JPH1073385A - Method for measuring liquid level of heat pipe - Google Patents

Method for measuring liquid level of heat pipe

Info

Publication number
JPH1073385A
JPH1073385A JP8228407A JP22840796A JPH1073385A JP H1073385 A JPH1073385 A JP H1073385A JP 8228407 A JP8228407 A JP 8228407A JP 22840796 A JP22840796 A JP 22840796A JP H1073385 A JPH1073385 A JP H1073385A
Authority
JP
Japan
Prior art keywords
heat pipe
ultrasonic
working fluid
ultrasonic wave
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8228407A
Other languages
Japanese (ja)
Inventor
Nobuyuki Shibata
信之 芝田
Fumihiko Abe
文彦 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8228407A priority Critical patent/JPH1073385A/en
Publication of JPH1073385A publication Critical patent/JPH1073385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring a liquid level of a heat pipe to simply and rapidly obtain the level of working liquid of the pipe. SOLUTION: A lower part of a heat pipe 1 is disposed in an ultrasonic wave propagation medium 11 so as to include a part of working liquid 4 in the pipe 1 of a standing state. An ultrasonic wave is oscillated by an ultrasonic oscillator 5 toward the pipe 1 in the medium 11. A reflected ultrasonic wave from the pipe 1 is received by an ultrasonic receiver 5. Liquid level of the liquid 4 in the pipe 1 is sensed by means of attenuation characteristics of the received reflected wave to measured a liquid quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒートパイプの作
動液の液量を簡単に素早く求める液位測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid level measuring method for easily and quickly determining the amount of working fluid in a heat pipe.

【0002】[0002]

【従来の技術】ヒートパイプは、作動液の液量によって
熱特性が決定される。従ってヒートパイプの作動液の液
量を正確に求めることは非常に重要な要件となってい
る。従来、ヒートパイプの内部作動液量を測定する場合
は、ヒートパイプ加工前のパイプ素管重量と、作動液を
注入して封止加工した後のヒートパイプ重量を測定して
その重量差から作動液量を求めていた。
2. Description of the Related Art The heat characteristics of a heat pipe are determined by the amount of working fluid. Therefore, it is a very important requirement to accurately determine the amount of the working fluid in the heat pipe. Conventionally, when measuring the amount of working fluid inside a heat pipe, the weight of the pipe base tube before heat pipe processing and the weight of the heat pipe after injection and sealing of the working fluid are measured, and the operation is performed based on the weight difference. The liquid volume was determined.

【0003】[0003]

【発明が解決しようとする課題】パイプ加工前後のパイ
プ重量から作動液量を求める従来の方法においては重量
測定に通常、電子天秤が使用されることが多い。電子天
秤を用いてヒートパイプの作動液の液量を求める従来の
方法にあっては、重量測定に時間が掛かり過ぎてヒート
パイプ製造の生産性向上のネックとなっていた。すなわ
ち、従来の方法にあっては、加工前後の二つのデータを
対比する必要があるために極めて煩雑な作業となってい
た。
In the conventional method for determining the amount of working fluid from the weight of a pipe before and after processing a pipe, an electronic balance is usually used for weight measurement. In the conventional method for determining the amount of the working fluid in the heat pipe using an electronic balance, it took too much time to measure the weight, which was a bottleneck in improving the productivity of heat pipe production. That is, in the conventional method, it is necessary to compare two data before and after the processing, which is an extremely complicated operation.

【0004】本発明は上記の課題を解決し、ヒートパイ
プの作動液の液量を簡単に素早く求めることのできる作
動液の液位測定方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a method for measuring the liquid level of a working fluid that can easily and quickly determine the amount of the working fluid in a heat pipe.

【0005】[0005]

【課題を解決するための手段】本発明は上記の課題を解
決するために以下のような手段を有している。
The present invention has the following means to solve the above problems.

【0006】本発明のうち請求項1のヒートパイプの液
位測定方法は、起立状態にしたヒートパイプの内部の作
動液の部分を含むように前記ヒートパイプの下部を超音
波伝搬媒体中に配置し、前記超音波伝搬媒体中のヒート
パイプに向けて超音波発振器により超音波を発振して前
記ヒートパイプからの反射超音波を超音波受信器により
受信して、受信した反射超音波の減衰特性によりヒート
パイプ内部の作動液の液位を検知することを特徴とす
る。
According to a first aspect of the present invention, there is provided a method for measuring a liquid level of a heat pipe, wherein a lower portion of the heat pipe is disposed in an ultrasonic wave propagation medium so as to include a portion of a working fluid inside the heat pipe in an upright state. Then, ultrasonic waves are oscillated by an ultrasonic oscillator toward a heat pipe in the ultrasonic wave propagation medium, and reflected ultrasonic waves from the heat pipe are received by an ultrasonic receiver, and attenuation characteristics of the received reflected ultrasonic waves are obtained. The liquid level of the working fluid inside the heat pipe is detected by the following method.

【0007】本発明のうち請求項2のヒートパイプの液
量測定方法は、起立状態にしたヒートパイプの内部の作
動液の部分を含むように前記ヒートパイプの下部を超音
波伝搬媒体中に配置し、前記超音波伝搬媒体中のヒート
パイプに向けて超音波発振器により超音波を発振して前
記ヒートパイプを透過した超音波を超音波受信器により
受信して、受信した透過超音波の減衰特性によりヒート
パイプ内部の作動液の液位を検知することを特徴とす
る。
According to a second aspect of the present invention, in the heat pipe liquid amount measuring method, the lower portion of the heat pipe is disposed in the ultrasonic wave propagation medium so as to include a portion of the working fluid inside the heat pipe in an upright state. Then, an ultrasonic wave is oscillated by an ultrasonic oscillator toward a heat pipe in the ultrasonic wave propagation medium, and the ultrasonic wave transmitted through the heat pipe is received by an ultrasonic receiver, and an attenuation characteristic of the received transmitted ultrasonic wave is received. The liquid level of the working fluid inside the heat pipe is detected by the following method.

【0008】本発明のうち請求項3のヒートパイプの液
量測定方法は、ヒートパイプの上部を加熱するととも
に、超音波伝搬媒体を冷却して、ヒートパイプの上部と
下部との温度差を大きくしてヒートパイプ内部の液位を
検知することを特徴とする。
According to a third aspect of the present invention, in the heat pipe liquid amount measuring method, the temperature difference between the upper part and the lower part of the heat pipe is increased by heating the upper part of the heat pipe and cooling the ultrasonic wave propagation medium. And detecting the liquid level inside the heat pipe.

【0009】本発明の請求項1のヒートパイプの液量測
定方法は、超音波伝搬媒体中のヒートパイプに向けて超
音波発振器により超音波を発振してその反射超音波を超
音波受信器により受信して、ヒートパイプ内に作動液が
ある部分と無い部分のヒートパイプからの反射超音波の
減衰特性の違いを検知することにより作動液の液位を測
定するもので、超音波受発振器を用いることによりヒー
トパイプ内の作動液の液位の測定がより容易に素早く行
うことが可能となる。作動液の液位の読み取り精度は、
超音波受発振器の上下方向の移動精度またはヒートパイ
プの上下方向の移動精度を上げることで容易に達成する
ことができる。
According to a first aspect of the present invention, there is provided a method for measuring a liquid amount of a heat pipe, wherein an ultrasonic wave is oscillated by an ultrasonic oscillator toward a heat pipe in an ultrasonic wave propagation medium, and the reflected ultrasonic wave is transmitted by an ultrasonic wave receiver. Receives and measures the liquid level of the working fluid by detecting the difference in the attenuation characteristics of the reflected ultrasonic waves from the heat pipe in the part where the working fluid is in the heat pipe and in the part without the working fluid. By using this, the level of the working fluid in the heat pipe can be measured more easily and quickly. The accuracy of reading the fluid level is
This can be easily achieved by increasing the vertical movement accuracy of the ultrasonic receiving oscillator or the vertical movement accuracy of the heat pipe.

【0010】本発明の請求項2のヒートパイプの液位測
定方法は、超音波伝搬媒体中のヒートパイプに向けて超
音波発振器により超音波を発振してヒートパイプを透過
した透過超音波を超音波受信器により受信して、ヒート
パイプ内に作動液がある部分と無い部分の透過超音波の
減衰特性の違いを検知することにより作動液の液位を測
定するもので、超音波受発振器を用いることによりヒー
トパイプ内の作動液の液位の測定がより容易に素早く行
うことが可能となる。作動液の液位の読み取り精度は、
超音波受発振器の上下方向の移動精度またはヒートパイ
プの上下方向の移動精度を上げることで容易に達成する
ことができる。
According to a second aspect of the present invention, there is provided a method for measuring a liquid level of a heat pipe, wherein the ultrasonic wave is oscillated by an ultrasonic oscillator toward the heat pipe in the ultrasonic wave propagating medium to transmit the transmitted ultrasonic wave transmitted through the heat pipe. The level of the working fluid is measured by detecting the difference in attenuation characteristics of transmitted ultrasonic waves between the part where the working fluid is present in the heat pipe and the part without the working fluid in the heat pipe. By using this, the level of the working fluid in the heat pipe can be measured more easily and quickly. The accuracy of reading the fluid level is
This can be easily achieved by increasing the vertical movement accuracy of the ultrasonic receiving oscillator or the vertical movement accuracy of the heat pipe.

【0011】本発明の請求項3のヒートパイプの液位測
定方法によれば、ヒートパイプの上部と下部との温度差
が大きくなっているので、ヒートパイプ内の上部は作動
液が蒸発して飽和状態となっており、ヒートパイプ下部
の作動液は注入された作動液の液量と一致している。し
たがって作動液の液位を検知することによって注入され
た作動液の液量を測定することができる。
According to the liquid level measuring method for a heat pipe according to the third aspect of the present invention, since the temperature difference between the upper part and the lower part of the heat pipe is large, the working liquid evaporates in the upper part of the heat pipe. The working fluid in the lower part of the heat pipe is in a saturated state, and is equal to the amount of the working fluid injected. Therefore, by detecting the level of the working fluid, the amount of the injected working fluid can be measured.

【0012】[0012]

【発明の実施の形態】以下に本発明に係るヒートパイプ
の液位測定方法を実施の形態により図1ないし図10を
参照してより詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for measuring the liquid level of a heat pipe according to the present invention will be described below in more detail with reference to FIGS.

【0013】(実施の形態1)図1はヒートパイプの液
位測定方法の概要を示す説明図で、1はヒートパイプ、
2は超音波探傷装置、3は測定槽である。ヒートパイプ
1は内部に作動液4として水が注入されて密封状態に封
止されている。超音波探傷装置2は、超音波発振器と超
音波受信器を備えた超音波プローブ5、超音波発振器と
超音波受信器を制御する制御部6、反射超音波の減衰特
性を表示するモニター7、超音波プローブ5の位置を上
下方向に移動させる移動機構8とその制御部9および超
音波プローブ5の位置を読み取る超音波プローブ位置検
出部10を備えている。
(Embodiment 1) FIG. 1 is an explanatory view showing an outline of a method for measuring a liquid level of a heat pipe.
2 is an ultrasonic flaw detector, and 3 is a measuring tank. The heat pipe 1 is filled with water as a working fluid 4 and sealed in a sealed state. The ultrasonic flaw detector 2 includes an ultrasonic probe 5 having an ultrasonic oscillator and an ultrasonic receiver, a control unit 6 for controlling the ultrasonic oscillator and the ultrasonic receiver, a monitor 7 for displaying attenuation characteristics of reflected ultrasonic waves, A moving mechanism 8 for moving the position of the ultrasonic probe 5 in the vertical direction, a control unit 9 thereof, and an ultrasonic probe position detecting unit 10 for reading the position of the ultrasonic probe 5 are provided.

【0014】測定槽3には内部に超音波伝搬媒体11と
なる水が充填されている。測定槽3に略垂直にヒートパ
イプ1を保持して、作動液4の液位が超音波伝搬媒体1
1内に位置するように固定する。測定槽3内に超音波プ
ローブ5を入れてヒートパイプ1に向けて超音波を発振
する。超音波プローブ5は本実施の形態では反射式のも
のを用いた。その周波数は10MHZである。
The measuring tank 3 is filled with water as an ultrasonic wave propagation medium 11. The heat pipe 1 is held substantially vertically in the measuring tank 3 so that the level of the working fluid 4 is
1 to be fixed. The ultrasonic probe 5 is put in the measuring tank 3 and oscillates ultrasonic waves toward the heat pipe 1. In this embodiment, a reflection type ultrasonic probe is used. Its frequency is 10 MHZ.

【0015】図2は、ヒートパイプ1内の作動液4があ
る部分と作動液4がない部分を計測した際の信号の波形
を示すものである。図2(a)は作動液4がある部分に
超音波が当たった場合を示すもので、超音波は反対側の
壁面まで到達できるため長周期の反射となり、単位時間
当たりの減衰は小さい。一方、図2(b)は作動液4が
ない部分に超音波が当たった場合を示すもので、ヒート
パイプ1内が空気の場合、超音波はヒートパイプ1の内
部を透過できず内周面で全反射し、ヒートパイプ1のパ
イプ肉厚部で短周期な反射となり単位時間当たりの減衰
量が大きい。
FIG. 2 shows waveforms of signals when a portion of the heat pipe 1 where the hydraulic fluid 4 is present and a portion where the hydraulic fluid 4 is not present are measured. FIG. 2A shows a case where the ultrasonic wave hits the portion where the hydraulic fluid 4 is present. The ultrasonic wave can reach the wall surface on the opposite side, so that the ultrasonic wave is reflected in a long cycle, and the attenuation per unit time is small. On the other hand, FIG. 2B shows a case where the ultrasonic wave is applied to a portion where the hydraulic fluid 4 is not present. When the inside of the heat pipe 1 is air, the ultrasonic wave cannot pass through the inside of the heat pipe 1 and the , And becomes a short-period reflection at the thick portion of the heat pipe 1, and the amount of attenuation per unit time is large.

【0016】この相違によりヒートパイプ1の内部に作
動液4が存在するかしないかを判別し液位を検知する。
図3は上記の方法でヒートパイプ1の作動液4の液位を
測定した結果を示すものである。図3で用いたヒートパ
イプ1は外径3mmφ、内径2.5mmφ、長さ300
mm、ヒートパイプ1内の断面積0.19cm2 (4.
91cm2 ではないか?)のものである。上記のヒート
パイプ1を雰囲気温度20°C、超音波伝搬媒体11で
ある水の温度を15°Cとしてヒートパイプ1内の作動
液4の液位が平衡状態となる約3分経過後に測定を行っ
た。
Based on this difference, it is determined whether or not the working fluid 4 exists inside the heat pipe 1 and the liquid level is detected.
FIG. 3 shows the result of measuring the liquid level of the working fluid 4 of the heat pipe 1 by the above method. The heat pipe 1 used in FIG. 3 has an outer diameter of 3 mmφ, an inner diameter of 2.5 mmφ, and a length of 300.
mm, the cross-sectional area in the heat pipe 1 is 0.19 cm 2 (4.
Is not it 91cm 2? )belongs to. With the above-mentioned heat pipe 1 at an ambient temperature of 20 ° C. and the temperature of water as the ultrasonic wave propagation medium 11 at 15 ° C., measurement was performed after about 3 minutes when the level of the working fluid 4 in the heat pipe 1 reached an equilibrium state. went.

【0017】図3の測定値の液位A1の線は、上記の方
法でヒートパイプ1の作動液4の液位を検知してヒート
パイプ1内の作動液4の深さT(cm)を求め、深さT
とヒートパイプ1内の断面積0.19cm2 との積より
求めた作動液4の液量である。図3の実際の液量の線B
1は、作動液4を含んだヒートパイプ1の重量からヒー
トパイプ1に穴を開けて内部の作動液4を除いたパイプ
のみの重量の差より求めた作動液4の液量である。測定
値の液量の線A1と実際の液量の線B1とは、一致して
いないが一定の関係があることが分かる。すなわち、実
際の液量の線B1と測定値の液量の線A1の差は、作動
液4が所定量ヒートパイプ1の内面の溝に毛細管現象に
より吸い上げられている状態を示している。
The line of the liquid level A1 of the measured value in FIG. 3 indicates the depth T (cm) of the hydraulic fluid 4 in the heat pipe 1 by detecting the liquid level of the hydraulic fluid 4 in the heat pipe 1 by the above method. Required, depth T
And the cross-sectional area in the heat pipe 1 is 0.19 cm 2 . Line B of actual liquid volume in FIG.
Reference numeral 1 denotes the amount of the working fluid 4 calculated from the difference between the weight of the heat pipe 1 containing the working fluid 4 and the weight of only the pipe excluding the working fluid 4 inside the heat pipe 1 by making a hole in the heat pipe 1. It can be seen that the line A1 of the measured liquid amount and the line B1 of the actual liquid amount do not coincide with each other but have a certain relationship. That is, the difference between the line B1 of the actual liquid amount and the line A1 of the measured liquid amount indicates a state in which the predetermined amount of the working fluid 4 is sucked into the groove on the inner surface of the heat pipe 1 by capillary action.

【0018】この実施の形態では、測定値の液量では実
際の液量は正確ではないが実際の液量の線B1と測定値
の液量の線A1の差分を予め把握しておくことにより、
実際の液量を求めることができる。また、測定値の液位
で得た値をそのまま用いてヒートパイプの温度特性の良
いものを選択するようにしても良い。要は、作動液の正
確な量を測定することではなく、ヒートパイプの温度特
性の良いものを選択する手段として作動液の液量が分か
ればよいのである。
In this embodiment, the actual liquid amount is not accurate with the measured liquid amount, but the difference between the actual liquid amount line B1 and the measured liquid amount line A1 is grasped in advance. ,
The actual liquid volume can be determined. Alternatively, the heat pipe having good temperature characteristics may be selected by using the value obtained at the liquid level of the measured value as it is. In short, it is not necessary to measure the exact amount of the working fluid, but it is sufficient to know the amount of the working fluid as a means for selecting a heat pipe having good temperature characteristics.

【0019】(実施の形態2)図4はヒートパイプの液
位測定方法の他の実施の形態の主要部を示す説明図であ
る。本実施の形態では、測定槽に略垂直にヒートパイプ
1を保持して、作動液4の液位が超音波伝搬媒体11内
に位置するように固定することは実施の形態1と同様で
ある。本実施の形態の特徴はヒートパイプ1の下部を1
5°Cの超音波伝搬媒体11である水にいれるととも
に、超音波伝搬媒体11の上部に50°C、毎秒10m
の熱風を吹きつけることである。その他は、実施の形態
1と同様につき同一部位には同一符号を付して詳細な説
明は省略する。
(Embodiment 2) FIG. 4 is an explanatory view showing a main part of another embodiment of a method for measuring a liquid level of a heat pipe. In the present embodiment, the heat pipe 1 is held substantially vertically in the measuring tank, and the liquid level of the working fluid 4 is fixed so as to be located in the ultrasonic wave propagation medium 11 as in the first embodiment. . The feature of this embodiment is that the lower part of the heat pipe 1 is 1
While being immersed in water which is the ultrasonic propagation medium 11 at 5 ° C., the upper part of the ultrasonic propagation medium 11 is placed at 50 ° C. and 10 m / sec.
Is to blow hot air. The other parts are the same as in the first embodiment, and the same parts are denoted by the same reference numerals, and detailed description will be omitted.

【0020】図5は本実施の形態のヒートパイプの液位
測定方法でヒートパイプ1の作動液4の液量を測定した
結果を示すものである。図5に示すように、この実施の
形態では測定値の液量の線A2と実際の液量の線B2と
は実施の形態1より一致しているので、実際の液量をよ
り正確に求めることができる。また、本実施の形態で
は、熱風を吹き付けなかった実施の形態1の場合に比べ
て測定のばらつきも小さくなることが分かった。
FIG. 5 shows the result of measuring the liquid amount of the working fluid 4 of the heat pipe 1 by the method of measuring the liquid level of the heat pipe according to the present embodiment. As shown in FIG. 5, in this embodiment, the line A2 of the liquid amount of the measured value and the line B2 of the actual liquid amount are more consistent than in the first embodiment, so that the actual liquid amount is more accurately obtained. be able to. Further, it has been found that in the present embodiment, the variation in measurement is smaller than in the case of Embodiment 1 in which hot air is not blown.

【0021】図6は熱風(50℃、10m/s)の有無
による作動液の液面位置と測定時間を示すグラフであ
る。熱風のない場合、液面位置はヒートパイプ1を水に
つけた測定開始から徐々に上昇するが、熱風のある場合
には非常に短時間に液面位置が上昇し安定した。このこ
とは熱風の有無だけでなく超音波伝搬媒体11である水
温と熱風の温度差が大きいほど、また熱風の風速が速い
ほどその傾向が強く生じた。そこで、測定の実施にあた
って測定に支障のない限り熱風と水温の温度差は大き
く、熱風風速は速くしたほうが良い。また、ヒートパイ
プ1の水につける下部の長さについては、超音波プロー
ブ5がヒートパイプ1の作動液4の液位をとらえる位置
で超音波プローブ5が水没できる最短の長さが理想であ
り、実際の液量と測定値の値の偏差が最も小さくなる。
FIG. 6 is a graph showing the level of the working fluid and the measurement time depending on the presence or absence of hot air (50 ° C., 10 m / s). In the absence of hot air, the liquid level gradually increased from the start of the measurement with the heat pipe 1 immersed in water. However, in the presence of hot air, the liquid level increased and stabilized in a very short time. This tendency is not only caused by the presence or absence of hot air, but also becomes stronger as the temperature difference between the water temperature of the ultrasonic wave propagation medium 11 and the hot air becomes larger and the wind speed of the hot air becomes faster. Therefore, when performing the measurement, the temperature difference between the hot air and the water temperature is large as long as the measurement is not hindered, and it is better to increase the speed of the hot air. As for the length of the lower part of the heat pipe 1 immersed in water, the shortest length at which the ultrasonic probe 5 can be submerged at the position where the ultrasonic probe 5 captures the level of the working fluid 4 of the heat pipe 1 is ideal. The deviation between the actual liquid amount and the measured value is minimized.

【0022】なお、本実施の形態ではヒートパイプ1の
上部を熱風を吹き付けることにより加熱したが、ヒート
パイプ1の上部の加熱は熱風に限るものではなく、図7
(イ)に示すように電気ヒータ21を内挿したヒータブ
ロック22による加熱、図7(ロ)に示すように誘導加
熱炉23による加熱、図7(ハ)に示すように赤外線ラ
ンプ24による加熱等適宜の手段が採用される。さら
に、超音波伝搬媒体として水を用いたが超音波伝搬媒体
は水に限るものではなく、水以外にアルコールやゲル状
のもので超音波を伝搬させるものであればなんでも用い
ることができる。
In this embodiment, the upper portion of the heat pipe 1 is heated by blowing hot air, but the upper portion of the heat pipe 1 is not limited to the hot air.
As shown in FIG. 7A, heating by the heater block 22 in which the electric heater 21 is inserted, heating by the induction heating furnace 23 as shown in FIG. 7B, and heating by the infrared lamp 24 as shown in FIG. And other appropriate means. Furthermore, although water was used as the ultrasonic wave propagation medium, the ultrasonic wave propagation medium is not limited to water, and any other alcoholic or gel-like material other than water that can transmit ultrasonic waves can be used.

【0023】(実施の形態3)図8はヒートパイプの液
位測定方法の他の実施の形態の主要部を示す説明図であ
る。本実施の形態では、測定槽3に略垂直にヒートパイ
プ1を保持して、作動液4の液位が超音波伝搬媒体11
内に位置するように固定することは実施の形態1と同様
である。本実施の形態の特徴は、超音波プローブ5を2
個用いる点にある。一方を測定されるヒートパイプ1の
作動液4の液位の上限値、他方を下限値の位置に配置さ
せてそれぞれの位置で作動液4の有無を調べる方法であ
る。
(Embodiment 3) FIG. 8 is an explanatory view showing a main part of another embodiment of a method for measuring a liquid level of a heat pipe. In the present embodiment, the heat pipe 1 is held substantially perpendicular to the measurement tank 3 so that the level of the working
Fixing so as to be positioned inside is the same as in the first embodiment. The feature of this embodiment is that the ultrasonic probe 5 is
The point is to use this. This is a method in which one is placed at the upper limit of the level of the working fluid 4 of the heat pipe 1 to be measured, and the other is placed at the lower limit, and the presence or absence of the working fluid 4 is checked at each position.

【0024】本実施の形態ではヒートパイプ1の作動液
4の液位が許容範囲にあるかないかをより素早く検査す
ることができる。図8において、符号31は2個の超音
波プローブ5の切替器である。その他は、実施の形態1
と同様につき同一部位には同一符号を付して詳細な説明
は省略する。
In this embodiment, it is possible to more quickly inspect whether the level of the working fluid 4 in the heat pipe 1 is within an allowable range. In FIG. 8, reference numeral 31 denotes a switch for the two ultrasonic probes 5. Others are described in the first embodiment.
The same reference numerals are given to the same parts and the detailed description is omitted.

【0025】(実施の形態4)図9はヒートパイプの液
位測定方法の他の実施の形態の主要部を示す説明図であ
る。本実施の形態では、測定槽3に略垂直にヒートパイ
プ1を保持して、作動液4の液位が超音波伝搬媒体11
内に位置するように固定することは実施の形態1と同様
である。本実施の形態の特徴は、超音波発振器と超音波
受信器とが別に配置されている。超音波発振器は超音波
プローブ5Aに、超音波受信器は超音波プローブ5Bに
収納されていて、超音波プローブ5Bに収納されている
超音波受信器はヒートパイプ1を透過した超音波を受信
するようになっている。その他は、実施の形態1と同様
につき詳細な説明は省略する。
(Embodiment 4) FIG. 9 is an explanatory view showing a main part of another embodiment of a method for measuring a liquid level of a heat pipe. In the present embodiment, the heat pipe 1 is held substantially perpendicular to the measurement tank 3 so that the level of the working
Fixing so as to be positioned inside is the same as in the first embodiment. A feature of the present embodiment is that an ultrasonic oscillator and an ultrasonic receiver are separately arranged. The ultrasonic oscillator is housed in the ultrasonic probe 5A, the ultrasonic receiver is housed in the ultrasonic probe 5B, and the ultrasonic receiver housed in the ultrasonic probe 5B receives the ultrasonic wave transmitted through the heat pipe 1. It has become. Others are the same as in the first embodiment, and detailed description is omitted.

【0026】図10は、ヒートパイプ1内の作動液4が
ある部分と作動液4がない部分を計測した際の信号の波
形を示すものである。図10(a)は作動液4がある部
分に超音波が当たった場合を示すもので、超音波は反対
側の壁面まで到達できるため透過波強度の単位時間当た
りの減衰量は小さい。一方、図10(b)は作動液4が
ない部分に超音波が当たった場合を示すもので、ヒート
パイプ1内が空気の場合、超音波はヒートパイプ1の内
部を透過しにくいので透過波強度の単位時間当たりの減
衰量が大きい。この相違によりヒートパイプ1の内部に
作動液4が存在するかしないかを容易に判別することが
できる。
FIG. 10 shows waveforms of signals when a portion where the working fluid 4 exists in the heat pipe 1 and a portion where the working fluid 4 does not exist are measured. FIG. 10A shows a case where the ultrasonic wave hits the portion where the hydraulic fluid 4 is present. Since the ultrasonic wave can reach the wall surface on the opposite side, the attenuation amount of the transmitted wave intensity per unit time is small. On the other hand, FIG. 10B shows a case where the ultrasonic wave hits a portion where the hydraulic fluid 4 does not exist. When the inside of the heat pipe 1 is air, the ultrasonic wave hardly passes through the inside of the heat pipe 1 and thus the transmitted wave The intensity attenuation per unit time is large. From this difference, it is possible to easily determine whether the working fluid 4 exists inside the heat pipe 1 or not.

【0027】(その他の実施の形態)上記の実施の形態
はヒートパイプ内の作動液の液位の検知は、超音波発振
器と超音波受信器を上下方向に移動させて検知したが、
超音波発振器と超音波受信器を固定してヒートパイプを
上下方向に移動させてヒートパイプ内の作動液の液位を
検知してもよい。また、測定するときのヒートパイプの
姿勢は直立の状態がもっとも高精度に液位が計測できた
が、製造装置の制約等からヒートパイプをななめにしな
ければならない状態下でも測定は可能である。
(Other Embodiments) In the above embodiment, the level of the working fluid in the heat pipe is detected by moving the ultrasonic oscillator and the ultrasonic receiver in the vertical direction.
The liquid level of the working fluid in the heat pipe may be detected by moving the heat pipe up and down while fixing the ultrasonic oscillator and the ultrasonic receiver. The liquid level could be measured most accurately when the heat pipe was in the upright position when the measurement was performed. However, the measurement can be performed even in a state where the heat pipe must be slanted due to limitations of the manufacturing apparatus.

【0028】[0028]

【発明の効果】以上述べたように、本発明のヒートパイ
プの液位測定方法は、重量を測定して液量を求める従来
の方法に比べて高速に液位検査ができるのでヒートパイ
プの生産性が向上する。また、従来のヒートパイプの液
量測定方法のように2つのデータを対比する必要がない
ために作業が簡便になる。
As described above, the method for measuring the liquid level of a heat pipe according to the present invention allows the liquid level inspection to be performed at a higher speed than the conventional method for measuring the weight to determine the liquid volume. The performance is improved. Further, since there is no need to compare two data unlike the conventional method for measuring the liquid volume of a heat pipe, the operation is simplified.

【0029】すなわち、本発明の請求項1のヒートパイ
プの液位測定方法は、超音波伝搬媒体中のヒートパイプ
に向けて超音波発振器により超音波を発振してその反射
超音波を超音波受信器により受信して、ヒートパイプ内
に作動液がある部分と無い部分のヒートパイプからの反
射超音波の減衰特性の違いを検知することにより作動液
の液位を測定するもので、超音波受発振器を用いること
によりヒートパイプ内の作動液の液位の測定がより容易
に素早く行うことが可能となる。作動液の液位の読み取
り精度は、超音波受発振器の上下方向の移動精度または
ヒートパイプの上下方向の移動精度を上げることで容易
に達成することができる。
That is, in the method for measuring the liquid level of a heat pipe according to the first aspect of the present invention, an ultrasonic wave is oscillated by an ultrasonic oscillator toward a heat pipe in an ultrasonic wave propagation medium, and the reflected ultrasonic wave is received by the ultrasonic wave. The level of the working fluid is measured by detecting the difference in the attenuation characteristics of the reflected ultrasonic waves from the heat pipe in the part where the working fluid is in the heat pipe and in the part without the working fluid. The use of the oscillator makes it possible to easily and quickly measure the level of the working fluid in the heat pipe. The accuracy of reading the level of the hydraulic fluid can be easily achieved by increasing the vertical movement accuracy of the ultrasonic oscillator or the heat pipe vertical movement accuracy.

【0030】本発明の請求項2のヒートパイプの液位測
定方法は、超音波伝搬媒体中のヒートパイプに向けて超
音波発振器により超音波を発振してヒートパイプを透過
した透過超音波を超音波受信器により受信して、ヒート
パイプ内に作動液がある部分と無い部分の透過超音波の
減衰特性の違いを検知することにより作動液の液位を測
定するもので、超音波受発振器を用いることによりヒー
トパイプ内の作動液の液位の測定がより容易に素早く行
うことが可能となる。作動液の液位の読み取り精度は、
超音波受発振器の上下方向の移動精度またはヒートパイ
プの上下方向の移動精度を上げることで容易に達成する
ことができる。
According to a second aspect of the present invention, there is provided a method for measuring a liquid level of a heat pipe, wherein the ultrasonic wave is oscillated by an ultrasonic oscillator toward the heat pipe in the ultrasonic wave propagation medium, and the transmitted ultrasonic wave transmitted through the heat pipe is superposed. The level of the working fluid is measured by detecting the difference in attenuation characteristics of transmitted ultrasonic waves between the part where the working fluid is present in the heat pipe and the part without the working fluid in the heat pipe. By using this, the level of the working fluid in the heat pipe can be measured more easily and quickly. The accuracy of reading the fluid level is
This can be easily achieved by increasing the vertical movement accuracy of the ultrasonic receiving oscillator or the vertical movement accuracy of the heat pipe.

【0031】本発明の請求項3のヒートパイプの液位測
定方法によれば、ヒートパイプの上部と下部との温度差
が大きくなっているので、ヒートパイプ内の上部は作動
液が蒸発して真空状態となっており、ヒートパイプ下部
の作動液は注入された作動液の液量と一致している。し
たがって作動液の液位を検知することによって注入され
た作動液の液量をより正確に測定することができる。
According to the method for measuring the liquid level of the heat pipe according to the third aspect of the present invention, since the temperature difference between the upper part and the lower part of the heat pipe is large, the working liquid evaporates in the upper part of the heat pipe. It is in a vacuum state, and the working fluid at the lower part of the heat pipe matches the amount of the working fluid injected. Therefore, by detecting the level of the working fluid, the amount of the injected working fluid can be more accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るヒートパイプの液位測定方法の一
実施の形態の概要を示す説明図でる。
FIG. 1 is an explanatory view showing an outline of an embodiment of a heat pipe liquid level measuring method according to the present invention.

【図2】ヒートパイプに超音波を当てた場合の反射超音
波の状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of reflected ultrasonic waves when ultrasonic waves are applied to a heat pipe.

【図3】本発明に係るヒートパイプの液位測定方法の一
実施の形態で作動液の液量を測定した関係図である。
FIG. 3 is a diagram illustrating a relationship between the amount of hydraulic fluid and the amount of hydraulic fluid measured in the heat pipe liquid level measuring method according to one embodiment of the present invention.

【図4】本発明に係るヒートパイプの液位測定方法の他
の実施の形態の概要を示す説明図でる。
FIG. 4 is an explanatory view showing an outline of another embodiment of the heat pipe liquid level measuring method according to the present invention.

【図5】本発明に係るヒートパイプの液位測定方法の他
の実施の形態で作動液の液量を測定した関係図である。
FIG. 5 is a diagram showing a relationship between the amount of hydraulic fluid measured in another embodiment of the heat pipe liquid level measuring method according to the present invention.

【図6】本発明に係るヒートパイプの液位測定方法にお
いてヒートパイプの上部を熱風で加熱した場合と加熱し
ない場合の関係を示す説明図である。
FIG. 6 is an explanatory diagram showing a relationship between a case where the upper portion of the heat pipe is heated by hot air and a case where the upper portion is not heated in the method for measuring the liquid level of the heat pipe according to the present invention.

【図7】本発明に係るヒートパイプの液位測定方法のさ
らに他の実施の形態の概要を示す説明図でる。
FIG. 7 is an explanatory diagram showing an outline of still another embodiment of the heat pipe liquid level measuring method according to the present invention.

【図8】本発明に係るヒートパイプの液位測定方法のさ
らに他の実施の形態の概要を示す説明図でる。
FIG. 8 is an explanatory diagram showing an outline of still another embodiment of the heat pipe liquid level measuring method according to the present invention.

【図9】本発明に係るヒートパイプの液位測定方法のさ
らに他の実施の形態の概要を示す説明図でる。
FIG. 9 is an explanatory diagram showing an outline of still another embodiment of the heat pipe liquid level measuring method according to the present invention.

【図10】ヒートパイプに超音波を当てた場合の透過超
音波の状態を示す説明図である。
FIG. 10 is an explanatory diagram showing a state of transmitted ultrasonic waves when ultrasonic waves are applied to a heat pipe.

【符号の説明】[Explanation of symbols]

1 ヒートパイプ 2 超音波探傷装置 3 測定槽 4 作動液 5 超音波プローブ 11 超音波伝搬媒体 DESCRIPTION OF SYMBOLS 1 Heat pipe 2 Ultrasonic flaw detector 3 Measuring tank 4 Working fluid 5 Ultrasonic probe 11 Ultrasonic propagation medium

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 起立状態にしたヒートパイプの内部の作
動液の部分を含むように前記ヒートパイプの下部を超音
波伝搬媒体中に配置し、前記超音波伝搬媒体中のヒート
パイプに向けて超音波発振器により超音波を発振して前
記ヒートパイプからの反射超音波を超音波受信器により
受信して、受信した反射超音波の減衰特性によりヒート
パイプ内部の作動液の液位を検知することを特徴とする
ヒートパイプの液位測定方法。
1. A lower portion of the heat pipe is disposed in an ultrasonic propagation medium so as to include a portion of the working fluid inside the heat pipe in an upright state, and the lower portion of the heat pipe is directed toward the heat pipe in the ultrasonic propagation medium. The ultrasonic wave is oscillated by the ultrasonic oscillator, the reflected ultrasonic wave from the heat pipe is received by the ultrasonic receiver, and the level of the working fluid inside the heat pipe is detected by the attenuation characteristic of the received reflected ultrasonic wave. Characteristic method of measuring the liquid level of a heat pipe.
【請求項2】 起立状態にしたヒートパイプの内部の作
動液の部分を含むように前記ヒートパイプの下部を超音
波伝搬媒体中に配置し、前記超音波伝搬媒体中のヒート
パイプに向けて超音波発振器により超音波を発振して前
記ヒートパイプを透過した超音波を超音波受信器により
受信して、受信した透過超音波の減衰特性によりヒート
パイプ内部の作動液の液位を検知することを特徴とする
ヒートパイプの液位測定方法。
2. A lower portion of the heat pipe is disposed in an ultrasonic propagation medium so as to include a portion of the working fluid inside the heat pipe in an upright state, and the lower part of the heat pipe is directed toward the heat pipe in the ultrasonic propagation medium. The ultrasonic wave is oscillated by the ultrasonic oscillator, the ultrasonic wave transmitted through the heat pipe is received by the ultrasonic receiver, and the level of the working fluid inside the heat pipe is detected by the attenuation characteristic of the received transmitted ultrasonic wave. Characteristic method of measuring the liquid level of a heat pipe.
【請求項3】 ヒートパイプの上部を加熱するととも
に、超音波伝搬媒体を冷却して、ヒートパイプの上部と
下部との温度差を大きくしてヒートパイプ作動液の液位
を検知することを特徴とする請求項1または請求項2に
記載のヒートパイプの液位測定方法。
3. The method according to claim 1, further comprising: heating an upper portion of the heat pipe, cooling the ultrasonic wave propagation medium, and increasing a temperature difference between the upper portion and the lower portion of the heat pipe to detect a level of the working fluid of the heat pipe. The liquid level measuring method for a heat pipe according to claim 1 or 2, wherein:
JP8228407A 1996-08-29 1996-08-29 Method for measuring liquid level of heat pipe Pending JPH1073385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8228407A JPH1073385A (en) 1996-08-29 1996-08-29 Method for measuring liquid level of heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8228407A JPH1073385A (en) 1996-08-29 1996-08-29 Method for measuring liquid level of heat pipe

Publications (1)

Publication Number Publication Date
JPH1073385A true JPH1073385A (en) 1998-03-17

Family

ID=16875992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8228407A Pending JPH1073385A (en) 1996-08-29 1996-08-29 Method for measuring liquid level of heat pipe

Country Status (1)

Country Link
JP (1) JPH1073385A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272266A (en) * 2000-03-27 2001-10-05 Ricoh Elemex Corp Ultrasonic level gauge
KR100358837B1 (en) * 2000-03-31 2002-10-30 만도공조 주식회사 Solution sensor of suction type refrigerator
US20220178879A1 (en) * 2020-12-04 2022-06-09 Perceptive Sensor Technologies, Inc. Multi-bounce acoustic signal material detection
US11788904B2 (en) 2020-12-04 2023-10-17 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
US11846537B2 (en) 2019-05-31 2023-12-19 Perceptive Sensor Technologies, Inc. Non-linear ultrasound method and apparatus for quantitative detection of materials
US11860014B2 (en) 2022-02-11 2024-01-02 Perceptive Sensor Technologies, Inc. Acoustic signal detection of material composition in static and dynamic conditions
US11940420B2 (en) 2022-07-19 2024-03-26 Perceptive Sensor Technologies, Inc. Acoustic signal material identification with nanotube couplant
US11946905B2 (en) 2020-12-30 2024-04-02 Perceptive Sensor Technologies, Inc. Evaluation of fluid quality with signals

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272266A (en) * 2000-03-27 2001-10-05 Ricoh Elemex Corp Ultrasonic level gauge
KR100358837B1 (en) * 2000-03-31 2002-10-30 만도공조 주식회사 Solution sensor of suction type refrigerator
US11846537B2 (en) 2019-05-31 2023-12-19 Perceptive Sensor Technologies, Inc. Non-linear ultrasound method and apparatus for quantitative detection of materials
US20220178879A1 (en) * 2020-12-04 2022-06-09 Perceptive Sensor Technologies, Inc. Multi-bounce acoustic signal material detection
US11788904B2 (en) 2020-12-04 2023-10-17 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
US11994494B2 (en) * 2020-12-04 2024-05-28 Perceptive Sensor Technologies, Inc. Multi-bounce acoustic signal material detection
US11946905B2 (en) 2020-12-30 2024-04-02 Perceptive Sensor Technologies, Inc. Evaluation of fluid quality with signals
US11860014B2 (en) 2022-02-11 2024-01-02 Perceptive Sensor Technologies, Inc. Acoustic signal detection of material composition in static and dynamic conditions
US11940420B2 (en) 2022-07-19 2024-03-26 Perceptive Sensor Technologies, Inc. Acoustic signal material identification with nanotube couplant

Similar Documents

Publication Publication Date Title
US4437332A (en) Ultrasonic thickness measuring instrument
US7013732B2 (en) Method and apparatus for temperature-controlled ultrasonic inspection
JPH1073385A (en) Method for measuring liquid level of heat pipe
US6616330B2 (en) Automatic humidity step control thermal analysis apparatus
CN108051473A (en) Thermo TDR measuring method and device based on probe spacing correction
JP5133108B2 (en) Temperature measuring device and temperature measuring method
CN102435257B (en) Liquid level sensor and liquid level detection method thereof
CN110376249A (en) A kind of current vortex thermal imaging testing method and device
JPH07248315A (en) Density measuring device
JP5061055B2 (en) Temperature measuring device and temperature measuring method
CN211148493U (en) Optical detector for water dew point of natural gas
CN110687163B (en) Natural gas water dew point optical detector
SU1081510A1 (en) Method of active thermal flaw detection
JPH08271322A (en) Ultrasonic liquid level measuring method
JP5123684B2 (en) Frost detection device
US4898475A (en) Apparatus and method for the measuring of dew points
RU2039092C1 (en) Method for determining cooling capability of liquid medium and device for implementing same
JP3171255U (en) Brake oil boiling point detector
JP2936231B2 (en) Internal defect detection device for rubber and plastic materials
JPS60252249A (en) Automatic measuring instrument for moisture and flash point
SU1306295A1 (en) Method of determining gas pressure in sealed thin-wall articles
SU879452A1 (en) Method of object non-destructive testing
SU690274A1 (en) Method of checking heating pipe serviceability
SU1730569A1 (en) Measuring section
JP2001201485A (en) Apparatus and method for ultrasonic measurement