JPH1073336A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPH1073336A
JPH1073336A JP8230715A JP23071596A JPH1073336A JP H1073336 A JPH1073336 A JP H1073336A JP 8230715 A JP8230715 A JP 8230715A JP 23071596 A JP23071596 A JP 23071596A JP H1073336 A JPH1073336 A JP H1073336A
Authority
JP
Japan
Prior art keywords
cooling water
heat
condenser
absorption
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8230715A
Other languages
Japanese (ja)
Inventor
Tsutomu Maruhashi
勤 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP8230715A priority Critical patent/JPH1073336A/en
Publication of JPH1073336A publication Critical patent/JPH1073336A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To make, an absorption type refrigerator small in size. SOLUTION: An absorber 3 and a condenser 5 in an absorption cycle 101 are separated from a high temperature regenerator 1 and a low temperature regenerator 2 and constructed integrally with a cooling water circulation circuit 102, as a radiating part 120 which is cooled by cooling water of the cooling water circulation circuit 102 made to flow down therethrough. The absorber 3 and the condenser 5 constitute a heat receiving part of the cooling water circulation circuit 102 and are cooled directly by the cooling water in the radiating part 120 of the cooling water circulation circuit 102 and, therefore, exhaust heat from the absorption cycle 101 can be released. Since only the alteration to give a function of a cooling tower to the absorber 3 and the condenser 5 is needed and it is unnecessary to provide the cooling tower separately, the volume of an absorption type refrigerator can be reduced sharply in comparison with the case when the cooling tower is provided as a separate body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、臭化リチウムなど
の水溶液を吸収液とする吸収サイクルを形成した吸収式
冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating apparatus having an absorption cycle using an aqueous solution of lithium bromide or the like as an absorbing solution.

【0002】[0002]

【従来の技術】図5、図6に示す従来の二重効用式の吸
収式冷凍装置では、高温再生器1においてバーナBで低
濃度吸収液を加熱して沸騰させ、中濃度吸収液と冷媒蒸
気とを分離し、中濃度吸収液は中濃度吸収液流路L1よ
り低温再生器2へ送られて、高濃度吸収液と冷媒蒸気と
に分離され、高濃度吸収液は高濃度吸収液流路L2を経
て吸収器3へ供給される。他方、高温再生器1および低
温再生器2で分離された冷媒蒸気は、冷媒流路L5また
は冷媒蒸気出口21および隙間5Aを通って凝縮器5へ
供給され、冷媒蒸気は凝縮器5で冷却されて冷媒液とな
る。
2. Description of the Related Art In a conventional double-effect absorption refrigeration system shown in FIGS. 5 and 6, a low-concentration absorbent is heated and boiled by a burner B in a high-temperature regenerator 1, and a medium-concentration absorbent and a refrigerant are heated. The vapor is separated from the vapor, and the medium-concentration absorbent is sent from the medium-concentration absorbent flow path L1 to the low-temperature regenerator 2, where it is separated into high-concentration absorbent and refrigerant vapor. It is supplied to the absorber 3 via the path L2. On the other hand, the refrigerant vapor separated by the high-temperature regenerator 1 and the low-temperature regenerator 2 is supplied to the condenser 5 through the refrigerant flow path L5 or the refrigerant vapor outlet 21 and the gap 5A, and the refrigerant vapor is cooled by the condenser 5 And becomes a refrigerant liquid.

【0003】吸収器3と蒸発器4とは連通口を有する仕
切板40によって連通しており、高濃度吸収液が吸収器
3において高濃度吸収液散布具32により吸収コイル3
01の表面に散布され、また、凝縮器5により生成され
た冷媒液が蒸発器4において冷媒液散布部42により蒸
発コイル41に散布されると、蒸発コイル41表面で
は、冷媒液が蒸発コイル41内を通過する冷温水から気
化熱を奪って蒸発して冷媒蒸気となり、他方、吸収コイ
ル301表面では、高濃度吸収液が冷媒蒸気を吸収して
発熱する。吸収器3において冷媒を吸収して低濃度化し
た吸収液は、吸収液ポンプP1により低濃度吸収液流路
L3を通って高温再生器1に戻るように、吸収サイクル
が構成されている。
[0003] The absorber 3 and the evaporator 4 communicate with each other by a partition plate 40 having a communication port, and the high-concentration absorbent is dispersed in the absorber 3 by the high-concentration absorbent dispersion device 32.
When the refrigerant liquid generated by the condenser 5 is sprayed on the evaporation coil 41 by the refrigerant liquid spraying section 42 in the evaporator 4, the refrigerant liquid is spread on the surface of the evaporation coil 41. The heat of vaporization is taken from the cold and hot water passing through the inside to evaporate and become refrigerant vapor, while on the surface of the absorption coil 301, the high-concentration absorption liquid absorbs the refrigerant vapor and generates heat. The absorption cycle is configured such that the absorbent, which has absorbed the refrigerant in the absorber 3 and reduced in concentration, returns to the high-temperature regenerator 1 through the low-concentration absorbent flow path L3 by the absorbent pump P1.

【0004】蒸発コイル41内で熱が奪われた冷温水
は、冷温水流路45に設けた冷温水ポンプP3の作動に
より、冷却対象に設けられた空調熱交換器44を循環し
て冷却対象における冷却源となり、逆に、空調熱交換器
44で温度が上昇した冷温水は、蒸発コイル41で再び
冷却される。
The cold and hot water whose heat has been removed in the evaporating coil 41 circulates through the air-conditioning heat exchanger 44 provided in the cooling object by the operation of the cold and hot water pump P3 provided in the cold and hot water channel 45. The cold / hot water whose temperature has risen in the air-conditioning heat exchanger 44 is cooled by the evaporating coil 41 again.

【0005】吸収器3の吸収コイル301と凝縮器5の
冷却コイル501とは、冷却水ポンプP2により排熱用
冷却水が通過する連続したコイルを形成しており、吸収
コイル301の表面で吸収液が冷媒蒸気を吸収する際に
発生した熱および凝縮器5の冷却コイル501で冷媒蒸
気から吸収した熱は、各コイル301、501内を通過
する排熱用冷却水に吸収されて、冷却水流路122を通
って外部に設けられた冷却塔CTへ移動し、冷却塔CT
で放出される。
[0005] The absorption coil 301 of the absorber 3 and the cooling coil 501 of the condenser 5 form a continuous coil through which cooling water for exhaust heat passes by a cooling water pump P2. The heat generated when the liquid absorbs the refrigerant vapor and the heat absorbed from the refrigerant vapor in the cooling coil 501 of the condenser 5 are absorbed by the cooling water for exhaust heat passing through the coils 301 and 501, and The cooling tower CT moves to the cooling tower CT provided outside through the passage 122.
Released at

【0006】[0006]

【発明が解決しようとする課題】上記のとおり構成され
た従来の吸収式冷凍装置においては、バーナBの熱を受
けて吸収液が循環される吸収サイクルに対する冷却は、
外部に設けられた冷却塔CTで冷却された排熱用冷却水
を、吸収コイル301および冷却コイル501に循環さ
せることによって行われる。このため、吸収サイクルか
らの熱を排熱用冷却水が受熱する部分として、吸収器に
吸収コイル301および凝縮器5に冷却コイル501を
設ける必要があり、他方では、排熱用冷却水を十分に冷
却させるために放熱することのできる冷却塔CTを設け
る必要があるため、それぞれ大きな吸収器3および凝縮
器5と冷却塔CTとを設けなければならず、吸収式冷凍
装置全体の体積が増大し、小型化が困難であった。
In the conventional absorption refrigeration system configured as described above, the cooling for the absorption cycle in which the absorption liquid is circulated by receiving the heat of the burner B is:
This is performed by circulating the cooling water for exhaust heat cooled by the cooling tower CT provided outside to the absorption coil 301 and the cooling coil 501. For this reason, it is necessary to provide the absorber with the absorption coil 301 and the condenser 5 with the cooling coil 501 as parts where the heat from the absorption cycle is received by the cooling water for exhaust heat. It is necessary to provide a cooling tower CT capable of radiating heat to cool the cooling system, and therefore, it is necessary to provide a large absorber 3 and a condenser 5 and a cooling tower CT, respectively. However, miniaturization was difficult.

【0007】また、従来の吸収式冷凍装置では、吸収サ
イクルからの熱を受ける排熱用冷却水の受熱部と放熱の
ための冷却塔CTとがそれぞれ別構成により形成されて
いて、これらを並置するものであって、これにより、受
熱部である吸収コイル301、冷却コイル501と放熱
部である冷却塔CTとを専用管路で接続する必要があ
り、専用管路の分だけ構成が複雑、部品点数増加の不具
合があった。
In the conventional absorption refrigeration system, a heat receiving portion for cooling water for exhaust heat receiving heat from the absorption cycle and a cooling tower CT for heat radiation are formed separately from each other. Accordingly, it is necessary to connect the absorption coil 301 and the cooling coil 501 as the heat receiving unit and the cooling tower CT as the heat radiating unit with a dedicated pipeline, and the configuration is complicated only by the dedicated pipeline. There was a problem that the number of parts increased.

【0008】本発明は、吸収式冷凍装置の冷凍能力を低
下させることなく、小型化を図るとともに、構成の単純
化及び部品点数の削減を図ることを目的とする。
An object of the present invention is to reduce the size of the absorption refrigeration system without lowering the refrigeration capacity thereof, to simplify the configuration, and to reduce the number of parts.

【0009】[0009]

【課題を解決するための手段】本発明は、請求項1で
は、冷媒を含む吸収液を加熱源により加熱して吸収液か
ら冷媒蒸気を分離させる再生器と、該再生器によって分
離した前記冷媒蒸気を冷却して凝縮させる凝縮器と、該
凝縮器で凝縮した冷媒を低圧下で蒸発させて冷却源を形
成する蒸発器と、該蒸発器で蒸発した冷媒蒸気を前記再
生器から供給される吸収液に吸収させる吸収器と、該吸
収器から前記再生器へ吸収液を戻すポンプとから吸収サ
イクルを形成するとともに、前記吸収器および前記凝縮
器を冷却するための冷却水循環回路を備えた吸収式冷凍
装置において、前記吸収サイクルの前記吸収器および前
記凝縮器からの排熱を受ける前記冷却水循環回路におけ
る受熱部と、前記冷却水循環回路における放熱部とを熱
伝導壁を介した表面と裏面により形成したことを技術的
手段とする。
According to a first aspect of the present invention, a regenerator for separating a refrigerant vapor from an absorbing liquid by heating an absorbing liquid containing the refrigerant by a heating source, and the refrigerant separated by the regenerator are provided. A condenser for cooling and condensing the vapor, an evaporator for evaporating the refrigerant condensed in the condenser under a low pressure to form a cooling source, and a refrigerant vapor evaporated in the evaporator is supplied from the regenerator. An absorption cycle which is formed by an absorber for absorbing the absorbent and a pump for returning the absorbent from the absorber to the regenerator, and further comprising a cooling water circulation circuit for cooling the absorber and the condenser. In the refrigeration system, a heat receiving unit in the cooling water circulation circuit that receives exhaust heat from the absorber and the condenser in the absorption cycle, and a heat radiating unit in the cooling water circulation circuit, and a surface through a heat conduction wall. The technical means that is formed by the back surface.

【0010】請求項2では、請求項1において、前記熱
伝導壁は、パイプ状管であり、外周面を受熱部、内周面
を放熱部とすることを技術的手段とする。請求項3で
は、前記吸収サイクルにおける前記再生器を、前記加熱
源とともに前記吸収器および前記凝縮器から分離して配
置したことを技術的手段とする。
According to a second aspect of the present invention, in the first aspect, the heat conducting wall is a pipe-like tube, and the technical means is that the outer peripheral surface is a heat receiving portion and the inner peripheral surface is a heat radiating portion. According to a third aspect of the present invention, the regenerator in the absorption cycle is disposed separately from the absorber and the condenser together with the heating source.

【0011】以上の構成により、吸収サイクルにおい
て、再生器で分離された高濃度吸収液は吸収器へ供給さ
れ、吸収液から分離された冷媒蒸気は、凝縮器へ供給さ
れ、冷媒蒸気は凝縮器で冷却されて冷媒液となる。高濃
度吸収液が吸収器において散布され、また、凝縮器によ
り生成された冷媒液が蒸発器において散布されると、蒸
発器では、冷媒液が蒸発器から気化熱を奪って蒸発して
冷媒蒸気となり、蒸発器は冷却対象における冷却源とな
り、他方、吸収器では、高濃度吸収液が冷媒蒸気を吸収
して発熱し、吸収器において冷媒を吸収して低濃度化し
た吸収液は、ポンプによって再生器に戻る。
According to the above configuration, in the absorption cycle, the high-concentration absorbent separated by the regenerator is supplied to the absorber, the refrigerant vapor separated from the absorbent is supplied to the condenser, and the refrigerant vapor is supplied to the condenser. And becomes a refrigerant liquid. When the high-concentration absorbing liquid is sprayed in the absorber and the refrigerant liquid generated by the condenser is sprayed in the evaporator, the refrigerant liquid in the evaporator deprives the evaporator of heat of vaporization and evaporates to evaporate the refrigerant vapor. The evaporator serves as a cooling source in the object to be cooled.On the other hand, in the absorber, the high-concentration absorbing liquid absorbs the refrigerant vapor to generate heat, and the absorbing liquid, which has absorbed the refrigerant in the absorber and reduced in concentration, is pumped by the pump. Return to the regenerator.

【0012】ここで、冷却水循環回路では、吸収サイク
ルの吸収器および凝縮器からの排熱を受ける受熱部を、
放熱部に熱伝導壁を介して合体させている。従って、冷
却水循環回路では、前記排熱を受熱部で受けると、熱伝
導壁を介した放熱部で即座に放熱される。このように、
冷却水循環回路では、吸収サイクルから排出された熱を
受ける受熱部と、その熱を放出する放熱部とが、熱伝導
壁を介した表面と裏面で形成されているため、排熱を移
動させて熱交換させるための熱伝導壁を前記受熱部と放
熱部との間に設けるだけでよく、冷却水循環回路の体積
を小さくすることができる。また、受熱部と放熱部との
接続管路不要、構成単純化、部品点数削減ができる。
[0012] Here, in the cooling water circulation circuit, a heat receiving section that receives exhaust heat from the absorber and the condenser in the absorption cycle includes:
It is united with the heat radiating part via the heat conduction wall. Therefore, in the cooling water circulation circuit, when the exhaust heat is received by the heat receiving section, the heat is immediately radiated by the heat radiating section via the heat conducting wall. in this way,
In the cooling water circulation circuit, the heat receiving portion that receives the heat exhausted from the absorption cycle and the heat radiating portion that emits the heat are formed on the front surface and the back surface via the heat conduction wall, so that the exhaust heat is moved. It is only necessary to provide a heat conducting wall for heat exchange between the heat receiving portion and the heat radiating portion, and the volume of the cooling water circulation circuit can be reduced. In addition, a connecting line between the heat receiving unit and the heat radiating unit is not required, the configuration is simplified, and the number of parts can be reduced.

【0013】また、請求項2のように、吸収サイクルに
おける加熱源および再生器を、吸収器および凝縮器から
分離したままで扱えることにより、吸収器および凝縮器
を、冷却水循環回路の放熱部に近接あるいは合体させる
ように構成することがきる。従って、吸収器および凝縮
器を、冷却水循環回路の放熱部(冷却塔)と別体で設け
た場合と比較して、同等の放熱能力を確保しながら、装
置全体の小型化を図ることができる。
Further, the heat source and the regenerator in the absorption cycle can be handled while being separated from the absorber and the condenser, so that the absorber and the condenser can be disposed in the heat radiating portion of the cooling water circulation circuit. It can be configured to be close or merged. Therefore, as compared with the case where the absorber and the condenser are provided separately from the heat radiating portion (cooling tower) of the cooling water circulation circuit, the size of the entire device can be reduced while securing the same heat radiating capacity. .

【0014】[0014]

【発明の実施の形態】図1は、本発明に関わる空調装置
を示す。空調装置は、室外機としての吸収式冷凍装置1
00と室内機RUとからなり、吸収式冷凍装置100
は、吸収サイクル101と冷却水循環回路102とから
構成される。なお、空調装置は、制御装置(図示なし)
により制御される。
FIG. 1 shows an air conditioner according to the present invention. The air conditioner is an absorption refrigeration system 1 as an outdoor unit.
00 and the indoor unit RU, and the absorption refrigeration system 100
Is composed of an absorption cycle 101 and a cooling water circulation circuit 102. The air conditioner is a control device (not shown)
Is controlled by

【0015】吸収サイクル101は、冷媒及び吸収液と
しての臭化リチウム水溶液を循環させるもので、加熱源
としてのガスバーナBを備えた再生器と、吸収器、凝縮
器及び蒸発器とに大別される。再生器は、ガスバーナB
が下方に備えられた高温再生器1と、この高温再生器1
の外側に被さるように配置された低温再生器2とからな
る二重効用型のもので、高温再生器1と低温再生器2と
を接続する配管および熱交換器Hが付設されている。
The absorption cycle 101 circulates a refrigerant and an aqueous solution of lithium bromide as an absorption liquid, and is roughly classified into a regenerator having a gas burner B as a heating source, and an absorber, a condenser and an evaporator. You. The regenerator is gas burner B
High-temperature regenerator 1 provided with
And a low-temperature regenerator 2 disposed so as to cover the outside of the device. A pipe connecting the high-temperature regenerator 1 and the low-temperature regenerator 2 and a heat exchanger H are additionally provided.

【0016】高温再生器1は、ガスバーナBによって加
熱される加熱タンク11の上方に中濃度吸収液分離筒1
2を延長させて設け、中濃度吸収液分離筒12の上方か
らその外周に覆い被さるように縦型円筒形の気密性の冷
媒回収タンク10が設けられている。これにより、高温
再生器1では、加熱タンク11の内部に収容された低濃
度吸収液をガスバーナBによって加熱して、低濃度吸収
液中の冷媒としての水を蒸発させて冷媒蒸気(水蒸気)
として中濃度吸収液分離筒12の外側へ分離させ、冷媒
蒸気の蒸発により濃化した中濃度吸収液を中濃度吸収液
分離筒12の内側の貯留部12aに残し、分離した冷媒
蒸気を冷媒回収タンク10で回収する。
A high-temperature regenerator 1 is provided above a heating tank 11 heated by a gas burner B, above a medium-concentration absorbent separating cylinder 1.
2, a vertical cylindrical airtight refrigerant recovery tank 10 is provided so as to cover the outer periphery of the medium-concentration absorbing liquid separation tube 12 from above. Thus, in the high-temperature regenerator 1, the low-concentration absorbing liquid contained in the heating tank 11 is heated by the gas burner B, and water as a refrigerant in the low-concentration absorbing liquid is evaporated to form refrigerant vapor (water vapor).
As a result, the intermediate-concentration absorbing liquid is separated to the outside of the medium-concentration absorbing liquid separation tube 12, the medium-concentration absorbing liquid concentrated by evaporation of the refrigerant vapor is left in the storage portion 12a inside the medium-concentration absorbing liquid separation tube 12, and the separated refrigerant vapor is collected as refrigerant. Collected in tank 10.

【0017】低温再生器2は、冷媒回収タンク10の外
周に偏心して設置した縦型円筒形の低温再生器ケース2
0を有し、低温再生器ケース20の天井の周囲には冷媒
蒸気出口21が設けられている。低温再生器ケース20
の天井の頂部は、中濃度吸収液流路L1により熱交換器
Hを介して中濃度吸収液分離筒12の貯留部12aと連
結されている。冷媒回収タンク10、低温再生器ケース
20は、各底板部13で一体に溶接されて受熱部ケース
を形成している。
The low-temperature regenerator 2 is a vertical cylindrical low-temperature regenerator case 2 installed eccentrically on the outer periphery of the refrigerant recovery tank 10.
0, a refrigerant vapor outlet 21 is provided around the ceiling of the low-temperature regenerator case 20. Low temperature regenerator case 20
The top of the ceiling is connected to the storage part 12a of the medium-concentration absorption liquid separation cylinder 12 via the heat exchanger H by the medium-concentration absorption liquid flow path L1. The refrigerant recovery tank 10 and the low temperature regenerator case 20 are integrally welded to each other at the bottom plate portions 13 to form a heat receiving portion case.

【0018】中濃度吸収液流路L1中には、貯留部12
aから低温再生器2へ流れる中濃度吸収液の流量を制限
するためのオリフィス(図示なし)が設けられていて、
低温再生器ケース20内へは中濃度吸収液分離筒12と
の圧力差により中濃度吸収液が供給される。これによ
り、低温再生器2では、低温再生器ケース20内に供給
された中濃度吸収液を、冷媒回収タンク10の外壁を熱
源として再加熱し、中濃度吸収液は低温再生器ケース2
0の上部の気液分離部22で冷媒蒸気と高濃度吸収液と
に分離され、高濃度吸収液は、高濃度吸収液受け部23
で貯留される。
The storage section 12 is provided in the medium-concentration absorption liquid flow path L1.
an orifice (not shown) for restricting the flow rate of the medium concentration absorbing liquid flowing from
The medium-concentration absorbent is supplied into the low-temperature regenerator case 20 by a pressure difference from the medium-concentration absorbent separation cylinder 12. Thus, the low-temperature regenerator 2 reheats the medium-concentration absorbing liquid supplied into the low-temperature regenerator case 20 using the outer wall of the refrigerant recovery tank 10 as a heat source, and the medium-concentration absorbing liquid is
The high-concentration absorbent is separated into refrigerant vapor and high-concentration absorbent in a gas-liquid separation unit 22 above the high-concentration absorbent.
Is stored at

【0019】吸収サイクル101の再生器以外の構成
は、縦型円筒形の吸収器ケース30の内側部分に熱伝導
壁となるパイプ状の多数の縦穴通路31が上下方向に形
成された略蓮根形状の吸収器3と、吸収器ケース30の
内側で縦穴通路31の形成部位の外周側に多数の連通口
40aを有する仕切り板40を介して配置された蒸発器
4と、吸収器3および蒸発器4の上方に配置され、吸収
器3と同様に円筒形の凝縮器ケース50の内側部分に熱
伝導壁となるパイプ状の多数の縦穴通路51が形成され
た略蓮根形状の凝縮器5からなる。なお、縦穴通路31
と縦穴通路51は連通した上下管からなる。
The configuration of the absorption cycle 101 other than the regenerator is a substantially lotus root shape in which a number of pipe-like vertical hole passages 31 serving as heat conduction walls are formed in the vertical direction inside the vertical cylindrical absorber case 30. , An evaporator 4 arranged via a partition plate 40 having a large number of communication ports 40a inside the absorber case 30 and on the outer peripheral side of the portion where the vertical hole passage 31 is formed, and the absorber 3 and the evaporator 4, a substantially lotus root-shaped condenser 5 in which a number of pipe-shaped vertical passages 51 serving as heat conduction walls are formed inside a cylindrical condenser case 50 like the absorber 3. . The vertical passage 31
And the vertical hole passage 51 are formed by communicating upper and lower pipes.

【0020】吸収器3は、吸収器ケース30内の上方部
位に、低温再生器2の高濃度吸収液受け部23と連通し
た高濃度吸収液流路L2から流出する高濃度吸収液を散
布するための高濃度吸収液散布具32を備え、その下方
には、多数の縦穴通路31の外周にコイル33を巻き付
けている(図2参照)。吸収器3では、高濃度吸収液が
圧力差により高濃度吸収液流路L2から流入し、高濃度
吸収液が上記コイル33上に散布されると、高濃度吸収
液は縦穴通路31の外周表面に付着して薄膜状に広が
り、重力の作用で下方に流下し、周辺の冷媒蒸気を吸収
して、低濃度吸収液となる。
The absorber 3 sprays the high-concentration absorbing liquid flowing out of the high-concentration absorbing liquid flow path L2 communicating with the high-concentration absorbing liquid receiving portion 23 of the low-temperature regenerator 2 at an upper portion in the absorber case 30. And a coil 33 is wound around the outer periphery of a number of vertical hole passages 31 below the high concentration absorbent spraying device 32 (see FIG. 2). In the absorber 3, when the high-concentration absorbent flows from the high-concentration absorbent flow path L <b> 2 due to the pressure difference and the high-concentration absorbent is sprayed on the coil 33, the high-concentration absorbent becomes an outer peripheral surface of the vertical hole passage 31. And spreads in the form of a thin film, flows downward by the action of gravity, absorbs the surrounding refrigerant vapor, and becomes a low-concentration absorbent.

【0021】この冷媒蒸気を吸収する際に吸収器3では
発熱するが、後述する排熱用冷却水が縦穴通路31を流
下することにより冷却される。なお、縦穴通路31の内
周面にもコイル31aが配置され、これによって排熱用
冷却水の流下速度を遅らせ、熱交換時間を増やして冷却
を促進している(図2参照)。なお、高濃度吸収液に吸
収される冷媒蒸気は、後述する蒸発器4で発生した水蒸
気である。尚、吸収器3の底部34は、吸収液ポンプP
1および熱交換器Hが装着された低濃度吸収液流路L3
で高温再生器1の加熱タンク11の底部と連結されてお
り、吸収液ポンプP1の作動により吸収器3内の低濃度
吸収液は加熱タンク11内へ供給される。
When absorbing the refrigerant vapor, the absorber 3 generates heat. However, the cooling water for exhaust heat described later flows down the vertical hole passage 31 and is cooled. A coil 31a is also arranged on the inner peripheral surface of the vertical hole passage 31, thereby delaying the flow rate of the cooling water for exhaust heat and increasing the heat exchange time to promote cooling (see FIG. 2). The refrigerant vapor absorbed by the high-concentration absorbing liquid is water vapor generated in the evaporator 4 described later. Note that the bottom 34 of the absorber 3 is
1 and a low-concentration absorbent flow path L3 equipped with a heat exchanger H
Is connected to the bottom of the heating tank 11 of the high-temperature regenerator 1, and the low-concentration absorbent in the absorber 3 is supplied into the heating tank 11 by the operation of the absorbent pump P1.

【0022】蒸発器4は、吸収器ケース30内の、仕切
壁40の外周に、内部を冷暖房用の冷温水が流れる縦型
円筒形の蒸発コイル41を配設し、その上方に冷媒液散
布具42を取り付けてなる。なお、蒸発器4の底部43
は、暖房用電磁弁6を有する暖房用吸収液流路L4によ
り、高温再生器1の中濃度吸収液分離筒12の貯留部1
2aと連通している。また、冷媒液散布具42には、後
述する凝縮器5により生成された冷媒液が冷媒液供給路
L6により供給される。
The evaporator 4 is provided with a vertical cylindrical evaporating coil 41 through which cold and hot water for cooling and heating flows inside the absorber case 30 on the outer periphery of the partition wall 40, and sprays the refrigerant liquid above the evaporator. The tool 42 is attached. In addition, the bottom 43 of the evaporator 4
The storage section 1 of the medium-concentration absorption liquid separation cylinder 12 of the high-temperature regenerator 1 is heated by the heating absorption liquid flow path L4 having the heating electromagnetic valve 6.
2a. Further, the refrigerant liquid generated by the condenser 5 described later is supplied to the refrigerant liquid dispersing device 42 through the refrigerant liquid supply path L6.

【0023】蒸発器4では、冷房運転時に冷媒液散布具
42より冷媒液(水)を蒸発コイル41の上に滴下させ
ると、滴下された冷媒液は、表面張力で蒸発コイル41
の表面を濡らして膜状となり、重力の作用で下方へ降下
しながら低圧(例えば、6.5mmHg)となっている
蒸発・吸収ケース30内で蒸発コイル41から気化熱を
奪って蒸発し、蒸発コイル41内を流れる空調用の冷温
水を冷却する。
In the evaporator 4, when the refrigerant liquid (water) is dropped on the evaporation coil 41 from the refrigerant liquid sprayer 42 during the cooling operation, the dropped refrigerant liquid is subjected to surface tension to the evaporation coil 41.
Of the vaporizing coil 41 in the evaporating / absorbing case 30 at a low pressure (for example, 6.5 mmHg) while evaporating by evaporating and evaporating. The air-conditioning cold / hot water flowing in the coil 41 is cooled.

【0024】凝縮器5は、凝縮器ケース50の上方部位
に、低温再生器ケース20と連通する冷媒蒸気通路5A
を開口させ、凝縮器ケース50の下方部位に、高温再生
器1の冷媒回収タンク10の底部14と連通する冷媒流
路L5を開口されてそれぞれ連通し、いずれも圧力差
(凝縮器ケース内では約70mmHg)により冷媒が凝
縮器ケース50内に供給される。凝縮器ケース50の内
部には、供給された冷媒蒸気が後述する冷却水循環回路
102の排熱用冷却水により冷却されて液化した冷媒液
を受けて貯留するための冷媒液受け器52を設けてい
る。
The condenser 5 has a refrigerant vapor passage 5 A communicating with the low-temperature regenerator case 20 at a position above the condenser case 50.
Are opened, and a refrigerant flow path L5 communicating with the bottom portion 14 of the refrigerant recovery tank 10 of the high temperature regenerator 1 is opened and communicated with a lower portion of the condenser case 50, and each of them has a pressure difference (in the condenser case, The refrigerant is supplied into the condenser case 50 by about 70 mmHg). Inside the condenser case 50, there is provided a refrigerant liquid receiver 52 for receiving and storing a refrigerant liquid in which supplied refrigerant vapor is cooled and liquefied by cooling water for exhaust heat of a cooling water circulation circuit 102 described later. I have.

【0025】凝縮器5では、凝縮器ケース50内に供給
された冷媒蒸気が、縦穴通路51により冷却されて液化
する。凝縮器5の下部と蒸発器4の上方に配置された冷
媒液散布具42とは、冷媒液供給路L6で連通してお
り、液化した冷媒液は、冷媒液供給路L6に設けられた
冷媒冷却器53を経て冷媒液散布具42に供給される。
In the condenser 5, the refrigerant vapor supplied into the condenser case 50 is cooled by the vertical hole passage 51 and liquefied. The lower part of the condenser 5 and the refrigerant liquid dispersing tool 42 disposed above the evaporator 4 communicate with each other through a refrigerant liquid supply path L6, and the liquefied refrigerant liquid is supplied to the refrigerant liquid provided in the refrigerant liquid supply path L6. The cooling liquid is supplied to the coolant sprayer 42 via the cooler 53.

【0026】以上の構成により、本実施例の吸収サイク
ル101では、吸収液は、高温再生器1→中濃度吸収液
流路L1→低温再生器2→高濃度吸収液流路L2→吸収
器3→吸収液ポンプP1→低濃度吸収液流路L3→高温
再生器1の順に循環する。また、冷媒は、高温再生器1
(冷媒蒸気)→冷媒流路L5(冷媒蒸気)又は低温再生
器及び冷媒蒸気通路5A(冷媒蒸気)→凝縮器5(冷媒
液)→冷媒液供給路L6(冷媒液)→冷媒液冷却器53
(冷媒液)→冷媒液散布具42(冷媒液)→蒸発器4
(冷媒蒸気)→吸収器3(吸収液)→吸収液ポンプP1
→低濃度吸収液流路L3→高温再生器1の順に循環す
る。
With the above configuration, in the absorption cycle 101 of the present embodiment, the absorption liquid is supplied from the high-temperature regenerator 1 → the medium-concentration absorption liquid flow path L1 → the low-temperature regenerator 2 → the high-concentration absorption liquid flow path L2 → the absorber 3 It circulates in the order of → absorbent pump P1 → low concentration absorbent flow path L3 → high temperature regenerator 1. The refrigerant is a high-temperature regenerator 1
(Refrigerant vapor) → refrigerant flow path L5 (refrigerant vapor) or low-temperature regenerator and refrigerant vapor passage 5A (refrigerant vapor) → condenser 5 (refrigerant liquid) → refrigerant liquid supply path L6 (refrigerant liquid) → refrigerant liquid cooler 53
(Refrigerant liquid) → refrigerant liquid sprayer 42 (refrigerant liquid) → evaporator 4
(Refrigerant vapor) → absorber 3 (absorbent) → absorbent pump P1
It circulates in the order of the low concentration absorbent flow path L3 and the high temperature regenerator 1.

【0027】上記の構成からなる吸収サイクル101に
対して、本実施例の冷却水循環回路102は、吸収器ケ
ース30および凝縮器ケース50を冷却水循環回路10
2に組み込んで、図2に示すように、組み込んだ吸収器
3と凝縮器5の各縦穴通路31、51に対して、排熱用
冷却水を直接上方から流下させて各縦穴通路31、51
の外周面を冷却水循環回路102の受熱部102aとす
るとともに、各縦穴通路31、51の内周面を放熱部1
20とすることで、受熱部102aと放熱部120との
近接化を図っている。
In contrast to the absorption cycle 101 having the above-described configuration, the cooling water circulation circuit 102 of this embodiment connects the absorber case 30 and the condenser case 50 to the cooling water circulation circuit 10.
2, as shown in FIG. 2, the cooling water for exhaust heat is allowed to flow directly from above into the vertical passages 31, 51 of the absorber 3 and the condenser 5 into which the vertical passages 31, 51 are installed.
Is used as the heat receiving portion 102a of the cooling water circulation circuit 102, and the inner circumferential surface of each
By setting to 20, the proximity of the heat receiving unit 102a and the heat radiating unit 120 is achieved.

【0028】次に、冷却水循環回路102について説明
する。冷却水循環回路102は、縦穴通路31、51に
排熱用冷却水を流下させて、落下する排熱用冷却水を大
気中に一部蒸発させて、残りの排熱用冷却水を冷却する
自己冷却を行うための循環回路で、吸収サイクル101
の排熱を大気中に放熱して低温度にする排熱サイクルを
形成している。
Next, the cooling water circulation circuit 102 will be described. The cooling water circulation circuit 102 self-cools the cooling water for exhaust heat by causing the cooling water for exhaust heat to flow down into the vertical hole passages 31 and 51, partially evaporating the cooling water for exhaust heat falling into the atmosphere, and cooling the remaining cooling water for exhaust heat. A circulation circuit for performing cooling, the absorption cycle 101
The exhaust heat cycle is formed by radiating the exhaust heat to the atmosphere to lower the temperature.

【0029】放熱部120は、上述のとおり、縦穴通路
31、51の内周側に形成され、縦穴通路31の下部に
は、流下される排熱用冷却水を受ける冷却水パン121
が備えられている。
As described above, the heat radiating portion 120 is formed on the inner peripheral side of the vertical hole passages 31 and 51, and a cooling water pan 121 which receives cooling water for exhaust heat flowing down is provided below the vertical hole passage 31.
Is provided.

【0030】冷却水パン121から縦穴通路51の上部
まで排熱用冷却水の排熱サイクルを形成する冷却水流路
122には、冷却水パン121から縦穴通路の上部まで
排熱用冷却水を揚水するための冷却水ポンプP2が設け
られ、また、冷却水パン121には、電磁弁123を介
して水供給源と接続された水供給路124の給水口12
5が開口されている。
The cooling water flow path 122, which forms a heat discharging cycle from the cooling water pan 121 to the upper portion of the vertical hole passage 51, pumps the cooling water for exhaust heat from the cooling water pan 121 to the upper portion of the vertical hole passage. A cooling water pump P2 is provided for cooling water, and a cooling water pan 121 is provided with a water supply port 12 of a water supply path 124 connected to a water supply source via an electromagnetic valve 123.
5 is open.

【0031】縦穴通路31、51の上方には、上方へ向
かって気流を発生させる送風機Sが設けられている。こ
の送風機Sにより、各縦穴通路31、51を流下する排
熱用冷却水の蒸発が促進され、冷却効果を増大させる。
なお、縦穴通路51の上部には、冷却水流路122から
流入する排熱用冷却水を、凝縮器5の各縦穴通路51に
均等に分散させるための分散器(図示なし)が設けられ
ている。
Above the vertical passages 31 and 51, a blower S for generating an airflow upward is provided. By the blower S, evaporation of the cooling water for exhaust heat flowing down the vertical hole passages 31 and 51 is promoted, and the cooling effect is increased.
A disperser (not shown) for uniformly dispersing the cooling water for exhaust heat flowing from the cooling water passage 122 into the respective vertical hole passages 51 of the condenser 5 is provided above the vertical hole passage 51. .

【0032】上記の構成により、冷房運転時には、冷却
水ポンプP2の作動により冷却水循環回路102内の排
熱用冷却水が、放熱部120(縦穴通路31、51)→
冷却水パン121→冷却水ポンプP2→冷却水流路12
2→放熱部120(縦穴通路31、51)の順に循環す
る。
With the above configuration, during the cooling operation, the cooling water for exhaust heat in the cooling water circulating circuit 102 is dissipated by the operation of the cooling water pump P2 so that the radiating portion 120 (vertical hole passages 31, 51) →
Cooling water pan 121 → Cooling water pump P2 → Cooling water channel 12
2 → circulation in the order of the heat radiating section 120 (vertical hole passages 31, 51).

【0033】室内機RUには、空調熱交換器44が設け
られており、空調熱交換器44は蒸発器4の蒸発コイル
41と、ゴムホース等で形成された冷温水流路45で連
結されていて、冷温水流路45には、冷温水を蒸発コイ
ル41と空調熱交換器44との間で循環させるための冷
温水ポンプP3が設けられている。以上の構成により、
蒸発コイル41で低温度となった冷温水は、蒸発コイル
41→冷温水流路45→空調熱交換器44→冷温水流路
45→冷温水ポンプP3→蒸発コイル41の順で循環す
る。尚、室内機RUには、空調熱交換器44に対して、
室内空気を通過させて再び室内へ吹き出すブロワ46が
備えられている。
The indoor unit RU is provided with an air-conditioning heat exchanger 44. The air-conditioning heat exchanger 44 is connected to the evaporating coil 41 of the evaporator 4 by a cold / hot water flow path 45 formed by a rubber hose or the like. The cold / hot water flow path 45 is provided with a cold / hot water pump P3 for circulating cold / hot water between the evaporating coil 41 and the air-conditioning heat exchanger 44. With the above configuration,
The cold / hot water having a low temperature in the evaporating coil 41 circulates in the order of the evaporating coil 41 → the cold / hot water channel 45 → the air conditioning heat exchanger 44 → the cold / hot water channel 45 → the cold / hot water pump P3 → the evaporating coil 41. The indoor unit RU has an air conditioning heat exchanger 44,
A blower 46 is provided to allow room air to pass through and blow out the room again.

【0034】吸収液流路L4および暖房用電磁弁6は、
暖房運転用に設けられたもので、暖房運転時には、暖房
用電磁弁6を開弁し、吸収液ポンプP1を作動させる。
これにより、暖房運転時には、中濃度吸収液分離筒12
内の高温度の中濃度吸収液が、蒸発器4の底部43から
蒸発器4内へ流入し、蒸発コイル41内の冷温水が加熱
され、蒸発器4内の中濃度吸収液は、仕切板40の連通
口から吸収器3側へ入り、低濃度吸収液流路L3を経
て、吸収液ポンプP1により加熱タンク11へ戻され
る。また、加熱された蒸発コイル41内の冷温水は、冷
温水ポンプP3の作動により冷温水流路45から空調熱
交換器44へ供給され、暖房の熱源となる。
The absorption liquid flow path L4 and the heating solenoid valve 6 are
This is provided for the heating operation. During the heating operation, the heating electromagnetic valve 6 is opened and the absorption liquid pump P1 is operated.
As a result, during the heating operation, the medium-concentration absorbing liquid separation cylinder 12
The high-temperature medium-concentration absorbing liquid inside the evaporator 4 flows into the evaporator 4 from the bottom 43 of the evaporator 4, and the cold / hot water in the evaporator coil 41 is heated. The fluid enters the absorber 3 through the communication port 40, and is returned to the heating tank 11 by the absorbent pump P1 via the low-concentration absorbent flow path L3. The heated cold water in the evaporating coil 41 is supplied from the cold / hot water flow passage 45 to the air conditioning heat exchanger 44 by the operation of the cold / hot water pump P3, and serves as a heat source for heating.

【0035】以上のとおり、本実施例では、吸収サイク
ル101に冷却水循環回路102の放熱部120が組み
込まれていて、放熱部120で直接、吸収サイクル10
1からの排熱に対して排熱用冷却水による冷却が行われ
るため、冷却水循環回路102における冷却塔を吸収サ
イクルと別体に設ける必要がない。このため、冷却水循
環回路102に冷却塔を別体に設けた場合と比較して、
吸収式冷凍装置100全体の体積を大幅に低減できる。
As described above, in the present embodiment, the radiator 120 of the cooling water circulation circuit 102 is incorporated in the absorption cycle 101, and the radiator 120 directly
Since the exhaust heat from 1 is cooled by the exhaust heat cooling water, it is not necessary to provide a cooling tower in the cooling water circulation circuit 102 separately from the absorption cycle. For this reason, compared with the case where the cooling tower is provided separately in the cooling water circulation circuit 102,
The volume of the entire absorption refrigeration apparatus 100 can be significantly reduced.

【0036】また、冷却水循環回路102の受熱部10
2aと放熱部120を接続する管路が不要となるため、
構成簡単、部品点数削減可能となる。
The heat receiving section 10 of the cooling water circulation circuit 102
Since the pipe connecting the heat radiating unit 120 to the heat radiation unit 120 is unnecessary,
The configuration is simple and the number of parts can be reduced.

【0037】図3に、上記実施例の概略外観を示す。図
3から明らかなとおり、図6に示した従来の吸収式冷凍
装置と比較して、横幅を小さくすることができ、体積が
小さくなったことが分かる。なお、上記実施例では、縦
穴通路31、51の外周および内周にコイル33、31
aを設けたが、溝を内外周に周設してもよく、あるい
は、外周、内周のうち一方をコイル、他方を溝としても
よい。
FIG. 3 shows a schematic external view of the above embodiment. As is clear from FIG. 3, it can be seen that the width can be reduced and the volume is reduced as compared with the conventional absorption refrigeration apparatus shown in FIG. In the above embodiment, the coils 33, 31 are provided on the outer and inner circumferences of the vertical passages 31, 51, respectively.
Although a is provided, a groove may be provided around the inner and outer circumferences, or one of the outer circumference and the inner circumference may be a coil and the other may be a groove.

【0038】図4に本実施例の変形例を示す。上記実施
例では、放熱部120において、送風機Sを凝縮器5の
上方に配置して、上方へ向かう気流を発生させたカウン
ターフロー型のものを示したが、図4の変形例では、吸
収器3の側方に送風機Sを配置したクロスフロー型を採
用している。この場合には、凝縮器5、吸収器3におけ
る各縦穴に代えて、横穴通路511、311を設ける必
要がある。また、蒸発コイル41の配置は、上記実施例
の縦方向の螺旋状に代えて、横穴511、311の方向
と同様の横方向に向かう螺旋状または左右に離して設け
てコイルを上下に密着させたジグザグ状にする必要があ
る。
FIG. 4 shows a modification of this embodiment. In the above embodiment, the counter flow type in which the blower S is disposed above the condenser 5 in the heat radiating section 120 to generate an upward airflow is shown. However, in the modification of FIG. A cross-flow type in which a blower S is arranged on the side of No. 3 is adopted. In this case, it is necessary to provide horizontal hole passages 511 and 311 instead of the vertical holes in the condenser 5 and the absorber 3. In addition, instead of the vertical spiral of the above embodiment, the evaporating coil 41 is provided in the same manner as the horizontal holes 511 and 311, and is provided with a spiral in the horizontal direction or separated from the left and right sides so that the coil is vertically adhered. It is necessary to make a zigzag shape.

【0039】上記実施例では、室内機RUに空調熱交換
器44のみを設けたものを示したが、室内温度を下げな
いで除湿運転を行うために、空調熱交換器44で一旦冷
却した空気を加熱する加熱用熱交換器を空調熱交換器4
4と並設させるようにしてもよい。上記実施例では、二
重効用式を示したが一重効用式でもよい。また、加熱源
は、石油バーナ、電気ヒータでもよい。上記実施例で
は、吸収式冷凍装置を用いた空調装置を示したが、冷蔵
庫、冷凍庫など、他の冷凍装置に用いてもよい。
In the above embodiment, the indoor unit RU is provided with only the air conditioning heat exchanger 44. However, in order to perform the dehumidifying operation without lowering the indoor temperature, the air once cooled by the air conditioning heat exchanger 44 is used. Air-conditioning heat exchanger 4
4 may be juxtaposed. In the above embodiment, a double-effect type is shown, but a single-effect type may be used. The heating source may be an oil burner or an electric heater. Although the air conditioner using the absorption refrigeration apparatus has been described in the above embodiment, the air conditioning apparatus may be used for other refrigeration apparatuses such as a refrigerator and a freezer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す空調装置の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of an air conditioner showing an embodiment of the present invention.

【図2】図1の吸収式冷凍装置における受熱部と放熱部
を示す部分拡大図である。
FIG. 2 is a partially enlarged view showing a heat receiving section and a heat radiating section in the absorption refrigeration apparatus of FIG.

【図3】実施例の吸収式冷凍装置における配置構成を示
す概略正面図である。
FIG. 3 is a schematic front view showing an arrangement configuration in the absorption refrigeration apparatus of the embodiment.

【図4】実施例の吸収式冷凍装置の変形例の配置構成を
示す概略正面図である。
FIG. 4 is a schematic front view showing an arrangement configuration of a modification of the absorption refrigeration apparatus of the embodiment.

【図5】従来の空調装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a conventional air conditioner.

【図6】従来の吸収式冷凍装置における配置構成を示す
概略正面図である。
FIG. 6 is a schematic front view showing an arrangement configuration in a conventional absorption refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 低温再生器 3 吸収器 4 蒸発器 5 凝縮器 100 吸収式冷凍装置 101 吸収サイクル 102 冷却水循環回路 102a 受熱部 120 放熱部 P1 吸収液ポンプ B ガスバーナ(加熱源) DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Absorber 4 Evaporator 5 Condenser 100 Absorption refrigeration system 101 Absorption cycle 102 Cooling water circulation circuit 102a Heat receiving part 120 Heat radiating part P1 Absorbing liquid pump B Gas burner (heating source)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を含む吸収液を加熱源により加熱し
て吸収液から冷媒蒸気を分離させる再生器と、 該再生器によって分離した前記冷媒蒸気を冷却して凝縮
させる凝縮器と、 該凝縮器で凝縮した冷媒を低圧下で蒸発させて冷却源を
形成する蒸発器と、 該蒸発器で蒸発した冷媒蒸気を前記再生器から供給され
る吸収液に吸収させる吸収器と、 該吸収器から前記再生器へ吸収液を戻すポンプとから吸
収サイクルを形成するとともに、 前記吸収器および前記凝縮器を冷却するための冷却水循
環回路を備えた吸収式冷凍装置において、 前記吸収サイクルの前記吸収器および前記凝縮器からの
排熱を受ける前記冷却水循環回路における受熱部と、前
記冷却水循環回路における放熱部とを熱伝導壁を介した
表面と裏面により形成したことを特徴とする吸収式冷凍
装置。
1. A regenerator for heating an absorption liquid containing a refrigerant by a heating source to separate refrigerant vapor from the absorption liquid, a condenser for cooling and condensing the refrigerant vapor separated by the regenerator, An evaporator for evaporating the refrigerant condensed in the evaporator under low pressure to form a cooling source; an absorber for absorbing the refrigerant vapor evaporated in the evaporator into an absorbent supplied from the regenerator; and Forming an absorption cycle from a pump that returns the absorbent to the regenerator; and an absorption refrigeration system including a cooling water circulation circuit for cooling the absorber and the condenser. A heat receiving unit in the cooling water circulation circuit that receives exhaust heat from the condenser and a heat radiating unit in the cooling water circulation circuit are formed by a front surface and a back surface via a heat conduction wall. Absorption refrigeration equipment.
【請求項2】 前記熱伝導壁は、パイプ状管であり、外
周面を受熱部、内周面を放熱部とする請求項1記載の吸
収式冷凍装置。
2. The absorption refrigeration apparatus according to claim 1, wherein the heat conduction wall is a pipe-like tube, and the outer peripheral surface is a heat receiving portion and the inner peripheral surface is a heat radiating portion.
【請求項3】 前記吸収サイクルにおける前記再生器
を、前記加熱源とともに前記吸収器および前記凝縮器か
ら分離して配置したことを特徴とする請求項1記載の吸
収式冷凍装置。
3. The absorption refrigerating apparatus according to claim 1, wherein the regenerator in the absorption cycle is disposed separately from the absorber and the condenser together with the heating source.
JP8230715A 1996-08-30 1996-08-30 Absorption type refrigerator Pending JPH1073336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8230715A JPH1073336A (en) 1996-08-30 1996-08-30 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8230715A JPH1073336A (en) 1996-08-30 1996-08-30 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPH1073336A true JPH1073336A (en) 1998-03-17

Family

ID=16912180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8230715A Pending JPH1073336A (en) 1996-08-30 1996-08-30 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPH1073336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115962585A (en) * 2023-03-16 2023-04-14 安徽普泛能源技术有限公司 Composite anti-scaling absorber and absorption type refrigerating system and process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115962585A (en) * 2023-03-16 2023-04-14 安徽普泛能源技术有限公司 Composite anti-scaling absorber and absorption type refrigerating system and process thereof

Similar Documents

Publication Publication Date Title
JPH1073336A (en) Absorption type refrigerator
KR100222104B1 (en) Air cooling machine
JP3184072B2 (en) Air conditioner using absorption refrigeration system
JP3226460B2 (en) Regenerator for absorption refrigeration system
JPH1089814A (en) Absorption refrigerator
JP3385302B2 (en) Absorption refrigeration equipment
JP3118003B2 (en) Dropping device for absorption refrigeration system
JP3408116B2 (en) Absorption refrigeration equipment
KR100321582B1 (en) Absorption air conditioner
JP3920978B2 (en) Absorption air conditioner
JPH109707A (en) Absorption type refrigerating device
JP3017051B2 (en) Heat exchanger of absorption refrigeration system
JP2568801B2 (en) Absorption refrigeration equipment
JPH10332217A (en) Absorption refrigerator
JP2607036B2 (en) Absorption refrigeration equipment
JP3315349B2 (en) solenoid valve
JP3260627B2 (en) cooling tower
JP3790360B2 (en) Absorption refrigeration system
JP2957111B2 (en) High temperature regenerator of absorption refrigeration system
JP3904726B2 (en) Absorption refrigeration system
JP3017053B2 (en) Absorption refrigeration system with heat exchanger
JP3348144B2 (en) Absorption refrigeration equipment
JPH109622A (en) Air conditioner using absorption type refrigerating machine
JPH10325650A (en) Absorption type refrigerating device
JP3113195B2 (en) Bleeding device for absorption refrigeration system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705