JPH07248315A - Density measuring device - Google Patents

Density measuring device

Info

Publication number
JPH07248315A
JPH07248315A JP6066629A JP6662994A JPH07248315A JP H07248315 A JPH07248315 A JP H07248315A JP 6066629 A JP6066629 A JP 6066629A JP 6662994 A JP6662994 A JP 6662994A JP H07248315 A JPH07248315 A JP H07248315A
Authority
JP
Japan
Prior art keywords
density
ultrasonic
fluid
coupler
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6066629A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamada
哲也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6066629A priority Critical patent/JPH07248315A/en
Publication of JPH07248315A publication Critical patent/JPH07248315A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide a density measuring device with which any calibration falls into disuse, whereby it becomes simplified in the case where an automatic measurement of fluid density for hours, and simultaneously it is able to perform such a density measurement as high in reliability accurately and speedily. CONSTITUTION:This density measuring device consists of a coupler being in contact with a test specimen fluid 1 subject to density measurements and attached with an ultrasonic vibrator 3 and a temperature sensor 4, an ultrasonic generator 5 being connected to the ultrasonic vibrator 3 and the sensor 4, and a computing element 6 being connected to those of vibrator 3 and sensor 3, and in this constitution, the extent of density in the test specimen fluid 1 is operated and measured by the computing element 6 from a degree of ultrasonic reflected wave strength out of a boundary between the coupler 2 and the specimen fluid 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海水の密度,タンク内
液体の密度計測に好適な密度計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a density measuring device suitable for measuring the density of seawater and the density of liquid in a tank.

【0002】[0002]

【従来の技術】従来、海水の密度やタンク内液体の密度
を計測する密度計測装置としては、測定セル内に供試流
体を導きその振動周期より密度を計測する振動密度計が
あるが、これは、校正が必要であり、そのため長時間の
自動計測を行う場合可動部が多くなり装置が複雑化する
とともに、サンプルしなければ計測できずかつ高圧環境
下では計測できない不具合もあり、また校正,サンプル
採取のために計測時間が長くなる不都合もある。
2. Description of the Related Art Conventionally, as a density measuring device for measuring the density of seawater and the density of liquid in a tank, there is a vibration densitometer for guiding a sample fluid into a measuring cell and measuring the density from its vibration period. Requires calibration, and therefore, when performing automatic measurement for a long time, the number of moving parts becomes large and the device becomes complicated, and there is also a problem that measurement cannot be done without sampling and measurement under high pressure environment. There is also an inconvenience that the measurement time becomes long due to the sampling.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、校正が不要になり、そ
のため流体密度の長時間の自動計測を行う場合装置が単
純になるとともに、信頼性の高い密度計測を正確迅速に
行うことができる密度計測装置を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances and does not require calibration, which simplifies the device when performing automatic measurement of fluid density for a long time. An object of the present invention is to provide a density measuring device capable of accurately and quickly performing highly reliable density measurement.

【0004】[0004]

【課題を解決するための手段】そのために本発明は、密
度を計測しようとする供試流体に接するとともに超音波
振動子及び温度センサーが取付けられたカプラーと、上
記超音波振動子に接続された超音波発振器と、上記超音
波振動子及び温度センサーに接続された演算器とからな
り、上記カプラーと供試流体との境界からの超音波反射
波強度から供試流体の密度を演算計測することを特徴と
する。
Therefore, according to the present invention, a coupler, which is in contact with a test fluid whose density is to be measured, is provided with an ultrasonic oscillator and a temperature sensor, and is connected to the ultrasonic oscillator. Comprising an ultrasonic oscillator and an arithmetic unit connected to the ultrasonic oscillator and the temperature sensor, and calculating and measuring the density of the test fluid from the ultrasonic reflected wave intensity from the boundary between the coupler and the test fluid. Is characterized by.

【0005】[0005]

【作用】本発明密度計測装置においては、カプラーと供
試流体と接する境界への超音波入射波強度をEi 、反射
波強度をER 、密度をρ、音速をc、カプラーの音響イ
ンピーダンスをρ1 1 、供試流体の音響インピーダン
スをρ2 2 とすると、これらの関係はER =(ρ2
2 −ρ1 1 )/(ρ1 1 +ρ2 2 )・Eiで表わ
されるとともに、ρ1 1 は温度特性を持ち、更に反射
波の伝搬長も温度依存性を持っているので、超音波反射
波強度及び供試流体温度を超音波振動子及び温度センサ
ーから演算器に送り、こゝで上記式により演算すること
により供試流体の密度ρ2 を演算計測することができ
る。
In the density measuring apparatus of the present invention, the ultrasonic wave intensity at the boundary between the coupler and the fluid under test is E i , the reflected wave intensity is E R , the density is ρ, the sound velocity is c, and the acoustic impedance of the coupler is [rho 1 c 1, provided when試流body acoustic impedance and [rho 2 c 2, these relationships E R = (ρ 2 c
It is expressed by 2 −ρ 1 c 1 ) / (ρ 1 c 1 + ρ 2 c 2 ) · E i , and ρ 1 c 1 has temperature characteristics, and the propagation length of the reflected wave also has temperature dependence. Therefore, it is possible to calculate and measure the density ρ 2 of the sample fluid by sending the ultrasonic reflected wave intensity and the sample fluid temperature from the ultrasonic oscillator and the temperature sensor to the calculator, and calculating with the above equation. .

【0006】[0006]

【実施例】本発明密度計測装置の一実施例を図面につい
て説明すると、図1は本装置を示し、同図(A)はその
模式図、同図(B)は同図(A)のB部分の拡大図、図
2は同上装置における温度Tとカプラー音響インピーダ
ンスρ1 1 の関係の線図、図3は同上装置における温
度Tと供試流体伝搬長l2 の関係の線図、図4は本装置
の海水密度計測への適用例の説明図、図5は本装置のエ
タノール発酵タンク中の発酵液密度計測への適用例の説
明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the density measuring device of the present invention will be described with reference to the drawings. FIG. 1 shows the device, FIG. 1A is a schematic diagram thereof, and FIG. FIG. 2 is an enlarged view of a portion, FIG. 2 is a diagram showing the relationship between temperature T and the coupler acoustic impedance ρ 1 c 1 in the same device, and FIG. 3 is a diagram showing the relationship between temperature T and the test fluid propagation length l 2 in the same device. 4 is an explanatory diagram of an application example of the present apparatus to seawater density measurement, and FIG. 5 is an explanatory diagram of an application example of the present apparatus to fermentation liquid density measurement in an ethanol fermentation tank.

【0007】図1において、密度を計測しようとする海
水,発酵液等の供試流体1に接するカプラー2には、超
音波振動子3と熱電対等の温度センサー4が取付けられ
ており、超音波振動子3には超音波発振器5が接続さ
れ、更に超音波振動子3と温度センサー4とはともに演
算器6に接続されている。このような装置において、超
音波発振器5から発せられた超音波はカプラー2を伝搬
し、供試流体1と接する境界でカプラー2と供試流体1
の双方の音響インピーダンスの差に応じて反射波の強度
R は次式のように表される。 ER =(ρ2 2 −ρ1 1 )/(ρ1 1 +ρ2 2 )・Ei ここで、ρ:密度、c:音速、ρ1 1 :カプラー2の
音響インピーダンス(既知)、ρ2 2 :供試流体1の
音響インピーダンス(未知)、Ei :境界への入射波強
度である。この式において、Ei を常に一定としておけ
ば、ER を超音波振動子3で検知することによりρ2
2 を決定できる。たゞしρ1 1 の温度特性を図2のよ
うに把握しておく。また供試流体1の音速c2 は、図1
(B)に示すカプラー2の端面Iからの反射波と端面II
からの反射波との時間間隔Δtと、端面Iと端面IIとの
距離l2 とより、c2 =2l2 /Δtで求まる。なお距
離l2 は温度依存性を持っているのでl2 の温度依存性
を図3のように把握しておき、温度センサー4で計測さ
れた温度に応じたl2 を採用することによりc2 の推定
精度が向上する。しかしてこれらの計測値を超音波振動
子3及び温度センサー4から演算器6に送り、こゝで上
記式により演算することにより供試流体1の密度ρ2
自動的に推定できる。
In FIG. 1, an ultrasonic transducer 3 and a temperature sensor 4 such as a thermocouple are attached to a coupler 2 which is in contact with a test fluid 1 such as seawater or a fermented liquid whose density is to be measured. An ultrasonic oscillator 5 is connected to the vibrator 3, and the ultrasonic vibrator 3 and the temperature sensor 4 are both connected to a calculator 6. In such a device, the ultrasonic wave emitted from the ultrasonic oscillator 5 propagates through the coupler 2 and at the boundary in contact with the test fluid 1, the coupler 2 and the test fluid 1
The intensity E R of the reflected wave is represented by the following equation in accordance with the difference in acoustic impedance between the two. E R = (ρ 2 c 2 −ρ 1 c 1 ) / (ρ 1 c 1 + ρ 2 c 2 ) · E i where ρ: density, c: speed of sound, ρ 1 c 1 : acoustic impedance of coupler 2 ( Known), ρ 2 c 2 : acoustic impedance (unknown) of the fluid under test 1, E i : incident wave intensity at the boundary. In this equation, if E i is always constant, E R is detected by the ultrasonic transducer 3 so that ρ 2 c
You can decide 2 . However, figure out the temperature characteristics of ρ 1 c 1 as shown in Fig. 2. Also, the sound velocity c 2 of the test fluid 1 is as shown in FIG.
Reflected wave from end face I of coupler 2 shown in (B) and end face II
From the time interval Δt with the reflected wave from and the distance l 2 between the end face I and the end face II, c 2 = 2l 2 / Δt. Incidentally distance l 2 is c 2 by because it has a temperature-dependent advance to understand the temperature dependence of l 2 as shown in FIG. 3, employs a l 2 corresponding to the temperature measured by the temperature sensor 4 The estimation accuracy of is improved. Then, the density ρ 2 of the sample fluid 1 can be automatically estimated by sending these measured values from the ultrasonic transducer 3 and the temperature sensor 4 to the calculator 6 and calculating them by the above equation.

【0008】次に海水の密度計測への適用例を図4につ
いて説明すると、同図(A)において、図1のB部分に
相当する密度計測装置7を圧力センサーとともに海水
1′へ導入し、ケーブルの長さを変化させながら各深度
ごとに超音波反射波強度及び海水温度を計測し演算して
密度計測を実施することにより、図4(B)のような浅
海域から深海域に至る密度プロファイルを正確かつ迅速
に取得することができる。更にエタノール発酵タンク中
の発酵液密度計測への適用例を図5について説明する
と、同図において、バルブ9を開にし誘引ポンプ11を
作動させ、フィルター10により酵母等の懸濁物を除去
した発酵液をカプラー2内に導き、超音波反射波強度及
び発酵液温度を計測し演算して密度計測を実施すること
により、エタノール発酵タンク8中のエタノール発酵液
の密度すなわち濃度を正確かつ迅速に取得することがで
きる。
Next, an example of application to seawater density measurement will be described with reference to FIG. 4. In FIG. 4A, a density measuring device 7 corresponding to part B in FIG. 1 is introduced into seawater 1'with a pressure sensor, The density from the shallow sea area to the deep sea area as shown in Fig. 4 (B) is obtained by measuring and calculating the ultrasonic reflected wave intensity and seawater temperature for each depth while changing the cable length. The profile can be acquired accurately and quickly. Further, an example of application to the measurement of the fermented liquid density in the ethanol fermentation tank will be described with reference to FIG. 5. In FIG. 5, the fermentation is performed by opening the valve 9 and operating the induction pump 11 to remove the suspension such as yeast by the filter 10. The liquid is introduced into the coupler 2, the ultrasonic reflected wave intensity and the fermentation liquid temperature are measured and calculated to perform the density measurement, thereby accurately and quickly acquiring the density, that is, the concentration of the ethanol fermentation liquid in the ethanol fermentation tank 8. can do.

【0009】かくしてこのような密度計測装置によれ
ば、音響インピーダンスの温度依存性が既知で超音波が
伝搬するカプラー2を供試流体1に接触させ、そこに取
付けた超音波振動子3及び温度センサー4から超音波反
射波強度及び流体温度を計測することにより、流体密度
を演算計測するので、単純な装置により校正等の事前手
続なしで、振動密度計では困難であった高圧環境の流体
等も含む流体の密度計測が正確迅速に実現でき、実験室
レベルの物性評価から実機の計測,海洋調査に至るま
で、流体密度の長時間の自動計測の高精度化,迅速化に
寄与することができる。
Thus, according to such a density measuring apparatus, the coupler 2 in which the temperature dependence of the acoustic impedance is known and the ultrasonic wave propagates is brought into contact with the fluid under test 1, and the ultrasonic transducer 3 and the temperature attached to the fluid are tested. Since the fluid density is calculated and measured by measuring the ultrasonic reflected wave intensity and the fluid temperature from the sensor 4, the fluid in a high-pressure environment, which was difficult for the vibration densitometer, without a preliminary procedure such as calibration with a simple device. Accurately and quickly realize the density measurement of fluids, which contributes to the high accuracy and speed of long-term automatic measurement of fluid density, from laboratory-level physical property evaluations to actual equipment measurements and ocean surveys. it can.

【0010】[0010]

【発明の効果】要するに本発明によれば、密度を計測し
ようとする供試流体に接するとともに超音波振動子及び
温度センサーが取付けられたカプラーと、上記超音波振
動子に接続された超音波発振器と、上記超音波振動子及
び温度センサーに接続された演算器とからなり、上記カ
プラーと供試流体との境界からの超音波反射波強度から
供試流体の密度を演算計測することにより、校正が不要
になり、そのため流体密度の長時間の自動計測を行う場
合装置が単純になるとともに、信頼性の高い密度計測を
正確迅速に行うことができる密度計測装置を得るから、
本発明は産業上極めて有益なものである。
In summary, according to the present invention, a coupler which is in contact with a fluid to be measured for density and which is provided with an ultrasonic vibrator and a temperature sensor, and an ultrasonic oscillator connected to the ultrasonic vibrator are provided. And a calculator connected to the ultrasonic transducer and the temperature sensor, and calibrates by calculating and measuring the density of the test fluid from the ultrasonic reflected wave intensity from the boundary between the coupler and the test fluid. Is unnecessary, therefore the device becomes simple when performing automatic measurement of the fluid density for a long time, and a density measuring device that can perform highly reliable and accurate density measurement is obtained.
The present invention is extremely useful in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明密度計測装置の一実施例を示し、同図
(A)は本装置の模式図、同図(B)は同図(A)のB
部分の拡大図である。
1A and 1B show an embodiment of a density measuring device of the present invention. FIG. 1A is a schematic diagram of the device, and FIG. 1B is B of FIG. 1A.
It is an enlarged view of a part.

【図2】同上装置における温度Tとカプラー音響インピ
ーダンスρ1 1 の関係の線図である。
FIG. 2 is a diagram showing a relationship between temperature T and coupler acoustic impedance ρ 1 c 1 in the same apparatus.

【図3】同上装置における温度Tと供試流体伝搬長l2
の関係の線図である。
FIG. 3 is a temperature T and a sample fluid propagation length l 2 in the same apparatus.
It is a diagram of the relationship of.

【図4】本装置の海水密度計測への適用例の説明図であ
る。
FIG. 4 is an explanatory diagram of an example of application of this device to seawater density measurement.

【図5】本装置のエタノール発酵タンク中の発酵液密度
計測への適用例の説明図である。
FIG. 5 is an explanatory diagram of an application example of the present apparatus for measuring the density of a fermented liquid in an ethanol fermentation tank.

【符号の説明】[Explanation of symbols]

1 供試流体 2 カプラー 3 超音波振動子 4 温度センサー 5 超音波発振器 6 演算器 1 Test Fluid 2 Coupler 3 Ultrasonic Transducer 4 Temperature Sensor 5 Ultrasonic Oscillator 6 Computing Unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 密度を計測しようとする供試流体に接す
るとともに超音波振動子及び温度センサーが取付けられ
たカプラーと、上記超音波振動子に接続された超音波発
振器と、上記超音波振動子及び温度センサーに接続され
た演算器とからなり、上記カプラーと供試流体との境界
からの超音波反射波強度から供試流体の密度を演算計測
することを特徴とする密度計測装置。
1. A coupler which is in contact with a sample fluid whose density is to be measured and which is provided with an ultrasonic oscillator and a temperature sensor, an ultrasonic oscillator connected to the ultrasonic oscillator, and the ultrasonic oscillator. And a calculator connected to the temperature sensor, which calculates and measures the density of the test fluid from the intensity of the ultrasonic wave reflected from the boundary between the coupler and the test fluid.
JP6066629A 1994-03-10 1994-03-10 Density measuring device Withdrawn JPH07248315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6066629A JPH07248315A (en) 1994-03-10 1994-03-10 Density measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6066629A JPH07248315A (en) 1994-03-10 1994-03-10 Density measuring device

Publications (1)

Publication Number Publication Date
JPH07248315A true JPH07248315A (en) 1995-09-26

Family

ID=13321386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6066629A Withdrawn JPH07248315A (en) 1994-03-10 1994-03-10 Density measuring device

Country Status (1)

Country Link
JP (1) JPH07248315A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196108A (en) * 2006-01-25 2007-08-09 Penta Ocean Constr Co Ltd Water quality improvement method and its apparatus
JP2009047657A (en) * 2007-08-22 2009-03-05 Central Res Inst Of Electric Power Ind System for detecting condition of submarine spring
CN102023121A (en) * 2010-11-11 2011-04-20 朱茜 Petroleum hydrometer calibration device and method
JP2013515256A (en) * 2009-12-21 2013-05-02 ヴェマ・システム・アーエス Quality sensor equipment
CN103926168A (en) * 2013-01-10 2014-07-16 中交一航局第二工程有限公司 Seawater density real-time monitoring system and monitoring method
CN104198330A (en) * 2014-08-26 2014-12-10 深圳市湘津石仪器有限公司 Float-type densitometer scale calibration device and calibration method thereof
CN107607438A (en) * 2017-08-08 2018-01-19 南京中探海洋物联网有限公司 A kind of density of sea water measuring method in a wide range of marine site
RU2754107C1 (en) * 2020-04-16 2021-08-26 Федеральное государственное бюджетное научное учреждение "Институт природно-технических систем" (ИПТС) Method for automatic determination of parameters of the state of seawater in ocean conditions
RU2764403C1 (en) * 2021-04-15 2022-01-17 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Sea water salinity variation meter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196108A (en) * 2006-01-25 2007-08-09 Penta Ocean Constr Co Ltd Water quality improvement method and its apparatus
JP2009047657A (en) * 2007-08-22 2009-03-05 Central Res Inst Of Electric Power Ind System for detecting condition of submarine spring
JP2013515256A (en) * 2009-12-21 2013-05-02 ヴェマ・システム・アーエス Quality sensor equipment
CN102023121A (en) * 2010-11-11 2011-04-20 朱茜 Petroleum hydrometer calibration device and method
CN103926168A (en) * 2013-01-10 2014-07-16 中交一航局第二工程有限公司 Seawater density real-time monitoring system and monitoring method
CN103926168B (en) * 2013-01-10 2016-02-03 中交一航局第二工程有限公司 Density of sea water real-time monitoring system and monitoring method
CN104198330A (en) * 2014-08-26 2014-12-10 深圳市湘津石仪器有限公司 Float-type densitometer scale calibration device and calibration method thereof
CN104198330B (en) * 2014-08-26 2017-02-01 深圳市湘津石仪器有限公司 Float-type densitometer scale calibration device and calibration method thereof
CN107607438A (en) * 2017-08-08 2018-01-19 南京中探海洋物联网有限公司 A kind of density of sea water measuring method in a wide range of marine site
CN107607438B (en) * 2017-08-08 2024-02-02 南京中探海洋物联网有限公司 Sea water density measuring method for large-scale sea area
RU2754107C1 (en) * 2020-04-16 2021-08-26 Федеральное государственное бюджетное научное учреждение "Институт природно-технических систем" (ИПТС) Method for automatic determination of parameters of the state of seawater in ocean conditions
RU2764403C1 (en) * 2021-04-15 2022-01-17 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Sea water salinity variation meter

Similar Documents

Publication Publication Date Title
US9383237B2 (en) Fluid visualisation and characterisation system and method; a transducer
US8820147B2 (en) Multiphase fluid characterization system
JPS63122923A (en) Ultrasonic thermometric apparatus
NO343972B1 (en) Method and system for fluid analysis
Hoche et al. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method
JPH07248315A (en) Density measuring device
US20030074953A1 (en) Device for determining the change in the density of a medium
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
van Deventer et al. Thermostatic and dynamic performance of an ultrasonic density probe
RU66029U1 (en) INTEGRATED DEVICE FOR MEASURING FLOW, DENSITY AND VISCOSITY OF OIL PRODUCTS
KR101379934B1 (en) Apparatus and method for measuring the thickness of the scale in a pipe
Hirnschrodt et al. Time domain evaluation of resonance antireflection (RAR) signals for ultrasonic density measurement
US5054321A (en) Method and apparatus for measuring surface contour on parts with elevated temperatures
JPH0376417B2 (en)
RU2596242C1 (en) Method for ultrasonic inspection
RU2210764C1 (en) Procedure determining density of liquids and device for its implementation
CN115752661B (en) Liquid level calibration method based on lamb wave out-of-plane energy characteristics
JP2009139188A (en) Ultrasonic apparatus for measuring surface roughness and method therefor
SU1061039A1 (en) Method of determination of free gas and vapor content in liquid
JPS6128841A (en) Corrosion testing apparatus
RU2324928C2 (en) Method of determining concentration of solutions
SU1582112A1 (en) Method of determining speed of propagation of uldtrasonic oscillations
GB1589731A (en) Method for determining the thickness of a material between two boundary surfaces thereof
RU2138778C1 (en) Method of evaluation of column thickness by ultrasonic control method
JP5630790B2 (en) Method for estimating the rate of thinning

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605