JPH1072283A - Vapor growth method and device therefor - Google Patents

Vapor growth method and device therefor

Info

Publication number
JPH1072283A
JPH1072283A JP11147797A JP11147797A JPH1072283A JP H1072283 A JPH1072283 A JP H1072283A JP 11147797 A JP11147797 A JP 11147797A JP 11147797 A JP11147797 A JP 11147797A JP H1072283 A JPH1072283 A JP H1072283A
Authority
JP
Japan
Prior art keywords
sample
source gas
gas
flash lamp
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11147797A
Other languages
Japanese (ja)
Other versions
JP3163267B2 (en
Inventor
Junichi Murota
淳一 室田
Shoichi Ono
昭一 小野
Masao Sakuraba
政夫 櫻庭
Yoshio Mikoshiba
宜夫 御子柴
Harushige Kurokawa
治重 黒河
Fumihide Ikeda
文秀 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP11147797A priority Critical patent/JP3163267B2/en
Publication of JPH1072283A publication Critical patent/JPH1072283A/en
Application granted granted Critical
Publication of JP3163267B2 publication Critical patent/JP3163267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain the growth of a monatomic layer thin film without evacuating a gaseous raw material. SOLUTION: In this method, a sample 7 is placed in a reaction chamber 1 and then, the sample is heated to raise the temp. of unnecessary adsorbed matter on the surface of the sample 7 and to release the adsorbed matter from the surface of the sample 7 and thereafter, the temp. of the sample 7 is lowered and then, a gaseous hydride-based raw material of a partial pressure sufficient to almost completely adsorb gaseous raw material on the surface of the sample 7, is introduced into the reaction chamber 1. After the lapse of time required for adsorbing the gaseous raw material on the surface of the sample 7 or longer, the sample 7 in an exposed state to the gaseous raw material is irradiated with pulse light which has such a pulse width as to be negligibly short as compared with the time required for adsorbing the gaseous raw material on the surface of the sample 7 and is emitted from a flash lamp light source 9, to grow one monatomic layer thin film with each pulse light irradiation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は反応室内の試料に原料ガ
スの供給により原子層状に薄膜を気相成長する方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for vapor-phase growing a thin film in an atomic layer by supplying a raw material gas to a sample in a reaction chamber.

【0002】[0002]

【従来の技術】通常の気相成長方法では、図1を参照し
て説明すると、反応室1内にガス供給源により原料ガス
を流通させながら反応室1内の試料7を高周波加熱装置
19により加熱して試料7表面にCVD膜を成長させて
いる。
2. Description of the Related Art In a normal vapor growth method, referring to FIG. 1, a sample 7 in a reaction chamber 1 is heated by a high-frequency heating device 19 while a source gas is circulated in the reaction chamber 1 by a gas supply source. The CVD film is grown on the surface of the sample 7 by heating.

【0003】[0003]

【発明が解決しようとする課題】従来から気相成長方法
に用いられる原料ガスとしては、有機系原料ガス、塩化
物系原料ガス、水素化物系原料ガス等が使用されている
が、これらの有機系原料ガスや塩化物系原料ガスでは、
基板をガスに曝した状態のままにしておくと多分子層吸
着を起こすという問題があり、これが1原子層ごとの薄
膜成長を達成するための大きな障害となっている。その
ため、1原子層の吸着を行った後は、原料ガスを排気し
多層吸着を防止することが従来から行われている(例え
ば特開平2−208925号公報)。しかしながら、有
機系原料ガスや塩化物系原料ガスは取扱いが困難である
と共に、塩素、炭素等の不純物を含んでいるという問題
がある。
Conventionally, as a source gas used in the vapor phase growth method, an organic source gas, a chloride source gas, a hydride source gas, and the like have been used. System raw material gas and chloride raw material gas
If the substrate is left exposed to the gas, there is a problem of causing multi-layer adsorption, which is a major obstacle to achieving thin film growth for each atomic layer. For this reason, after performing adsorption of one atomic layer, it has been conventionally performed to exhaust the raw material gas to prevent multilayer adsorption (for example, Japanese Patent Application Laid-Open No. 2-208925). However, there is a problem that the organic raw material gas and the chloride raw material gas are difficult to handle and contain impurities such as chlorine and carbon.

【0004】一方、水素化物系原料ガスの場合には、不
純物を含んでおらず取扱いが容易であるという利点を有
している反面、基板を加熱または光の照射により連続的
にエネルギを供給した状態にしておくと(例えば特開昭
59−94829号公報)、連続的に分解,吸着,分
解,吸着,・・・を繰り返し連続堆積が生じてしまうた
め、上記ガス同様、1原子層ごとの制御ができないとい
う問題がある(但し、例外的にGaAsの場合には、As原子
の上にはAsの原料ガスが吸着しないという独自の特性が
あるため、連続堆積を防止することができる)。そこ
で、一般的には、連続堆積を防止するために、やはり原
料ガスを排気して連続堆積を防ぐことが行われている
(例えば特開昭63−55929号公報)。
[0004] On the other hand, the hydride-based source gas has the advantage that it is easy to handle because it does not contain impurities, but the substrate is continuously supplied with energy by heating or irradiation of light. In this state (for example, Japanese Patent Application Laid-Open No. 59-94829), continuous decomposition, adsorption, decomposition, adsorption,. There is a problem that control cannot be performed (except in the case of GaAs, which has a unique property that an As source gas does not adsorb on As atoms, so that continuous deposition can be prevented). Therefore, generally, in order to prevent the continuous deposition, the source gas is also exhausted to prevent the continuous deposition (for example, JP-A-63-55929).

【0005】しかしながら、水素化物系では、気相中の
原料ガス排気時に、表面から吸着物質が脱離するという
問題がある。また、原料ガスの排気、導入を繰り返すこ
とは生産性を向上させる上で弊害である。本発明は、試
料に単分子吸着され且つその吸着時間に比べフラッシュ
ランプによる分解・反応時間が無視できる程度に短いよ
うな性質を有する水素化物系等の原料ガスを用いること
により、原料ガスを排気せずに1原子層の薄膜の成長を
達成させることを目的とする。
However, in the hydride system, there is a problem that the adsorbed substance is desorbed from the surface when the source gas in the gas phase is exhausted. Further, repeating the exhausting and introducing of the source gas is harmful in improving the productivity. In the present invention, the source gas is exhausted by using a source gas such as a hydride-based material having a property in which a single molecule is adsorbed on the sample and the decomposition / reaction time by the flash lamp is negligibly short compared to the adsorption time. It is an object to achieve the growth of a thin film of one atomic layer without doing so.

【0006】即ち、原料ガスが試料に単分子吸着し、し
かもその吸着物が分解・反応後、次の吸着が完了するま
でに時間を要するという現象を利用し、試料表面に原料
ガスを吸着させた後、試料を原料ガスに曝した状態でフ
ラッシュランプからのパルス光により、吸着物を瞬時に
分解・反応させることにより、上記目的を達成する。
That is, the material gas is adsorbed on the sample surface by taking advantage of the phenomenon that the material gas is adsorbed on the sample by a single molecule, and after the adsorbed substance is decomposed and reacted, it takes time until the next adsorption is completed. After the sample is exposed to the source gas, the above object is achieved by instantaneously decomposing and reacting the adsorbed material by pulse light from a flash lamp.

【0007】[0007]

【課題を解決するための手段】本発明方法は上記の課題
を解決し上記の目的を達成するため、その請求項1記載
のものにあっては、反応室内に試料を設置し、試料を加
熱して試料表面の不要吸着物を昇温脱離させた後、試料
の温度を下げて水素化物系の原料ガスを試料の表面に原
料ガスがほぼ完全に吸着されるような分圧で導入し、前
記原料ガスが前記試料表面に吸着するのに要する時間以
上経た後、前記試料を原料ガスに曝した状態でフラッシ
ュランプから前記吸着するのに要する時間に比べて無視
できるような短いパルス幅のパルス光を試料表面に照射
することにより、1パルス光照射毎に1原子層の薄膜を
成長させることを特徴とする。また、請求項2記載のも
のにあっては、試料が設置された反応室内に、該試料に
単分子吸着され且つその吸着時間に比べフラッシュラン
プによる分解・反応時間が無視できる程度に短いような
性質を有する原料ガスを試料の表面に原料ガスがほぼ完
全に吸着されるような分圧で導入し、前記原料ガスが前
記試料表面に吸着するのに要する時間以上経た後、前記
試料を原料ガスに曝した状態でフラッシュランプから前
記吸着するのに要する時間に比べて無視できるような短
いパルス幅のパルス光を試料表面に照射することによ
り、1パルス光照射毎に1原子層の薄膜を成長させるこ
とを特徴とする。また、請求項3記載のものにあって
は、請求項1または2記載のものにおいて、前記フラッ
シュランプは、キセノンフラッシュランプであることを
特徴とする。また、請求項4記載のものにあっては、請
求項1または3に記載のものにおいて、前記試料はシリ
コンウェハであり、前記原料ガスはゲルマンガスであ
り、該ゲルマンガスを1Pa以上の分圧で導入し、前記
吸着するのに要する時間を20秒以上とすることを特徴
とする。また、請求項5記載のものにあっては、請求項
1〜4のいずれかに記載のものにおいて、前記パルス光
照射による薄膜の形成の前又は後或いはパルス光照射の
間に、試料を一定に加熱し、原料ガスを化学的に反応さ
せて薄膜を形成させる工程を含むことを特徴とする。
According to the method of the present invention, a sample is set in a reaction chamber and the sample is heated in order to solve the above problems and achieve the above object. Then, the temperature of the sample is lowered and the hydride-based source gas is introduced at a partial pressure such that the source gas is almost completely adsorbed on the sample surface. After the time required for the source gas to be adsorbed on the surface of the sample has passed, the pulse having a short pulse width negligible compared to the time required for the source gas to be adsorbed from a flash lamp in a state where the sample is exposed to the source gas. By irradiating the sample surface with pulsed light, a thin film of one atomic layer is grown for each pulsed light irradiation. According to the second aspect of the present invention, a single molecule is adsorbed on the sample in the reaction chamber in which the sample is placed, and the decomposition / reaction time by the flash lamp is so short as to be negligible compared to the adsorption time. A raw material gas having properties is introduced at a partial pressure such that the raw material gas is almost completely adsorbed on the surface of the sample, and after the time required for the raw material gas to be adsorbed on the surface of the sample has passed, the sample gas is removed. By irradiating the sample surface with pulse light having a pulse width that is negligible compared to the time required for the above-mentioned adsorption from the flash lamp in the state of exposure to light, a thin film of one atomic layer grows for each pulse light irradiation It is characterized by making it. According to a third aspect of the present invention, in the first or second aspect, the flash lamp is a xenon flash lamp. According to a fourth aspect of the present invention, in the first or third aspect, the sample is a silicon wafer, the source gas is a germane gas, and the partial pressure of the germane gas is 1 Pa or more. And the time required for the adsorption is 20 seconds or more. According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the sample is kept constant before or after the formation of the thin film by the pulsed light irradiation or during the pulsed light irradiation. And forming a thin film by chemically reacting the raw material gas.

【0008】また、本発明装置は同じ課題を解決し同じ
目的を達成するため、請求項6に記載したものにあって
は、試料が設置される反応室と、試料を加熱して試料表
面の不要吸着物を昇温脱離させると共に、脱離後は温度
を下げる加熱装置と、この反応室に水素化物系の原料ガ
スを試料の表面に原料ガスがほぼ完全に吸着されるよう
な分圧で導入するガス供給源と、反応室内の試料表面に
透光性窓を通してパルス光を照射するフラッシュランプ
と、前記ガス供給源による反応室内への原料ガスの導入
とフラッシュランプによる試料へのパルス光の照射を、
前記原料ガスが前記試料表面に吸着するのに要する時間
以上経た後、前記試料を原料ガスに曝した状態で前記吸
着するのに要する時間に比べて無視できるような短いパ
ルス幅のパルス光を照射するように、関連付けて制御す
る制御装置とを設けることを特徴とする。
In order to solve the same problem and achieve the same object, the apparatus according to the present invention has a reaction chamber in which a sample is installed, and a method of heating the sample to form a sample on the surface of the sample. A heating device that raises and desorbs unnecessary adsorbed substances and lowers the temperature after desorption, and a partial pressure that allows the hydride-based source gas to be adsorbed almost completely on the sample surface in this reaction chamber A gas supply source, a flash lamp for irradiating pulse light to a sample surface in the reaction chamber through a light-transmitting window, and introduction of a source gas into the reaction chamber by the gas supply source and pulse light to the sample by the flash lamp Irradiation of
After the time required for the source gas to be adsorbed on the sample surface has passed, the pulsed light having a pulse width that is negligible compared to the time required for the sample gas to be adsorbed while the sample is exposed to the source gas is irradiated. And a control device that performs control in association with each other.

【0009】[0009]

【作用】このような構成であるから、試料に単分子吸着
され且つその吸着時間に比べフラッシュランプによる分
解・反応時間が無視できる程度に短いような性質を有す
る水素化物系等の原料ガスを試料の表面に原料ガスがほ
ぼ完全に吸着されるような分圧で導入し、前記原料ガス
が前記試料表面に吸着するのに要する時間以上経た後、
前記試料を原料ガスに曝した状態でフラッシュランプか
ら前記吸着するのに要する時間に比べて無視できるよう
な短いパルス幅のパルス光を試料表面に照射することに
より、1パルス光照射毎に1原子層の薄膜を成長させる
ことができることになる。
With such a structure, a source gas such as a hydride-based gas having a property such that a single molecule is adsorbed on the sample and the decomposition / reaction time by a flash lamp is negligibly short compared to the adsorption time is obtained. Introduced at a partial pressure such that the source gas is almost completely adsorbed on the surface of the sample, and after the time required for the source gas to be adsorbed on the sample surface has elapsed,
By irradiating the sample surface with a pulse light having a pulse width that is negligible compared to the time required for the adsorption by a flash lamp in a state where the sample is exposed to the source gas, one atom is irradiated for each pulse light irradiation. A thin film of layers can be grown.

【0010】換言すれば、試料表面に原料ガスを単分子
吸着させた後、パルス光により吸着物を瞬時に分解・反
応させ、原子層状に薄膜を形成することができることに
なる。
In other words, after the single molecule of the source gas is adsorbed on the surface of the sample, the adsorbed material is instantaneously decomposed and reacted by pulse light, whereby a thin film can be formed in an atomic layer.

【0011】[0011]

【実施例】図1は本発明方法及び装置の1実施例の概略
構成説明図である。本実施例は、反応室1、この反応室
1に扉2を介して連なる予備室3、反応室1及び予備室
3をそれぞれ減圧するための反応室,予備室用排気装置
4,5、反応室1及び予備室3にガスを供給するための
ガス供給源6及び反応室1内の試料7の表面に透光性窓
8を通してフラッシュランプ光を照射するためのフラッ
シュランプ光源9とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic structural explanatory view of one embodiment of the method and apparatus of the present invention. In this embodiment, a reaction chamber 1, a preliminary chamber 3 connected to the reaction chamber 1 via a door 2, a reaction chamber for reducing the pressure in the reaction chamber 1 and the preliminary chamber 3, and exhaust devices 4 and 5 for the preliminary chamber, A gas supply source 6 for supplying gas to the chamber 1 and the preparatory chamber 3 and a flash lamp light source 9 for irradiating the surface of the sample 7 in the reaction chamber 1 with a flash lamp light through a translucent window 8 are provided. I have.

【0012】そして試料7を補助加熱するための試料台
10とワークコイル室11、高周波をワークコイル室1
1内のワークコイル12に供給するための高周波発振器
(加熱装置)13、ワークコイル室11を減圧するため
のワークコイル室用排気装置14、反応室1に試料7を
搬送するために予備室3内に設けられた試料搬送機1
5、外部から試料7を予備室3に搬入するために予備室
3に設けられた扉16及びガス供給源6による反応室1
内への原料ガスの導入とフラッシュランプ光源9による
試料7へのフラッシュ光の照射を関連付けて制御する制
御装置18とを備えた構成となっている。なお、17は
圧力計である。
A sample stage 10 for auxiliary heating of the sample 7 and a work coil chamber 11,
1, a high-frequency oscillator (heating device) 13 for supplying to the work coil 12, a work coil chamber exhaust device 14 for reducing the pressure of the work coil chamber 11, and a preliminary chamber 3 for transporting the sample 7 to the reaction chamber 1. Sample transporter 1 installed in
5. A reaction chamber 1 provided with a door 16 and a gas supply source 6 provided in the preliminary chamber 3 for carrying the sample 7 into the preliminary chamber 3 from outside.
The control device 18 controls the introduction of the raw material gas into the inside and the irradiation of the sample 7 with the flash light by the flash lamp light source 9 in association with each other. In addition, 17 is a pressure gauge.

【0013】次に、上述した装置を用いて膜を形成する
方法について説明する。膜の形成は、次のような手順で
行う。反応室1とワークコイル室11をそれぞれ排気
装置4,14で真空排気する。次に真空排気状態の反
応室1内にガス供給源6より水素などのキャリアガスを
流入させる。
Next, a method for forming a film using the above-described apparatus will be described. The formation of the film is performed in the following procedure. The reaction chamber 1 and the work coil chamber 11 are evacuated by the exhaust devices 4 and 14, respectively. Next, a carrier gas such as hydrogen flows from the gas supply source 6 into the reaction chamber 1 in an evacuated state.

【0014】予備室3を窒素などのガスで大気圧状態
にし扉16を開け、試料7を予備室3内の試料搬送機1
5に乗せた後、扉16を締める。反応室1内に流入さ
せているガスと同種のガスを予備室3内に流入させなが
ら、予備室3内を排気装置5で減圧にする。
The preliminary chamber 3 is brought to atmospheric pressure with a gas such as nitrogen, the door 16 is opened, and the sample 7 is transferred to the sample transporter 1 in the preliminary chamber 3.
After placing on 5, the door 16 is closed. While the same kind of gas as the gas flowing into the reaction chamber 1 is flowing into the preliminary chamber 3, the pressure in the preliminary chamber 3 is reduced by the exhaust device 5.

【0015】扉2を開け、試料7を試料搬送機15に
より予備室3内から反応室1内に搬送し、試料台10上
に乗せ、搬送機15を予備室3内に戻し、扉2を閉め
る。ワークコイル12に高周波発振器13より高周波
を加え、試料台10を加熱し、その熱で試料7を加熱す
る。
The door 2 is opened, the sample 7 is transported from the preliminary chamber 3 into the reaction chamber 1 by the sample transporter 15, placed on the sample table 10, the transporter 15 is returned to the preliminary chamber 3, and the door 2 is opened. Close. A high frequency is applied to the work coil 12 from a high frequency oscillator 13 to heat the sample stage 10 and heat the sample 7 with the heat.

【0016】なお、この加熱はフラッシュランプ光の照
射時の原料ガスの分解・反応を促進させるため、もしく
は、試料7表面の不要吸着物、特に吸着水素を昇温脱離
させるため,もしくは、通常の化学気相成長法で薄膜を
形成するために用いる。
This heating is to promote the decomposition and reaction of the raw material gas at the time of irradiation with the flash lamp light, or to raise and desorb unnecessary adsorbed substances, particularly adsorbed hydrogen, on the surface of the sample 7, Used to form a thin film by the chemical vapor deposition method.

【0017】その後、原料ガスをガス供給源6より反
応室1に流入させる。次に、原料ガスが試料7表面に
吸着するのに必要な時間の後、フラッシュランプ光をフ
ラッシュランプ光源9より透光性窓8を通して試料7表
面に照射する。
Thereafter, a raw material gas is caused to flow from the gas supply source 6 into the reaction chamber 1. Next, after the time required for the source gas to be adsorbed on the surface of the sample 7, the surface of the sample 7 is irradiated with flash lamp light from the flash lamp light source 9 through the transparent window 8.

【0018】ここで、反応室1内への原料ガスの流入と
フラッシュランプ光の照射を制御装置18により関連付
けて制御し、2種以上の原料ガスを同時にもしくは交互
に入れ換えてもよい。またフラッシュランプ光を照射
後、別の原料ガスを流入させ、試料7の加熱により、異
種の物質を成長させてもよい。
Here, the flow of the raw material gas into the reaction chamber 1 and the irradiation of the flash lamp light may be controlled by the control device 18 in association with each other, and two or more raw material gases may be replaced simultaneously or alternately. Alternatively, after irradiation with the flash lamp light, another source gas may be introduced, and the sample 7 may be heated to grow a different kind of substance.

【0019】このような工程でたとえば単結晶シリコン
上にゲルマニウムを形成する場合の手順の一例について
図2を用いて説明する。反応室1に水素ガス200cc/
min を流入させ、反応室1内圧力270Paとなっている
状態で、単結晶シリコンウェハ(試料7)を試料台10
に乗せ、図2の時間t1 で単結晶シリコンウェハを加熱
(ウェハ温度TG )し、400℃以上の温度TD のウェ
ハ表面の不要吸着物、特に吸着水素を昇温脱離させたの
ち、図2の時間t2 で230〜290℃の温度TG に下
げる。
An example of a procedure for forming germanium on single crystal silicon in such a process will be described with reference to FIG. 200 cc of hydrogen gas in reaction chamber 1
min, the single crystal silicon wafer (sample 7) was placed on the sample stage 10 under the condition that the pressure inside the reaction chamber 1 was 270 Pa.
After heating the single-crystal silicon wafer (wafer temperature T G ) at time t 1 in FIG. 2 to elevate and desorb unnecessary adsorbates, particularly adsorbed hydrogen, on the wafer surface at a temperature T D of 400 ° C. or higher. , down to a temperature T G of two hundred thirty to two hundred ninety ° C. at time t 2 of FIG.

【0020】次に、時間t3 でゲルマンガス(Ge
4 )を反応室1内で1〜20Paの分圧になるように導
入し、ゲルマンガスが試料表面に吸着するのに要する時
間τ′G以上経た後の時間t4 よりパルス幅約1msec
,パルス強度20J/cm2 のキセノンフラッシュラン
プ光を単結晶シリコンウェハ表面に繰り返し照射した
(τGはパルス光の繰り返し間隔)。
Next, at time t 3 , germane gas (Ge
H 4 ) is introduced into the reaction chamber 1 so as to have a partial pressure of 1 to 20 Pa, and the pulse width is about 1 msec from the time t 4 after the time τ ′ G required for germane gas to be adsorbed on the sample surface.
A single crystal silicon wafer surface was repeatedly irradiated with xenon flash lamp light having a pulse intensity of 20 J / cm 2G is a pulse light repetition interval).

【0021】このような方法でゲルマニウムを堆積させ
た時の1パルス当たりの堆積ゲルマニウムの膜厚を調べ
た。全圧力(GeH4 +H2 )が280Pa,ゲルマンガ
ス(GeH4 )分圧が13Paでパルス間隔τG =20秒
間の場合、図3に示すように、260〜275℃の範囲
で、温度によらず、ウェハの面方位がSi(100)と
Si(111)上でそれぞれ1原子層/パルスのゲルマ
ニウムの堆積が認められる。
The film thickness of germanium deposited per pulse when germanium was deposited by such a method was examined. When the total pressure (GeH 4 + H 2 ) is 280 Pa, the partial pressure of germane gas (GeH 4 ) is 13 Pa, and the pulse interval τ G = 20 seconds, as shown in FIG. However, germanium deposition of 1 atomic layer / pulse was observed on Si (100) and Si (111) with the plane orientation of the wafer.

【0022】図3中、○はSi(111)上での1パル
ス当たりの堆積ゲルマニウムの厚さ,●はSi(10
0)上での1パルス当たりの堆積ゲルマニウムの厚さ,
aの破線はGe(111)の1原子層の厚さ,bの破線
はGe(100)の1原子層の厚さを示す(以下図4〜
5同じ)。
In FIG. 3, .largecircle. Indicates the thickness of germanium deposited per pulse on Si (111), and .circle-solid.
0) the thickness of deposited germanium per pulse on,
The dashed line a shows the thickness of one atomic layer of Ge (111), and the dashed line b shows the thickness of one atomic layer of Ge (100) (hereinafter, FIGS.
5 Same).

【0023】パルス間隔が20秒間,全圧力(GeH4
+H2 )が280Pa,ウェハ補助加熱温度268℃の場
合、ゲルマンガス分圧が13Pa以上で、図4に示すよう
に1原子層/パルスのゲルマニウムの堆積が認められ
る。
The pulse interval is 20 seconds and the total pressure (GeH 4
When + H 2 ) is 280 Pa and the wafer auxiliary heating temperature is 268 ° C., the germanium gas partial pressure is 13 Pa or more, and as shown in FIG. 4, one atomic layer / pulse of germanium is deposited.

【0024】全圧力(GeH4 +H2 )が280Pa,ウ
ェハ補助加熱温度が268℃の場合、ゲルマンガス分圧
が4.5Paでも、図5に示すように、パルス間隔が長く
なれば、1原子層/パルスのゲルマニウムの堆積が認め
られる。
If the total pressure (GeH 4 + H 2 ) is 280 Pa and the wafer auxiliary heating temperature is 268 ° C., as shown in FIG. There is a layer / pulse deposition of germanium.

【0025】なお、230〜290℃の温度では、フラ
ッシュランプ光を照射しなければ、ゲルマニウムの堆積
は認められない。ウェハの面方位を変えると、ウェハ補
助加熱温度が268℃、パルス間隔が20秒間、全圧力
(GeH4 +H2 )が280Pa、ゲルマンガス分圧が1
3Paの場合、図6に示すように、それぞれの面方位に対
応して、1原子層/パルスのゲルマニウムの堆積が認め
られる。
At a temperature of 230 to 290 ° C., no germanium is deposited unless flash lamp light is applied. When the plane orientation of the wafer was changed, the wafer auxiliary heating temperature was 268 ° C., the pulse interval was 20 seconds, the total pressure (GeH 4 + H 2 ) was 280 Pa, and the Germanic gas partial pressure was 1
In the case of 3 Pa, as shown in FIG. 6, one atomic layer / pulse of germanium is recognized corresponding to each plane orientation.

【0026】以上述べたように、試料を原料ガスに曝し
た状態で、パルス光を照射することにより、1回の照射
ごとに、1原子層の薄膜を成長させることができること
は明らかである。また、2種以上の原料ガスを同時に流
入させ、混晶物質を原子層状に成長させることができる
ことは、容易に類推できる。
As described above, by irradiating the sample with the source gas and irradiating the pulsed light, it is apparent that a single atomic layer thin film can be grown for each irradiation. Further, it can be easily analogized that two or more kinds of source gases can be caused to flow in at the same time and the mixed crystal material can be grown in an atomic layer.

【0027】さらに、反応室内への原料ガスの導入とフ
ラッシュランプ光の照射を制御装置18により関連付け
て制御し、2種以上の原料ガスを図7に示すように交
互に入れ換え、図8に示すような1原子層ごとに異種の
物質のある多層原子層状の薄膜を形成することができ
る。ここで、τA ,τB はそれぞれA,B物質を形成す
るときのパルス間隔、τ′A ,τ′B はそれぞれA,B
物質の原料となるガスが試料表面に吸着するのに要する
時間、Cはウェハである。
Further, the introduction of the source gas into the reaction chamber and the irradiation of the flash lamp light are controlled in association with each other by the control device 18, and two or more types of source gases are alternately exchanged as shown in FIG. It is possible to form a multilayer atomic layer-like thin film having a different kind of substance for each atomic layer. Here, τ A and τ B are pulse intervals for forming A and B substances, respectively, and τ ′ A and τ ′ B are A and B, respectively.
C is a wafer, which is the time required for the gas serving as the raw material of the substance to be adsorbed on the sample surface.

【0028】2種以上の原料ガスを図9に示すように
ある時間毎に入れ換え、図10に示すような数原子層あ
るいは数十原子層ごとに異種の物質のある多層膜を形成
することができる。
As shown in FIG. 9, two or more kinds of source gases are exchanged at certain time intervals to form a multilayer film having a different kind of material every several or several tens of atomic layers as shown in FIG. it can.

【0029】また反応室内への原料ガスの導入とウェ
ハの補助加熱温度も図11のように関連付けて制御し、
図12に示すような数原子層あるいは数十原子層ごとに
異種の物質のある多層膜を形成することができることは
明らかである。
The introduction of the source gas into the reaction chamber and the auxiliary heating temperature of the wafer are also controlled in association with each other as shown in FIG.
It is obvious that a multilayer film having a different kind of substance can be formed every several or several tens of atomic layers as shown in FIG.

【0030】なお、上記において、パルス間隔は原料ガ
スが試料表面に完全に吸着被覆するのに要する時間以上
であることが望ましく、また異種の原料ガスに入れ換え
た後のパルス光の照射は、入れ換えた後の異種の原料ガ
スが試料表面に完全に吸着被覆するのに要する時間の後
に行うことが望ましい。
In the above, it is desirable that the pulse interval is equal to or longer than the time required for the source gas to completely adsorb and cover the sample surface, and the irradiation of pulse light after the replacement with the different source gas is performed. It is desirable to perform the treatment after the time required for completely adsorbing and coating the different kinds of raw material gas on the sample surface.

【0031】また上記方法は、同一の反応室で異種の物
質の多層構造を実現する例であるが、同様の反応室をつ
なげて、物質毎に、反応室を使い分け、異種物質の多層
構造を実現してもよい。
The above method is an example of realizing a multi-layer structure of different materials in the same reaction chamber. However, the same reaction chambers are connected, and the reaction chambers are selectively used for each substance, and the multi-layer structure of the different substances is formed. It may be realized.

【0032】また、パルス光照射光源9を用いない別の
手段、例えば、図13に示すように、通常の気相成長方
法による薄膜形成と上記方法とを組合せ、図14に示す
ような多層構造も実現可能になることは明らかである。
図14でAは通常の化学気相成長方法を用いて形成した
薄膜、Bはフラッシュランプ光により形成した薄膜、C
はウェハを示す。
Further, another means that does not use the pulsed light irradiation light source 9, for example, as shown in FIG. 13, a thin film formation by a normal vapor deposition method is combined with the above method to form a multilayer structure as shown in FIG. Obviously, will also be feasible.
In FIG. 14, A is a thin film formed by using a general chemical vapor deposition method, B is a thin film formed by flash lamp light,
Indicates a wafer.

【0033】なお、図13では、同一の反応室内で図1
4に示すような多層構造を実現する手順を示したが、フ
ラッシュランプを用いない別の手段での薄膜形成する機
能をフラッシュランプを用いて薄膜形成する反応室につ
なげて、図14に示すような多層構造を実現できること
は明らかである。
It should be noted that, in FIG. 13, FIG.
Although the procedure for realizing a multilayer structure as shown in FIG. 4 has been described, the function of forming a thin film by another means without using a flash lamp is connected to a reaction chamber for forming a thin film using a flash lamp, as shown in FIG. It is clear that a multi-layer structure can be realized.

【0034】[0034]

【発明の効果】上述の説明より明かなように本発明によ
れば、試料に単分子吸着され且つその吸着時間に比べフ
ラッシュランプによる分解・反応時間が無視できる程度
に短いような性質を有する水素化物系等の原料ガスを用
いて、該原料ガスを試料の表面に原料ガスがほぼ完全に
吸着されるような分圧で導入し、原料ガスが前記試料表
面に吸着するのに要する時間以上経た後、試料を原料ガ
スに曝した状態でフラッシュランプから前記吸着するの
に要する時間に比べて無視できるような短いパルス幅の
パルス光を試料表面に照射することによって、1回の照
射毎に1原子層の薄膜を成長させることができる。
As is clear from the above description, according to the present invention, hydrogen having the property that a single molecule is adsorbed on a sample and the decomposition / reaction time by a flash lamp is negligibly short compared to the adsorption time. Using a raw material gas such as a compound-based gas, the raw material gas was introduced at a partial pressure such that the raw material gas was almost completely adsorbed on the surface of the sample, and the time required for the raw material gas to be adsorbed on the sample surface was passed. Thereafter, the surface of the sample is irradiated with pulse light having a pulse width that is negligible as compared with the time required for the adsorption by the flash lamp in a state where the sample is exposed to the source gas. Atomic layer thin films can be grown.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法及び装置の1実施例の概略構成説明
図である。
FIG. 1 is a schematic structural explanatory view of one embodiment of a method and an apparatus of the present invention.

【図2】キセノンフラッシュランプ光を単結晶シリコン
ウェハ表面に繰り返し照射した時のゲルマニウムを堆積
させる手順の1例を示す説明図である。
FIG. 2 is an explanatory view showing an example of a procedure for depositing germanium when a surface of a single crystal silicon wafer is repeatedly irradiated with a xenon flash lamp light.

【図3】キセノンフラッシュランプ光を単結晶シリコン
ウェハ表面に繰り返し照射した時の、1パルス当たりの
堆積ゲルマニウムの膜厚の単結晶シリコンウェハの温度
依存性の説明図である。
FIG. 3 is an explanatory diagram of the temperature dependence of the thickness of the deposited germanium per pulse on the single crystal silicon wafer when the surface of the single crystal silicon wafer is repeatedly irradiated with xenon flash lamp light.

【図4】キセノンフラッシュランプ光を単結晶シリコン
ウェハ表面に繰り返し照射した時の、1パルス当たりの
堆積ゲルマニウムの膜厚の反応室内のゲルマンガス分圧
依存性の説明図である。
FIG. 4 is an explanatory diagram showing the dependency of the film thickness of deposited germanium per pulse on the partial pressure of germane gas in the reaction chamber when the surface of a single crystal silicon wafer is repeatedly irradiated with xenon flash lamp light.

【図5】キセノンフラッシュランプ光を単結晶シリコン
ウェハ表面に繰り返し照射した時の、1パルス当たりの
堆積ゲルマニウムの膜厚のパルス間隔依存性の説明図で
ある。
FIG. 5 is an explanatory diagram of the pulse interval dependence of the film thickness of deposited germanium per pulse when the surface of a single crystal silicon wafer is repeatedly irradiated with xenon flash lamp light.

【図6】キセノンフラッシュランプ光を単結晶シリコン
ウェハ表面に繰り返し照射した時の、1パルス当たりの
堆積ゲルマニウムの膜厚の基板面方位依存性の説明図で
ある。
FIG. 6 is an explanatory diagram of the dependence of the film thickness of deposited germanium per pulse on the substrate surface orientation when the surface of a single crystal silicon wafer is repeatedly irradiated with xenon flash lamp light.

【図7】反応室内への原料ガスの導入とフラッシュラン
プ光の照射を関連付けて制御し、A物質の原料となるガ
スとB物質の原料となるガスを交互に入れ換え、1原子
層ごとに異種の物質のある多層原子層状の薄膜を形成す
る手順の1例を示す説明図である。
FIG. 7 controls the introduction of the source gas into the reaction chamber and the irradiation of the flash lamp light in association with each other, and alternately exchanges the gas as the source material of the substance A and the gas as the source material of the substance B, thereby dissimilarly changing each atomic layer. FIG. 4 is an explanatory diagram showing an example of a procedure for forming a multi-layer atomic layer-like thin film having the above substance.

【図8】図7に示す手順で1原子層ごとにAとBの物質
のある多層原子層状の薄膜を形成した試料の断面図であ
る。
8 is a cross-sectional view of a sample in which a multi-layer atomic layer-like thin film containing substances A and B is formed for each atomic layer by the procedure shown in FIG.

【図9】反応室内への原料ガスの導入とフラッシュラン
プ光の照射を関連付けて制御し、A物質の原料となるガ
スとB物質の原料となるガスをある時間毎に入れ換え、
数原子層あるいは数十原子層ごとに異種の物質のある多
層膜を形成する手順の1例を示す説明図である。
FIG. 9 controls the introduction of the source gas into the reaction chamber and the irradiation of the flash lamp light in association with each other, and exchanges the gas serving as the material of the substance A and the gas serving as the material of the substance B at certain intervals;
FIG. 4 is an explanatory diagram showing an example of a procedure for forming a multilayer film having a different kind of material for every several atomic layers or several tens of atomic layers.

【図10】図9に示す手順で数原子層あるいは数十原子
層ごとに異種の物質のある多層膜を形成した試料の断面
図である。
10 is a cross-sectional view of a sample in which a multi-layered film having a different kind of substance is formed every several atomic layers or several tens of atomic layers by the procedure shown in FIG.

【図11】反応室内への原料ガスの導入とフラッシュラ
ンプ光の照射を関連付けて制御し、かつ反応室内への原
料ガスの導入と基板の補助加熱温度も関連付けて制御
し、数原子層あるいは数十原子層ごとに異種の物質のあ
る多層膜を形成する手順の1例を示す説明図である。
FIG. 11 controls the introduction of the source gas into the reaction chamber and the irradiation of the flash lamp light in association with each other, and also controls the introduction of the source gas into the reaction chamber and the auxiliary heating temperature of the substrate. FIG. 4 is an explanatory diagram showing an example of a procedure for forming a multilayer film having a different kind of material for every ten atomic layers.

【図12】図11に示す手順で数原子層あるいは数十原
子層ごとに異種の物質のある多層膜を形成した試料の断
面図である。
12 is a cross-sectional view of a sample in which a multi-layered film having a different kind of substance is formed every several atomic layers or every several tens of atomic layers by the procedure shown in FIG.

【図13】通常の気相成長方法による薄膜形成とフラッ
シュランプ光を用いた薄膜形成を組合せ、異種物質の多
層構造も実現する手順の1例を示す説明図である。
FIG. 13 is an explanatory diagram showing an example of a procedure for combining a thin film formation by a normal vapor phase growth method and a thin film formation using flash lamp light to realize a multilayer structure of different kinds of substances.

【図14】図13に示す手順で異種物質の多層構造も実
現した試料の断面図である。
FIG. 14 is a cross-sectional view of a sample in which a multi-layered structure of different kinds of substances is also realized by the procedure shown in FIG.

【符号の説明】[Explanation of symbols]

1 反応室 2 扉 3 予備室 4 反応室用排気装置 5 予備室用排気装置 6 ガス供給源 7 試料 8 透光性窓 9 パルス光照射光源(フラッシュランプ光源) 10 試料台 11 ワークコイル室 12 ワークコイル 13 高周波発振器 14 ワークコイル室用排気装置 15 試料搬送機 16 扉 17 圧力計 18 制御装置 19 (高周波)加熱装置 DESCRIPTION OF SYMBOLS 1 Reaction chamber 2 Door 3 Preparatory room 4 Exhaust device for reaction room 5 Exhaust device for preparatory room 6 Gas supply source 7 Sample 8 Translucent window 9 Pulse light irradiation light source (flash lamp light source) 10 Sample stand 11 Work coil room 12 Work Coil 13 High frequency oscillator 14 Exhaust device for work coil chamber 15 Sample transporter 16 Door 17 Pressure gauge 18 Control device 19 (High frequency) heating device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒河 治重 東京都西多摩郡羽村町神明台2−1−1 国際電気株式会社羽村工場内 (72)発明者 池田 文秀 東京都西多摩郡羽村町神明台2−1−1 国際電気株式会社羽村工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Haruhige Kurokawa 2-1-1 Shinmeidai, Hamura-cho, Nishitama-gun, Tokyo Inside the Hamura Plant of Kokusai Electric Co., Ltd. (72) Fumihide Ikeda 2- Shinmeidai, Hamura-cho, Nishitama-gun, Tokyo 1-1 Hamura Plant of Kokusai Electric Inc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 反応室内に試料を設置し、試料を加熱し
て試料表面の不要吸着物を昇温脱離させた後、試料の温
度を下げて水素化物系の原料ガスを試料の表面に原料ガ
スがほぼ完全に吸着されるような分圧で導入し、前記原
料ガスが前記試料表面に吸着するのに要する時間以上経
た後、前記試料を原料ガスに曝した状態でフラッシュラ
ンプから前記吸着するのに要する時間に比べて無視でき
るような短いパルス幅のパルス光を試料表面に照射する
ことにより、1パルス光照射毎に1原子層の薄膜を成長
させることを特徴とする気相成長方法。
1. A sample is placed in a reaction chamber, and the sample is heated to remove unnecessary adsorbate on the sample surface by heating and desorbing. Then, the temperature of the sample is lowered and a hydride-based source gas is applied to the surface of the sample. After the source gas is introduced at a partial pressure such that the source gas is almost completely adsorbed, and after the time required for the source gas to be adsorbed on the surface of the sample has passed, the sample is exposed to the source gas and the adsorption is performed from a flash lamp. Irradiating the sample surface with a pulse light having a pulse width that is negligible compared to the time required for performing the vapor deposition, thereby growing a thin film of one atomic layer for each pulse light irradiation. .
【請求項2】 試料が設置された反応室内に、該試料に
単分子吸着され且つその吸着時間に比べフラッシュラン
プによる分解・反応時間が無視できる程度に短いような
性質を有する原料ガスを試料の表面に原料ガスがほぼ完
全に吸着されるような分圧で導入し、前記原料ガスが前
記試料表面に吸着するのに要する時間以上経た後、前記
試料を原料ガスに曝した状態でフラッシュランプから前
記吸着するのに要する時間に比べて無視できるような短
いパルス幅のパルス光を試料表面に照射することによ
り、1パルス光照射毎に1原子層の薄膜を成長させるこ
とを特徴とする気相成長方法。
2. In a reaction chamber in which a sample is placed, a raw material gas having properties such that a single molecule is adsorbed by the sample and the decomposition / reaction time by a flash lamp is negligibly short compared to the adsorption time. Introduced at a partial pressure such that the source gas is almost completely adsorbed on the surface, and after the time required for the source gas to be adsorbed on the sample surface has passed, a flash lamp is used while the sample is exposed to the source gas. Irradiating the sample surface with pulse light having a pulse width that is negligible compared to the time required for the adsorption, thereby growing a thin film of one atomic layer for each pulse light irradiation. Growth method.
【請求項3】 前記フラッシュランプは、キセノンフラ
ッシュランプであることを特徴とする請求項1または2
記載の気相成長方法。
3. The flash lamp according to claim 1, wherein the flash lamp is a xenon flash lamp.
The vapor phase growth method according to the above.
【請求項4】 前記試料はシリコンウェハであり、前記
原料ガスはゲルマンガスであり、該ゲルマンガスを1P
a以上の分圧で導入し、前記吸着するのに要する時間を
20秒以上とすることを特徴とする請求項1または3に
記載の気相成長方法。
4. The sample is a silicon wafer, the source gas is germane gas, and the germane gas is 1P.
The vapor phase growth method according to claim 1 or 3, wherein the gas is introduced at a partial pressure of a or more and the time required for the adsorption is 20 seconds or more.
【請求項5】 前記パルス光照射による薄膜の形成の前
又は後或いはパルス光照射の間に、試料を一定に加熱
し、原料ガスを化学的に反応させて薄膜を形成させる工
程を含むことを特徴とする請求項1〜4のいずれかに記
載の気相成長方法。
5. The method according to claim 1, further comprising a step of heating the sample at a constant rate before or after forming the thin film by the pulsed light irradiation or during the pulsed light irradiation and chemically reacting the source gas to form the thin film. The vapor phase growth method according to claim 1, wherein:
【請求項6】 試料が設置される反応室と、試料を加熱
して試料表面の不要吸着物を昇温脱離させると共に、脱
離後は温度を下げる加熱装置と、この反応室に水素化物
系の原料ガスを試料の表面に原料ガスがほぼ完全に吸着
されるような分圧で導入するガス供給源と、反応室内の
試料表面に透光性窓を通してパルス光を照射するフラッ
シュランプと、前記ガス供給源による反応室内への原料
ガスの導入とフラッシュランプによる試料へのパルス光
の照射を、前記原料ガスが前記試料表面に吸着するのに
要する時間以上経た後、前記試料を原料ガスに曝した状
態で前記吸着するのに要する時間に比べて無視できるよ
うな短いパルス幅のパルス光を照射するように、関連付
けて制御する制御装置とを設けることを特徴とする気相
成長装置。
6. A reaction chamber in which a sample is installed, a heating device for heating the sample to raise and desorb unnecessary adsorbate on the sample surface, and lowering the temperature after desorption, and a hydride in the reaction chamber. A gas supply source that introduces a source gas of the system at a partial pressure such that the source gas is almost completely adsorbed to the surface of the sample, a flash lamp that irradiates a pulse light to the sample surface in the reaction chamber through a translucent window, After the introduction of the source gas into the reaction chamber by the gas supply source and the irradiation of pulse light to the sample by the flash lamp have passed the time required for the source gas to be adsorbed on the sample surface, the sample is converted to the source gas. A vapor phase growth apparatus, comprising: a control device that performs control so as to irradiate pulse light having a pulse width that is negligible compared to the time required for the adsorption in an exposed state.
JP11147797A 1991-03-20 1997-04-28 Vapor growth method Expired - Fee Related JP3163267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11147797A JP3163267B2 (en) 1991-03-20 1997-04-28 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11147797A JP3163267B2 (en) 1991-03-20 1997-04-28 Vapor growth method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3056931A Division JP2680202B2 (en) 1991-03-20 1991-03-20 Vapor phase growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH1072283A true JPH1072283A (en) 1998-03-17
JP3163267B2 JP3163267B2 (en) 2001-05-08

Family

ID=14562256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11147797A Expired - Fee Related JP3163267B2 (en) 1991-03-20 1997-04-28 Vapor growth method

Country Status (1)

Country Link
JP (1) JP3163267B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501226A (en) * 2004-02-27 2008-01-17 エーエスエム アメリカ インコーポレイテッド Germanium deposition
JP2010114460A (en) * 2010-01-07 2010-05-20 Dainippon Screen Mfg Co Ltd Heat treatment method, and heat treatment apparatus
JP2010177496A (en) * 2009-01-30 2010-08-12 Dainippon Screen Mfg Co Ltd Thermal processing apparatus, and thermal processing method
US8447177B2 (en) 2007-09-12 2013-05-21 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus heating substrate by irradiation with light

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501226A (en) * 2004-02-27 2008-01-17 エーエスエム アメリカ インコーポレイテッド Germanium deposition
US8447177B2 (en) 2007-09-12 2013-05-21 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus heating substrate by irradiation with light
JP2010177496A (en) * 2009-01-30 2010-08-12 Dainippon Screen Mfg Co Ltd Thermal processing apparatus, and thermal processing method
JP2010114460A (en) * 2010-01-07 2010-05-20 Dainippon Screen Mfg Co Ltd Heat treatment method, and heat treatment apparatus

Also Published As

Publication number Publication date
JP3163267B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP2680202B2 (en) Vapor phase growth method and apparatus
US5705224A (en) Vapor depositing method
US6645574B1 (en) Method of forming a thin film
JP3163267B2 (en) Vapor growth method
Sakuraba et al. Atomic layer epitaxy of germanium on silicon using flash heating chemical vapor deposition
US4877650A (en) Method for forming deposited film
JP2758247B2 (en) Organic metal gas thin film forming equipment
Ishida et al. Decomposition of trimethylaluminum and N2O on Si surfaces using ultraviolet laser photolysis to produce Al2O3 films
JPH0351675B2 (en)
Tanimoto et al. Synchronously Excited Discrete Chemical Vapor Deposition of Ta2 O 5
JPH06321690A (en) Forming method and treating method of semiconductor diamond film
JP2726149B2 (en) Thin film forming equipment
Moore et al. Laser‐induced deposition of alumina from condensed layers of organoaluminum compounds and water
JPH0427136A (en) Thin film formation device utilizing organic metal gas
JPH0294430A (en) Photo-assisted cvd apparatus
JPH01251608A (en) Method of growing crystal of compound semiconductor
Bergeld et al. Photocatalytic reactions at the graphite/ice interface
Murota et al. Control of germanium atomic layer formation on silicon using flash heating in germanium CVD
JP3728538B2 (en) Thin film growth apparatus and thin film growth method
JPS63312978A (en) Thin film forming device
JPH04345017A (en) Manufacturing method of semiconductor device
JP3117263B2 (en) Method for producing Si single crystal
JPH08264460A (en) Method and system for growing nitrogen compound semiconductor crystal
JPH0652717B2 (en) Thin film formation method
JPH05198518A (en) Compound semiconductor film formation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees