JPH10718A - Laminated film - Google Patents

Laminated film

Info

Publication number
JPH10718A
JPH10718A JP8156572A JP15657296A JPH10718A JP H10718 A JPH10718 A JP H10718A JP 8156572 A JP8156572 A JP 8156572A JP 15657296 A JP15657296 A JP 15657296A JP H10718 A JPH10718 A JP H10718A
Authority
JP
Japan
Prior art keywords
film
conductive layer
oxide
layer
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8156572A
Other languages
Japanese (ja)
Other versions
JP3093151B2 (en
Inventor
Hideki Goto
英樹 後藤
Junji Tanaka
順二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP08156572A priority Critical patent/JP3093151B2/en
Publication of JPH10718A publication Critical patent/JPH10718A/en
Application granted granted Critical
Publication of JP3093151B2 publication Critical patent/JP3093151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a transparent electrically conductive film having favorable etching properties and satisfying impact resistance, transparency, gas barrier properties and flexibility by a method wherein an organic layer, an inorganic layer having barrier properties, an organic layer, an electrically conductive layer easily meltable in dilute acid and a low specific resistance electrically conductive layer are laminated in the named order. SOLUTION: An organic layer 2, an inorganic layer having barrier properties, an organic layer 4, an electrically conductive layer easily meltable in dilute acid and a low specific resistance electrically conductive layer 6 are laminated in the named order onto at least one side of a polymeric film or sheet so as to obtain a laminated film excellent in impact resistance, flexibility and etching properties. The electrically conductive layer 5 is made of the oxide of In and Zn under the composition of the oxide in atomic ratio of Zn/In+Zn=0.15-0.4 and the thickness of which is within the range of 50-200Å. The electrically conductive layer 6 is made of the oxide of In and Sn under the composition of the oxide in atomic ratio of In/In+Sn=0.85-0.95.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フィルム液晶表示
装置に用いられる導電性フィルムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive film used for a film liquid crystal display.

【0002】[0002]

【従来の技術】液晶用導電性フィルムとしては、特公昭
62−32101、特公昭63−34018、特公平1
−12666等に記載のポリエステル、ポリエーテルサ
ルフォン、ポリカーボネート等の高分子フィルム表面に
酸化インジウム、酸化錫、あるいは錫、インジウム合金
の酸化膜等の半導体膜や金、銀、パラジウムあるいはそ
れらの合金等の金属膜、半導体膜と金属膜を組み合わせ
て形成されたもの等が知られている。
2. Description of the Related Art As conductive films for liquid crystal, Japanese Patent Publication Nos. 62-32101, 63-34018 and 1
Indium oxide, tin oxide, or a semiconductor film such as an oxide film of tin or indium alloy, or gold, silver, palladium, or an alloy thereof on a polymer film surface such as polyester, polyether sulfone, or polycarbonate described in -12666. And a film formed by combining a semiconductor film and a metal film.

【0003】しかしながら、プラスチック上に上記の透
明導電膜を形成する際、基板からのガスの影響や、結晶
化によりエッチングが難しい等の欠点があり、この為い
くつかの検討はされているが確立、採用された技術は未
だ無い状況で有る。一例として酸に可溶な透明導電性膜
として特開平7−168196に於いて、In、Znか
ら成る非晶質酸化物を一層のみの導電性層が提案されて
いるが、余りにも可溶過ぎ、パタン加工ライン上でのオ
ーバエッチングと言うロット間の安定性に欠け、設計上
も困難さを伴うという大きな問題があった。又、比抵抗
としても3×10-4Ω−cmと高く、高精細パタンに求
められる表面抵抗20Ω/□以下の低抵抗の透明導電膜
としては問題があった。即ち、低抵抗にするには膜厚を
厚くすれば、確かに抵抗は下がるが、比抵抗が3×10
-4Ω−cmの膜で20Ω/□を得るためには、膜厚は1
500Å(比抵抗=膜厚×表面抵抗)となり、液晶によ
る表示ではパタンが見えるいわゆる骨見えの現象が起き
表示品位が落ちる欠点があった。骨見えの現象を避ける
ためには少なくても膜厚は1000Å以下にする必要で
ある。
[0003] However, when the above-mentioned transparent conductive film is formed on plastic, there are drawbacks such as the influence of gas from the substrate and difficulty in etching due to crystallization. However, the technology adopted has not yet been established. As an example, as a transparent conductive film soluble in acid, Japanese Patent Application Laid-Open No. Hei 7-168196 proposes a single conductive layer of an amorphous oxide composed of In and Zn, but it is too soluble. In addition, there has been a serious problem that stability between lots, called over-etching on a pattern processing line, is lacking, and design is difficult. Further, the specific resistance is as high as 3 × 10 −4 Ω-cm, and there is a problem as a low-resistance transparent conductive film having a surface resistance of 20 Ω / □ or less required for a high-definition pattern. In other words, in order to lower the resistance, if the film thickness is increased, the resistance certainly decreases, but the specific resistance is 3 × 10
In order to obtain 20 Ω / □ with a film of -4 Ω-cm, the film thickness must be 1
It was 500 ° (specific resistance = film thickness × surface resistance), and there was a defect that a so-called bone-like phenomenon in which a pattern could be seen in a liquid crystal display occurred, resulting in a decrease in display quality. In order to avoid the bone appearance phenomenon, the film thickness must be at least 1000 ° or less.

【0004】一方、ガスバリヤー層として、無機層を設
ける方法では、液晶用途以外では特公昭53−1295
3、液晶用では特開昭50−142194等において、
高分子フィルム上の少なくとも片面にSiO2等を蒸着
したもの、あるいは、高分子フィルム上に塩化ビニリデ
ン系ポリマーや特願昭59−207168記載のビニル
アルコール系ポリマーなど、更には、これらと無機層を
併用した特願昭59−201886、特願昭59−20
1887等相対的にガスバリヤー性のあるポリマーのコ
ーティン層を設けたものが知られている。
On the other hand, in the method of providing an inorganic layer as a gas barrier layer, a method other than a liquid crystal application is disclosed in Japanese Patent Publication No. 53-1295.
3. For liquid crystal, see JP-A-50-142194.
SiO2 or the like deposited on at least one surface of a polymer film, or vinylidene chloride-based polymer or vinyl alcohol-based polymer described in Japanese Patent Application No. 59-207168 on a polymer film. Japanese Patent Application Nos. 59-201886 and 59-20
It is known to provide a polymer coating layer having relatively gas barrier properties such as 1887.

【0005】しかし、液晶用途として使用するには、フ
ィルム液晶の最大の特徴である耐衝撃性が必要であり、
これは落下や外部押圧に対応するものである。一般的に
デュポン衝撃試験機(JIS−K−5400.6.13
B)に於いて、重り荷重100gで落下させ落下距離3
00mm以上の衝撃性を有する事が望ましいが、実際は
50mm程度と実用上安心出来るレベルでは無かった。
However, in order to be used for liquid crystal applications, the film liquid crystal needs to have impact resistance, which is the greatest feature of liquid crystal.
This corresponds to a drop or an external pressure. Generally, a DuPont impact tester (JIS-K-5400.6.13)
In B), drop with a weight load of 100 g and drop distance 3
It is desirable to have an impact resistance of 00 mm or more, but in practice, it was about 50 mm, which is not a level that can be safely used in practice.

【0006】又、フィルム液晶の特徴である、可とう性
としては35mmΦのロールに巻き付けてもクラックが
生じない可とう性が必要であるが、特開昭55−114
563に記載されている加水分解による酸化物からなる
無機層を有すると一般的には1μm程度と厚いため、又
他の製造法にも見られるが密着性が低いと同様にクラッ
クが生じ易くなると言う欠点が有り、必ずしも無機バリ
ヤーを設ければ良いと言った状況では無かった。
[0006] The flexibility of the film liquid crystal is required to be free from cracks even when wound around a roll having a diameter of 35 mm.
When it has an inorganic layer composed of an oxide by hydrolysis described in 563, it is generally as thick as about 1 μm, and it is also found in other production methods. There was a drawback mentioned above, and it was not always the case that an inorganic barrier should be provided.

【0007】以上の様に、フィルム液晶表示装置には、
ガスバリヤー性、透明導電性、耐衝撃性、可とう性を合
わせ持つ積層フィルムが不可欠な要素であるが、実用上
特にパタン加工性は歩留まりの上から重要である。しか
し、これらの機能を有する各層をくみあわせて、加工性
が良く、透明導電性、ガスバリアー性を付与出来、液晶
表示装置材料として必要な耐久性のすべてが十分な透明
導電性フィルムは、いまだ工業的には生産されていな
い。
As described above, the film liquid crystal display device includes:
A laminated film having a combination of gas barrier properties, transparent conductivity, impact resistance, and flexibility is an indispensable element, but in practice, pattern processing is particularly important from the viewpoint of yield. However, by combining the layers having these functions, a transparent conductive film that has good workability, can impart transparent conductivity and gas barrier properties, and has sufficient durability as a liquid crystal display device material is still required. It is not produced industrially.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる現状
に鑑みなされたもので希酸に可溶な導電性を有し、ガス
バリヤー性、耐衝撃性、可とう性の優れた透明導電性を
有するフィルムを提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above situation, and has a transparent conductive property which is soluble in a dilute acid and has excellent gas barrier properties, impact resistance and flexibility. The object of the present invention is to provide a film having:

【0009】[0009]

【課題を解決するための手段】上述の目的は、下記の本
発明により達成される。図1に示す様に、高分子フィル
ムあるいはシートの少なくとも片側に有機層1、バリヤ
性を有する無機層、有機層2、希酸に対し容易に溶ける
導電性層1、抵抗率が低い導電性層2を順次積層し、耐
衝撃性、可とう性、エッチング性に優れた積層フィルム
であり、更に好ましい態様は該耐衝撃性として、デュポ
ン衝撃試験機に於ける重り荷重100gでの落下試験に
おいて、落下距離500mm以上の衝撃性を有し、該可
とう性として、35mmΦのロールに巻き付けてもクラ
ックが生じない可とう性を有し、該導電性層1がInと
Znの酸化物から成り、酸化物の組成Zn/In+Zn
が0.15〜0.4の原子比であり、且つ膜厚が50〜
200Åの範囲であり、該有機層1、2が融点50℃以
上のエポキシアクリレートプレポリマーあるいは融点5
0℃以上のウレタンアクリレートプレポリマーの紫外線
硬化膜であり、且つ0.3〜1.5μmの厚みであり、
該無機層の全光線透過率が85%以上、30Hzの駆動
周波数に於ける表面抵抗率が1×1012Ωm以上、酸素
バリヤー性が2cc/24hr・m2以下であり、該導
電性層2がInとSnの酸化物から成り、酸化物の組成
In/In+Snが0.85〜0.95の原子比である
積層フィルムである。
The above-mentioned object is achieved by the present invention described below. As shown in FIG. 1, an organic layer 1, an inorganic layer having barrier properties, an organic layer 2, a conductive layer 1 easily soluble in dilute acid, and a conductive layer having a low resistivity are provided on at least one side of a polymer film or sheet. 2 is a laminated film having excellent impact resistance, flexibility, and etching property, and a more preferable embodiment is the impact resistance, in a drop test with a weight load of 100 g in a DuPont impact tester, It has an impact property of a drop distance of 500 mm or more, has a flexibility that does not cause cracks even when wound around a roll of 35 mmΦ, and the conductive layer 1 is made of an oxide of In and Zn, Oxide composition Zn / In + Zn
Has an atomic ratio of 0.15 to 0.4 and a film thickness of 50 to
The organic layer 1 or 2 is an epoxy acrylate prepolymer having a melting point of 50 ° C. or more or a melting point of 5 ° C.
A UV-cured film of a urethane acrylate prepolymer at 0 ° C. or higher, and a thickness of 0.3 to 1.5 μm;
The inorganic layer has a total light transmittance of 85% or more, a surface resistivity at a driving frequency of 30 Hz of 1 × 10 12 Ωm or more, and an oxygen barrier property of 2 cc / 24 hr · m 2 or less. Is a laminated film comprising an oxide of In and Sn, wherein the composition of the oxide In / In + Sn has an atomic ratio of 0.85 to 0.95.

【0010】[0010]

【発明の実施の形態】本発明に於ける高分子フィルムあ
るいはシート(以後フィルムという)とはポリエーテル
サルフォン、ポリカーボネート、ポリアリレート、ノル
ボルネン、紫外線硬化型樹脂、エポキシ樹脂に代表され
る熱硬化型樹脂等からなる全光線透過率(JIS−K−
7105.5.5)で80%以上の透明性を有し、光学
異方性が少ないフィルムであって、加工性の点からは極
力耐熱性があることが望ましい。この意味から、223
℃と最もTgが高いポリエーテルサルホンや紫外線硬化
樹脂、熱硬化型樹脂がより好ましい。又、厚みとして
は、ガラスに対し軽い、割れない、可とう性を有するた
めに0.05〜0.5mmのものであり、必要に応じ複
数のフィルムを屈折率を合わせた接着剤等を介し積層し
た構成のものでも良い。尚、光学異方性としては、出来
るだけ0が望ましいが、リタゼーション値として15n
m以下、角度依存性としては45度で2倍以内が好まし
い。これは、色差として2以下並びに角度依存性に関し
ては色ずれ防止からの要求である。
BEST MODE FOR CARRYING OUT THE INVENTION A polymer film or sheet (hereinafter referred to as a film) in the present invention is a thermosetting resin represented by polyether sulfone, polycarbonate, polyarylate, norbornene, ultraviolet curable resin and epoxy resin. Total light transmittance (JIS-K-
7105.5.5), a film having a transparency of 80% or more and a small optical anisotropy, and desirably having heat resistance as much as possible from the viewpoint of processability. In this sense, 223
Polyethersulfone, an ultraviolet curable resin, and a thermosetting resin having the highest Tg at ℃ are more preferable. In addition, the thickness is 0.05 to 0.5 mm in order to have flexibility, which is light to glass, does not break, and has flexibility. It may have a laminated configuration. The optical anisotropy is desirably 0 as much as possible, but the retardation value is 15n.
m or less, and the angle dependence is preferably 45 degrees or less and twice or less. This is a requirement for preventing color misregistration in terms of color difference of 2 or less and angle dependency.

【0011】有機層としては、融点50℃以上のエポキ
シアクリレートプレポリマーあるいは融点50℃以上の
ウレタンアクリレートプレポリマーの紫外線硬化膜であ
り、液晶用途としての特性を満足出来れば、熱的により
安定な熱硬化型を用いても良い。しかしながら、生産性
に優れた紫外線硬化型樹脂がより好ましい。当然なが
ら、高分子フィルムや無機層との密着力は不可欠であ
り、可とう性、耐薬品性が優れている事が必要である。
この目的のためには、通常行われているプライマー層を
設けても良い。
The organic layer is an ultraviolet-cured film of an epoxy acrylate prepolymer having a melting point of 50 ° C. or higher or a urethane acrylate prepolymer having a melting point of 50 ° C. or higher. A curing type may be used. However, an ultraviolet curable resin excellent in productivity is more preferable. Needless to say, adhesion to the polymer film or the inorganic layer is indispensable, and it is necessary to have excellent flexibility and chemical resistance.
For this purpose, a conventional primer layer may be provided.

【0012】ここで重要なのは、耐衝撃性保持の為、有
機層の厚みを制限する必要がある。確かに樹脂処方に依
る処があるのは事実であるが、通常コート樹脂の厚みと
して用いられる2〜5μm程度の厚みを塗布すると、本
発明に述べた耐衝撃性試験を行うと一般的に落下距離5
0mm程度でクラックが生じ易くなる為である。従って
液晶用途として実用上充分安定した領域で使用するに
は、落下距離として500mm以上が望ましく鋭意検討
したところ有機層の厚みとして0.3〜1.5μmの範
囲であれば満足する事を見いだしたものである。これ
は、紫外線硬化型樹脂は硬化時に10〜20%程の硬化
収縮が起こるため、潜在的な内部応力を持っており、衝
撃試験の様な局部的な外力が働くと一気にクラックが入
るためである。ここで有機層の厚みが0.3μm未満で
は塗布ムラが生じ易くなり、1.5μmを越えると密着
力が低下しクラックが発生し易くなる。
What is important here is that it is necessary to limit the thickness of the organic layer in order to maintain impact resistance. Although it is true that there is a place depending on the resin formulation, when a thickness of about 2 to 5 μm, which is usually used as the thickness of the coating resin, is applied, the impact resistance test described in the present invention generally causes a drop. Distance 5
This is because a crack is easily generated at about 0 mm. Therefore, in order to use it in a practically sufficiently stable region for liquid crystal applications, a drop distance of 500 mm or more is desirably desirable, and as a result of intensive studies, it has been found that a thickness of the organic layer in the range of 0.3 to 1.5 μm is satisfactory. Things. This is because ultraviolet curable resin has a potential internal stress because of the curing shrinkage of about 10 to 20% at the time of curing, and when a local external force such as an impact test acts, a crack is formed at a stretch. is there. Here, when the thickness of the organic layer is less than 0.3 μm, coating unevenness is liable to occur, and when it exceeds 1.5 μm, the adhesion is reduced and cracks are liable to occur.

【0013】有機層を2.5μmに塗布した際のベース
フィルムとの密着力は200g/cmであるのに対し、
0.5μm品では1000g/cmと5倍まで向上でき
ている。更に薄化する優位点として、液晶用途では極力
透明性を有することが望ましく、通常塗布される最も薄
い2μmに対しても、0.5μm低減する毎に0.5%
の透過率の改善が認められ、この意味からも有効な手段
になる。
The adhesion to the base film when the organic layer is applied to a thickness of 2.5 μm is 200 g / cm,
In the case of a 0.5 μm product, it can be improved to 5 times, that is, 1000 g / cm. As an advantage of further thinning, it is desirable to have transparency as much as possible in liquid crystal applications, and 0.5% for every 0.5 μm reduction even for the thinnest 2 μm usually applied.
This is an effective means from this point of view.

【0014】無機層としては全光線透過率85%以上、
表面抵抗率(JIS−K−6911)1×1012Ω(1
0〜30Hz)以上、酸素バリヤー性として2cc/2
4hr・m2以下を有し、35mmΦのロールに巻き付
けてもクラックが生じない可とう性を有するものであれ
ば実用上問題ない。無機層としては、例えばSiOx、
SixNy、AlxOy等あるいはこれらの多層、複合
膜が考えられ、蒸着、スパッタリング、イオンプレーテ
ィング、CVDに代表される気相成膜法や、金属アルコ
キサイドを原料とした加水分解等による塗布法により形
成される。
As the inorganic layer, the total light transmittance is 85% or more,
Surface resistivity (JIS-K-6911) 1 × 10 12 Ω (1
0-30 Hz) or more, 2 cc / 2 as an oxygen barrier property
There is no practical problem as long as it has a flexibility of 4 hr · m 2 or less and does not crack even when wound around a 35 mmφ roll. As the inorganic layer, for example, SiOx,
SixNy, AlxOy, etc., or a multilayer or composite film of these may be considered. The film is formed by vapor deposition such as evaporation, sputtering, ion plating, or CVD, or coating by hydrolysis using metal alkoxide as a raw material. You.

【0015】全光線透過率としてはできるだけ高いこと
が望ましいが、高分子フィルム並びに導電性層の透過率
を考慮すれば実質上85%以上であれば使用可能とな
る。全光線透過率が85%未満であると透明性が不十分
となり本用途には使用出来ない。
It is desirable that the total light transmittance is as high as possible. However, considering the transmittance of the polymer film and the conductive layer, the material can be used if it is substantially 85% or more. If the total light transmittance is less than 85%, the transparency is insufficient, and it cannot be used for this application.

【0016】液晶の駆動周波数である30Hzに於ける
表面抵抗率は1×1012Ω以上が必要である。これは無
機層が直接液晶層に接する為、通常TN、STNモード
で使用される液晶の抵抗率が1×1010Ω程度であるた
め100倍以上の差を設ける必要が有るからである。1
×1012Ω以下であるとセルの消費電流が著しく上昇
し、セルの寿命の点から問題になるためである。このた
めには結晶光学的に理想に近いSiO2、Si34、A
23が好ましい。又、セル寿命の上からは、イオン性
不純物は極力少ない方が望ましく通常20ppm以下が
望まれる。このためには材料の選定や成膜中の不純物管
理が重要になる。
The surface resistivity at 30 Hz, which is the driving frequency of the liquid crystal, needs to be 1 × 10 12 Ω or more. This is because, since the inorganic layer is in direct contact with the liquid crystal layer, the resistivity of the liquid crystal normally used in the TN and STN modes is about 1 × 10 10 Ω, so that it is necessary to provide a difference of 100 times or more. 1
If the resistance is less than × 10 12 Ω, the current consumption of the cell increases significantly, which is problematic in terms of the life of the cell. For this purpose, SiO 2 , Si 3 N 4 , A
l 2 O 3 is preferred. Further, from the viewpoint of the cell life, it is desirable that the amount of ionic impurities is as small as possible, and it is generally desirable that the ionic impurities be 20 ppm or less. For this purpose, it is important to select materials and control impurities during film formation.

【0017】酸素バリヤー性として、モコン法による測
定値で2cc/24hr・m2以下であることが重要で
ある。塩化ビニリデン系ポリマーやビニルアルコール系
ポリマーに代表される有機バリヤーに比べ、温湿度の変
化が無いことが最大の特徴であり、有機バリヤーの常温
常湿での2cc/24hr・m2の値以下であれば実用
上問題ない。又、必要に応じ本発明に記載した必要特性
を満足する範囲であれば図2に示す様に無機層と導電性
層1の間の有機層を多層化し表面抵抗率特性を補っても
良い。又、無機層の形成に先立ち該有機層との密着力を
高めるために脱ガス処理、コロナ放電処理、火炎処理等
の表面処理やアクリル系エポキシ系等の公知のアンカー
コートが施されていてもよい。
It is important that the oxygen barrier property is 2 cc / 24 hr · m 2 or less as measured by the Mocon method. The most characteristic feature is that there is no change in temperature and humidity compared to organic barriers represented by vinylidene chloride polymer and vinyl alcohol polymer. When the organic barrier is less than 2 cc / 24 hr · m 2 at normal temperature and normal humidity. There is no problem in practical use. If necessary, the organic layer between the inorganic layer and the conductive layer 1 may be multi-layered as shown in FIG. 2 as long as the required characteristics described in the present invention are satisfied. In addition, prior to the formation of the inorganic layer, a known anchor coat such as a degassing treatment, a corona discharge treatment, a surface treatment such as a flame treatment, or an acrylic epoxy system may be applied in order to enhance the adhesion to the organic layer. Good.

【0018】導電性層1としはIn、Znから成り、酸
化物の組成はZn/In+Znが0.15〜0.4の原
子比で、且つ膜厚が50〜200Åであることが通常用
いられるHCl濃度15vol%によるパタン加工性に
於いてコントール可能で、且つ、導電性が良好な範囲で
ある。即ち、Zn/In+Znが0.15未満では比抵
抗が極端に上昇し、Znの効果が無くなりエッチング特
性が通常一般的に用いられるIn23、SnO2の酸化
物と差が無く効果として認められない。又、Zn/In
+Znが0.4を越えると比抵抗が同様に上昇し、Zn
O単独と同様にエッチング性のコントロールが不可能に
なる。例えば原子比が0.08になると最適組成である
0.25の比抵抗3.0×10-4Ω−cm(500Å)
に対して1×10-2Ω−cmとなり30倍以上の比抵抗
になる。又、0.5では5×10-4Ω−cmとなり1.
6倍以上の比抵抗になる。導電性層1の厚みとしては5
0〜200Åが望ましい。200Å以上であると導電性
層2に通常用いるIn23、SnO2(5wt%)の複
合酸化物の比抵抗2.0×10-4Ω−cmに比べ1.5
倍以上悪いために導電性からは不利に成るからである。
又、50Å未満であると膜が不連続膜のため比抵抗が大
幅に上昇するだけでなく、目標とする良好なエッチング
特性が得られなくなる。
The conductive layer 1 is composed of In and Zn, and the composition of the oxide is usually Zn / In + Zn in an atomic ratio of 0.15 to 0.4 and a film thickness of 50 to 200 °. It is a controllable pattern workability with an HCl concentration of 15 vol%, and the conductivity is in a good range. That is, when Zn / In + Zn is less than 0.15, the specific resistance is extremely increased, the effect of Zn is lost, and the etching characteristic is recognized as an effect without any difference from the generally used oxides of In 2 O 3 and SnO 2. I can't. Also, Zn / In
When + Zn exceeds 0.4, the specific resistance similarly increases, and Zn
It becomes impossible to control the etching property as in the case of O alone. For example, when the atomic ratio becomes 0.08, the specific resistance of 0.25 which is the optimum composition is 3.0 × 10 −4 Ω-cm (500 °).
Is 1 × 10 −2 Ω-cm, and the specific resistance is 30 times or more. At 0.5, it becomes 5 × 10 −4 Ω-cm.
The specific resistance becomes 6 times or more. The thickness of the conductive layer 1 is 5
0 to 200 ° is desirable. When it is 200 ° or more, the specific resistance is 1.5 × 10 −4 Ω-cm, which is 1.5 × 10 −4 Ω-cm of the composite oxide of In 2 O 3 and SnO 2 (5 wt%) normally used for the conductive layer 2.
This is because the conductivity is disadvantageous because it is more than twice as bad.
On the other hand, if the angle is less than 50 °, the specific resistance is greatly increased because the film is a discontinuous film, and the desired good etching characteristics cannot be obtained.

【0019】導電性層2としては、In23、SnO2
の酸化物から成るもので、最も比抵抗、透明性が良いた
めに通常広く用いられている。目的の抵抗値を得るため
に適宜製造条件を考慮して成膜される。酸化物の組成は
In/In+Snの原子比で0.85〜0.95であり
0.85未満あるいは0.95を越えると比抵抗が増加
してしまうからである。特に0.85未満であると耐酸
性が増しエッチング性が大幅に低下する。
As the conductive layer 2, In 2 O 3 , SnO 2
And is generally widely used because it has the best specific resistance and transparency. In order to obtain a desired resistance value, the film is formed by appropriately considering manufacturing conditions. This is because the composition of the oxide is 0.85 to 0.95 in terms of the atomic ratio of In / In + Sn, and if it is less than 0.85 or exceeds 0.95, the specific resistance increases. In particular, when it is less than 0.85, the acid resistance increases and the etching property is greatly reduced.

【0020】[0020]

【実施例】【Example】

《実施例1》高分子フィルムとして溶融押し出し法によ
り作製した厚み200μm、リタゼーション5nmのポ
リエーテルサルフォンフィルムを用いた。高分子フィル
ム上に、分子量1540、融点70℃のエポキシアクリ
レートプレポリマー(昭和高分子製、VR−60)10
0重量部、酢酸ブチル400重量部、セロソルブアセテ
ート100重量部、ベンゾインエチルエーテル2重量部
を50℃にて攪拌、溶解して均一な溶液としたものをグ
ラビアロールコータで塗布し、80℃で10分間加熱し
て溶媒を除去し、80w/cmの高圧水銀灯により15
cmの距離で30秒間照射して樹脂を硬化させ、0.5
μm厚の有機層1を形成した。
Example 1 As a polymer film, a polyethersulfone film having a thickness of 200 μm and a retardation of 5 nm produced by a melt extrusion method was used. An epoxy acrylate prepolymer (VR-60, manufactured by Showa Polymer Co., Ltd.) having a molecular weight of 1540 and a melting point of 70 ° C.
0 parts by weight, 400 parts by weight of butyl acetate, 100 parts by weight of cellosolve acetate, and 2 parts by weight of benzoin ethyl ether were stirred and dissolved at 50 ° C. to form a uniform solution, which was applied with a gravure roll coater. The solvent was removed by heating for 15 minutes, and the pressure was reduced with a high pressure mercury lamp of 80 w / cm for 15
Irradiate for 30 seconds at a distance of 0.5 cm to cure the resin, 0.5
An organic layer 1 having a thickness of μm was formed.

【0021】次にこのフィルム上にDCマグネトロン法
により初期真空度3×10-4Paに引き、酸素/アルゴ
ンガス9%の混合ガスを導入、3×10-1Paの条件下
において無機層を成膜し500Å厚のSiO2を得た。
この無機膜の酸素バリヤー性はモコン法により測定した
ところ1.0cc/24hr・m2であり、30Hzの
周波数に於ける表面抵抗率(JIS−K−6911)を
測定したところ8.1×1012Ωであった。又、全光線
透過率(JIS−K−7105.5.5)は89%であ
った。更に35mmΦのロールに巻き付け、1000倍
の金属顕微鏡で観察したが、クラックは認められず可と
う性に優れたものであった。次に無機層の上に有機層1
と同様にして厚み0.5μm厚の有機層2を形成した。
Next, an initial vacuum degree of 3 × 10 -4 Pa was applied to the film by a DC magnetron method, and a mixed gas of oxygen / argon gas 9% was introduced thereinto to form an inorganic layer under the conditions of 3 × 10 -1 Pa. Film formation was performed to obtain 500-mm thick SiO 2 .
The oxygen barrier property of this inorganic film was 1.0 cc / 24 hr · m 2 when measured by the Mocon method, and the surface resistivity (JIS-K-6911) at a frequency of 30 Hz was 8.1 × 10 6 when measured. 12 Ω. The total light transmittance (JIS-K-71055.5) was 89%. Further, the film was wound around a roll having a diameter of 35 mm and observed with a metallographic microscope at a magnification of 1000 times. Next, the organic layer 1 is placed on the inorganic layer.
In the same manner as in the above, an organic layer 2 having a thickness of 0.5 μm was formed.

【0022】導電性層1として、同じくDCマグネトロ
ン法により初期真空度3×10-4Paに引き、酸素/ア
ルゴンガス4%の混合ガスを導入し、1×10-1Paの
条件下において成膜し、Zn/In+Znの原子比が
0.25である導電性層1を得た。測定の結果、膜厚は
150Å、比抵抗は4.3×10-4Ω−cmであった。
[0022] As the conductive layer 1, also drawn to an initial vacuum of 3 × 10 -4 Pa by a DC magnetron method, introducing oxygen / argon gas 4% of the mixed gas, formed under the conditions of 1 × 10 -1 Pa Then, a conductive layer 1 having an atomic ratio of Zn / In + Zn of 0.25 was obtained. As a result of the measurement, the film thickness was 150 ° and the specific resistance was 4.3 × 10 −4 Ω-cm.

【0023】次に、導電性層2として、導電性層性1同
じくDCマグネトロン法により初期真空度3×10-4
aに引き、酸素/アルゴンガス3%の混合ガスを導入、
1×10-1Paの条件下において成膜し、SnO2含有
率5wt%のIn23の複合酸化物(In/In+Sn
の原子比で0.95)800Åを得た。導電性層1、2
の比抵抗は4.95×10-4Ω−cm、全光線透過率8
3%であった。以上の条件で得られた導電膜にレジスト
を塗布、露光、現像し、エッチング液としてHCl濃度
15vol%、液温40℃中で230μmピッチの回路
を作製した。ライン/スペースとしては、180/50
μmである。エッチング時間は20秒で残差もなく良好
なストレートラインが得られた。
Next, as the conductive layer 2, the initial vacuum degree is 3 × 10 -4 P by the DC magnetron method as in the case of the conductive layer 1.
a, a mixed gas of oxygen / argon gas 3% is introduced,
A film was formed under the conditions of 1 × 10 -1 Pa, and a composite oxide of In 2 O 3 (In / In + Sn) having a SnO 2 content of 5 wt%
(Atomic ratio of 0.95) 800 ° was obtained. Conductive layers 1 and 2
Has a specific resistance of 4.95 × 10 −4 Ω-cm and a total light transmittance of 8
3%. A resist was applied to the conductive film obtained under the above conditions, exposed to light, and developed to form a 230 μm pitch circuit at an HCl concentration of 15 vol% and a liquid temperature of 40 ° C. as an etchant. 180/50 as line / space
μm. The etching time was 20 seconds, and a good straight line was obtained without any residual.

【0024】このパタンを作製したフィルムを用いて耐
衝撃性試験を行った。装置としてデュポン衝撃試験機
(JIS−K−5400.6.13B)に於いて、重り
荷重100gで落下させた処、落下距離900mmでよ
うやくクラックが認められ非常に良好であった。又、可
とう性試験として35mmΦのロールに巻き付け、10
00倍の金属顕微鏡で観察したが、前述の無機層だけと
同様にクラックは認められず、導電性層1、2の比抵抗
も変化しなかった。再度導電性層を全てエッチングし、
酸素バリヤーを確認したところ、0.8cc/24hr
・m2と変化は認められなかった。尚、各特性の評価は
同一条件で作製したもので行い、特に無機層、導電性層
1、2形成は同一装置で連続的に成膜した。
An impact resistance test was performed using the film prepared from this pattern. In a Dupont impact tester (JIS-K-5400.6.13B), cracks were finally observed at a falling distance of 900 mm when dropped with a weight load of 100 g, which was very good. In addition, as a flexibility test, it was wound around a roll of 35 mmφ, and 10
Observation with a metallographic microscope (× 00) revealed that no cracks were observed as in the case of the inorganic layer alone, and that the specific resistances of the conductive layers 1 and 2 did not change. Etch all the conductive layers again,
When the oxygen barrier was confirmed, 0.8 cc / 24 hr
· M 2 and the change was not observed. The evaluation of each characteristic was performed under the same conditions, and in particular, the inorganic layer and the conductive layers 1 and 2 were continuously formed by the same apparatus.

【0025】《比較例1》実施例1と同一ロットフィル
ム、同一ロット材料を用い、同一構成で形成した。但し
有機層1の厚みのみ3μmとした。次に実施例1と同一
手法によりパタン化したフィルムを用いデュポン衝撃試
験機による耐衝撃性試験を行った。重り荷重100gで
落下させた処、落下距離40mmでクラックが認められ
た。
<< Comparative Example 1 >> The same lot film and the same lot material as in Example 1 were used and formed in the same configuration. However, only the thickness of the organic layer 1 was 3 μm. Next, using a film patterned by the same method as in Example 1, an impact resistance test was performed using a DuPont impact tester. When dropped with a weight load of 100 g, cracks were observed at a falling distance of 40 mm.

【0026】《比較例2》導電性層1、2以外は実施例
1と同一ロットフィルム、同一ロット材料を用い、同一
構成で形成した。導電性層1については原材料であるタ
ーゲット材の組成を換え、Zn/In+Znの原子比が
0.5で厚み400Åとした。導電性層2については実
施例1と同様の組成とし、厚みは550Åとした。次に
実施例1と同一手法によりパタン化したフィルムを10
00倍の金属顕微鏡で観察した処、パタン残差は無く良
好であったが、パタン設計値であるライン/スペースの
180/50μmに対し、140/90μmと大幅にず
れたオーバーエッチングの仕上がりとなった。又、場所
による変動が大きくコントロールは困難な状況であっ
た。又導電性層1、2の比抵抗は3.2×10-4Ω−c
mと高く導電膜としては満足出来るレベルではなかっ
た。
Comparative Example 2 Except for the conductive layers 1 and 2, the same lot film and the same lot material as in Example 1 were used and formed in the same configuration. For the conductive layer 1, the composition of the target material as the raw material was changed, and the atomic ratio of Zn / In + Zn was 0.5 and the thickness was 400 °. The composition of the conductive layer 2 was the same as in Example 1, and the thickness was 550 °. Next, a film patterned by the same method as in Example 1 was used for 10
When observed with a metallographic microscope at × 00, there was no pattern residue, and the pattern was good. Was. In addition, there were large variations depending on the location, and control was difficult. The specific resistance of the conductive layers 1 and 2 is 3.2 × 10 −4 Ω-c.
m, which was not a satisfactory level for a conductive film.

【0027】《比較例3》導電性層1、2以外は実施例
1と同一ロットフィルム、同一ロット材料を用い、同一
構成で形成した。導電性層1については原材料であるタ
ーゲット材の組成を換えZn/In+Znの原子比が
0.08で厚み30Åとした。導電性層2については実
施例1と同様の組成とし、厚みは900Åとした。実施
例1と同一手法によりパタン化したフィルムを1000
倍の金属顕微鏡で観察した処パタン残差が認められた。
Comparative Example 3 Except for the conductive layers 1 and 2, the same lot film and the same lot material as in Example 1 were used and formed in the same configuration. For the conductive layer 1, the composition of the target material, which is a raw material, was changed so that the atomic ratio of Zn / In + Zn was 0.08 and the thickness was 30 °. The composition of the conductive layer 2 was the same as in Example 1, and the thickness was 900 °. A film patterned by the same method as in Example 1 was used for 1000
A pattern residual was observed under a metal microscope at × 1 magnification.

【0028】《比較例4》実施例1と同一ロットフィル
ム、同一ロット材料を用い、有機層2まで同一構成で形
成した。導電性層として一層のみとし、厚みを1000
Åに変更した以外は実施例1と同様にして導電性層1を
形成した。次に実施例1と同一手法によりパタン化した
フィルムを1000倍の金属顕微鏡で観察した処、パタ
ン設計値であるライン/スペースの180/50μmに
対し、大幅にずれたオーバーエッチングの仕上がりとな
り、場所によっては断線する箇所があるなどコントロー
ルは全く困難な状況であった。
Comparative Example 4 Using the same lot film and the same lot material as in Example 1, an organic layer 2 was formed in the same configuration. Only one conductive layer with a thickness of 1000
A conductive layer 1 was formed in the same manner as in Example 1 except that the method was changed to Å. Next, when the film patterned by the same method as in Example 1 was observed with a metallographic microscope at a magnification of 1000 times, the over-etching was significantly deviated from the pattern design value of 180/50 μm of line / space. Depending on the situation, there were some places where disconnection occurred, making control difficult.

【0029】[0029]

【発明の効果】本発明により、エッチング性が良好で耐
衝撃性に優れ透明性、ガスバリヤー性、可とう性を満足
する透明導電性フィルムを提供することが可能となっ
た。
According to the present invention, it has become possible to provide a transparent conductive film having good etching properties, excellent impact resistance, and satisfying transparency, gas barrier properties, and flexibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる積層フィルムの一部断面図を示
す。
FIG. 1 shows a partial cross-sectional view of a laminated film according to the present invention.

【図2】本発明にかかる積層フィルムの一部断面図を示
し、有機層2を2層に分けた例を示す。
FIG. 2 is a partial cross-sectional view of a laminated film according to the present invention, showing an example in which an organic layer 2 is divided into two layers.

【符号の説明】[Explanation of symbols]

1:高分子フィルム 2:有機層1 3:無機層 4:有機層2 5:導電性層1 6:導電性層2 41、42:有機層2 1: polymer film 2: organic layer 1: inorganic layer 4: organic layer 2: conductive layer 16: conductive layer 41, 42: organic layer 2

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 14/08 C23C 14/08 N G02F 1/1333 500 G02F 1/1333 500 1/1343 1/1343 Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C23C 14/08 C23C 14/08 N G02F 1/1333 500 G02F 1/1333 500 1/1343 1/1343

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高分子フィルムあるいはシートの少なく
とも片側に有機層1、バリヤ性を有する無機層、有機層
2、希酸に対し容易に溶ける導電性層1、抵抗率が低い
導電性層2を順次積層し、耐衝撃性、可とう性、エッチ
ング性に優れていることを特徴とする積層フィルム。
1. An organic layer 1, an inorganic layer having barrier properties, an organic layer 2, a conductive layer 1 easily soluble in dilute acid, and a conductive layer 2 with low resistivity on at least one side of a polymer film or sheet. A laminated film which is sequentially laminated and is excellent in impact resistance, flexibility and etching properties.
【請求項2】 該耐衝撃性として、デュポン衝撃試験機
に於ける重り荷重100gでの落下試験において、落下
距離500mm以上の衝撃性を有することを特徴とする
請求項1記載の積層フィルム。
2. The laminated film according to claim 1, wherein the film has an impact resistance of a drop distance of 500 mm or more in a drop test using a DuPont impact tester with a weight load of 100 g.
【請求項3】 該可とう性として、35mmΦのロール
に巻き付けてもクラックが生じない可とう性を有するこ
とを特徴とする請求項1または2記載の積層フィルム。
3. The laminated film according to claim 1, wherein said flexible film has such a flexibility that no cracks are generated even when wound around a roll having a diameter of 35 mm.
【請求項4】 該導電性層1がInとZnの酸化物から
成り、酸化物の組成Zn/In+Znが0.15〜0.
4の原子比であり、且つ膜厚が50〜200Åの範囲で
あることを特徴とする請求項1、2または3記載の積層
フィルム。
4. The conductive layer 1 is composed of an oxide of In and Zn, and the composition of the oxide is Zn / In + Zn of 0.15 to 0.5.
4. The laminated film according to claim 1, wherein the atomic ratio is 4 and the film thickness is in the range of 50 to 200 [deg.].
【請求項5】 該有機層1、2が融点50℃以上のエポ
キシアクリレートプレポリマーあるいは融点50℃以上
のウレタンアクリレートプレポリマーの紫外線硬化膜で
あり、0.3〜1.5μmの厚みであることを特徴とす
る請求項1、2、3または4記載の積層フィルム。
5. The organic layers 1 and 2 are ultraviolet cured films of an epoxy acrylate prepolymer having a melting point of 50 ° C. or higher or a urethane acrylate prepolymer having a melting point of 50 ° C. or higher, and have a thickness of 0.3 to 1.5 μm. The laminated film according to claim 1, 2, 3, or 4, wherein
【請求項6】 該無機層の全光線透過率が85%以上、
30Hzの駆動周波数に於ける表面抵抗率が1×1012
Ω以上、酸素バリヤー性が2cc/24hr・m2以下
であることを特徴とする請求項1、2、3、4または5
記載の積層フィルム。
6. The inorganic layer having a total light transmittance of 85% or more;
The surface resistivity at a driving frequency of 30 Hz is 1 × 10 12
6. The composition according to claim 1, wherein the oxygen barrier property is 2 cc / 24 hr.m 2 or less.
The laminated film according to the above.
【請求項7】 該導電性層2がInとSnの酸化物から
成り、酸化物の組成In/In+Snが0.85〜0.
95の原子比であることを特徴とする請求項1、2、
3、4、5または6記載の積層フィルム。
7. The conductive layer 2 is composed of an oxide of In and Sn, and the composition of the oxide is 0.85-0.
95, wherein the atomic ratio is 95.
7. The laminated film according to 3, 4, 5 or 6.
JP08156572A 1996-06-18 1996-06-18 Laminated film Expired - Fee Related JP3093151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08156572A JP3093151B2 (en) 1996-06-18 1996-06-18 Laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08156572A JP3093151B2 (en) 1996-06-18 1996-06-18 Laminated film

Publications (2)

Publication Number Publication Date
JPH10718A true JPH10718A (en) 1998-01-06
JP3093151B2 JP3093151B2 (en) 2000-10-03

Family

ID=15630708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08156572A Expired - Fee Related JP3093151B2 (en) 1996-06-18 1996-06-18 Laminated film

Country Status (1)

Country Link
JP (1) JP3093151B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808555A (en) * 1986-07-10 1989-02-28 Motorola, Inc. Multiple step formation of conductive material layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808555A (en) * 1986-07-10 1989-02-28 Motorola, Inc. Multiple step formation of conductive material layers

Also Published As

Publication number Publication date
JP3093151B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP3400324B2 (en) Conductive film
JP2006019239A (en) Transparent conductive film
KR101401733B1 (en) Plastic substrate and element containing the same
JPH09123333A (en) Laminated film
TWI397926B (en) Transparent electrically conductive film and touch panel using the same
JP2000082338A (en) Transparent conductive film, transparent touch panel, and liquid crystal display element
JP3093151B2 (en) Laminated film
JP3119583B2 (en) Laminated film
JPH08201791A (en) Transparent electrode substrate
JP3313303B2 (en) Conductive film
JPH10119170A (en) Flexible laminated film
JP3114853B2 (en) Laminated film
JP2003262854A (en) Plastic substrate and liquid crystal display device
JP3114852B2 (en) Laminated film
JP3833296B2 (en) Transparent conductive laminate for touch panel
JPH08294989A (en) Laminate film
JP3040693B2 (en) Transparent conductive laminated film
JP2000347170A (en) Substrate for liquid crystal display panel
JP3396148B2 (en) Antistatic film
JP3629333B2 (en) Transparent conductive laminate for touch panel and manufacturing method thereof
JPH09254303A (en) Transparent electrically conductive film
JP3369728B2 (en) Laminated transparent conductive substrate
JPH1026751A (en) Laminated film
JPH0854615A (en) Film substrate for liquid crystal display panel
JPH09277427A (en) Transparent conductive film and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees