltd Gas detection device
JP2009244236A (en) * 2008-04-01 2009-10-22 Hanshin Electric Co Ltd Smell detecting device
JP2012164095A (en) * 2011-02-04 2012-08-30 Fuji Electric Co Ltd Gas alarm, and heater temperature control method of gas sensor in gas alarm
US20120297860A1 (en) * 2011-05-26 2012-11-29 Figaro Engineering Inc. Gas detection apparatus and gas detection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331584A (en) * 1993-05-21 1994-12-02 Nohmi Bosai Ltd Environmental sensor
JPH08278279A (en) * 1994-08-05 1996-10-22 Nippondenso Co Ltd Heater controller of oxygen sensor
JPH11248659A (en) * 1998-03-04 1999-09-17 Fuji Electric Co Ltd Gas detecting alarm
JP2007309751A (en) * 2006-05-17 2007-11-29 Ngk Spark Plug Co Ltd Gas detector
JP2009210341A (en) * 2008-03-03 2009-09-17 Osaka Gas Co Ltd Gas detection device
JP2009244236A (en) * 2008-04-01 2009-10-22 Hanshin Electric Co Ltd Smell detecting device
JP2012164095A (en) * 2011-02-04 2012-08-30 Fuji Electric Co Ltd Gas alarm, and heater temperature control method of gas sensor in gas alarm
US20120297860A1 (en) * 2011-05-26 2012-11-29 Figaro Engineering Inc. Gas detection apparatus and gas detection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550295A1 (en) * 2018-04-05 2019-10-09 Alpha M.O.S. Gas sensor with a configurable heating element, and methods exploiting the configurability
US11402347B2 (en) 2018-04-05 2022-08-02 Alpha M.O.S. Gas sensor with a configurable heating element, and methods exploiting the configurability
IT201800004621A1 (en) * 2018-04-17 2019-10-17 HIGH SENSITIVITY OPTOELECTRONIC DEVICE FOR THE DETECTION OF CHEMICAL SPECIES AND RELATED MANUFACTURING METHOD
US10797196B2 (en) 2018-04-17 2020-10-06 Stmicroelectronics S.R.L. Photodetector including a Geiger mode avalanche photodiode and an integrated resistor and related manufacturing method
US11139411B2 (en) 2018-04-17 2021-10-05 Stmicroelectronics S.R.L. High sensitivity semiconductor device for detecting fluid chemical species and related manufacturing method
US11171255B2 (en) 2018-04-17 2021-11-09 Stmicroelectronics S.R.L. High sensitivity optoelectronic device for detecting chemical species and related manufacturing method
US11670732B2 (en) 2018-04-17 2023-06-06 Stmicroelectronics S.R.L. High sensitivity semiconductor device for detecting fluid chemical species and related manufacturing method

Also Published As

Publication number Publication date
JP6244562B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5016599B2 (en) Gas detector
JP6244562B2 (en) Gas detector
US8555701B1 (en) Enhanced metal oxide gas sensor
JP6074163B2 (en) Gas detector
JP2008267810A (en) Gas detector and gas detection method
JP4996536B2 (en) Gas detector for combustion equipment
US9769877B2 (en) Heater control apparatus for gas sensor
JP4050838B2 (en) Gas detector
JP2018200283A (en) Gas sensor, gas alarm, control device, control method, and heater driving method
JP3987650B2 (en) Gas detector
JP6679859B2 (en) Gas detector
JPH11142356A (en) Semiconductor gas sensor
JP6960645B2 (en) Gas detector and gas detection method
JP5903353B2 (en) Gas detector
JP6300203B2 (en) Gas detector
JP6001289B2 (en) Combustion device
JP6541982B2 (en) Gas detector
JP6727753B2 (en) Gas detector
JP4129253B2 (en) Semiconductor gas sensor
JP2002082083A (en) Gas detector
JP6108516B2 (en) Gas detector
JP4151596B2 (en) Gas detector
JP3999831B2 (en) Gas detection method and apparatus
JP5861834B2 (en) Energization control device for gas detection element
JP2018205210A (en) Gas sensor, gas alarm, controller, and control method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171017

R150 Certificate of patent or registration of utility model

Ref document number: 6244562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250