JPH1070828A - Terminal structure for cryogenic cable - Google Patents

Terminal structure for cryogenic cable

Info

Publication number
JPH1070828A
JPH1070828A JP24415696A JP24415696A JPH1070828A JP H1070828 A JPH1070828 A JP H1070828A JP 24415696 A JP24415696 A JP 24415696A JP 24415696 A JP24415696 A JP 24415696A JP H1070828 A JPH1070828 A JP H1070828A
Authority
JP
Japan
Prior art keywords
gas
refrigerant liquid
layer
refrigerant
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24415696A
Other languages
Japanese (ja)
Other versions
JP3181513B2 (en
Inventor
Takahito Masuda
孝人 増田
Shigeki Isojima
茂樹 礒嶋
Shigeo Nagaya
重夫 長屋
Takaaki Shimonosono
隆明 下之園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP24415696A priority Critical patent/JP3181513B2/en
Publication of JPH1070828A publication Critical patent/JPH1070828A/en
Application granted granted Critical
Publication of JP3181513B2 publication Critical patent/JP3181513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a terminal structure which eliminates the generation of an evaporation gas due to the gasification of a refrigerant liquid and which prevents a drop in an insulating performance due to the gas by a method wherein the refrigerant liquid which cools a conductor derivation rod is pressurized by a gas whose boiling point is lower than that of the refrigerant liquid. SOLUTION: A gas pressurization device 13 is connected to a refrigerant gas layer 9, and a gas is supplied through the pressurization device 13 so as to pressurize a refrigerant liquid layer 8 which is used to cool a conductor derivation rod 2. As the gas which is used to pressurize the layer, a gas such as, e.g. helium, hydrogen, neon or the like, whose boiling point is lower than that of liquid nitrogen as a refrigerant liquid is used. In this manner, when the liquid nitrogen is pressurized by the gas, its boiling point is raised to about 84K from about 77K at atmospheric pressure when the pressure of the liquid nitrogen becomes two atmospheric pressure. Consequently, until the temperature of the liquid nitrogen reaches 85K, a vapor is not generated, and a gas is not generated. Thereby, it is possible to obtain a terminal part whose insulating performance is not lowered and whose reliability is high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電力用送電ケーブル
に用いられる極低温ケーブルの端末構造に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terminal structure of a cryogenic cable used for an electric power transmission cable.

【0002】[0002]

【従来の技術】図2(イ)は従来の極低温ケーブルの端
末構造の一例の縦断面図、図2(ロ)は問題点の説明図
である。極低温ケーブルの端末はケーブル本体と端末部
との冷却が切分けられている。高圧の液体窒素等の冷媒
液体で冷却されている超電導ケーブルの如き極低温ケー
ブル本体1の導体2は、上記極低温ケーブル本体1の端
部を覆うFRP套管1Aを貫通し、導体引出し棒3と接
続されている。そして、該導体引出し棒3は、真空断熱
層7で囲われた容器内の液体窒素等の冷媒液体層8及び
窒素ガス等の冷媒ガス層9を通り、鉛直方向に延びてフ
ランジ12を貫通して碍子10内部に充填されたSF6
等の流体絶縁層11を経て外部に引出されている。上記
導体引出し棒3は冷媒液体層8の液面付近から流体絶縁
層11の途中まで、エチレンプロピレンゴム等による絶
縁被覆層4が施されており、さらに上記絶縁被覆層4の
両端部付近にはストレスコーン5、6が装着されてい
る。
2. Description of the Related Art FIG. 2A is a longitudinal sectional view of an example of a conventional terminal structure of a cryogenic cable, and FIG. 2B is an explanatory view of a problem. In the terminal of the cryogenic cable, the cooling of the cable body and the terminal is separated. A conductor 2 of a cryogenic cable body 1 such as a superconducting cable cooled by a refrigerant liquid such as high-pressure liquid nitrogen penetrates an FRP sleeve 1A covering an end of the cryogenic cable body 1 and a conductor extraction rod 3 Is connected to The conductor extraction rod 3 extends vertically through the refrigerant liquid layer 8 such as liquid nitrogen and the refrigerant gas layer 9 such as nitrogen gas in the container surrounded by the vacuum heat insulating layer 7 and penetrates the flange 12. SF6 filled inside the insulator 10
And the like are drawn out through a fluid insulating layer 11. The conductor drawing rod 3 is provided with an insulating coating layer 4 of ethylene propylene rubber or the like from near the liquid surface of the refrigerant liquid layer 8 to the middle of the fluid insulating layer 11, and further near both ends of the insulating coating layer 4. Stress cones 5 and 6 are mounted.

【0003】[0003]

【発明が解決しようとする課題】上記構造の極低温ケー
ブルの端末においては、冷媒液体層8内に位置する絶縁
被覆層4及びストレスコーン5の下端部が、図2(ロ)
に示すように導体引出し棒1の軸方向と垂直方向に形成
されているので、冷媒液体が侵入熱や導体引出し棒3の
ジュール熱で気化した場合、図2(ロ)のA部及びB部
にその蒸発ガスが溜まる可能性がある。蒸発ガスと液体
との絶縁強度は一般に蒸発ガスの方が小さく、例えば窒
素の場合、液体では45KV/mm、蒸発ガスでは5K
V/mmでその比は9:1である。この蒸発ガスが冷媒
液体層8に停渫することにより、絶縁強度が低下し絶縁
破壊に至る危険性がある。
In the terminal of the cryogenic cable having the above-mentioned structure, the lower end portions of the insulating coating layer 4 and the stress cone 5 located in the refrigerant liquid layer 8 are formed as shown in FIG.
As shown in FIG. 2, since the refrigerant liquid is formed in a direction perpendicular to the axial direction of the conductor extraction rod 1, when the refrigerant liquid is vaporized by invasion heat or Joule heat of the conductor extraction rod 3, portions A and B in FIG. There is a possibility that the evaporative gas accumulates. In general, the insulation strength between the evaporative gas and the liquid is smaller in the case of the evaporative gas.
In V / mm, the ratio is 9: 1. When this vaporized gas is suspended in the refrigerant liquid layer 8, there is a danger that insulation strength is reduced and dielectric breakdown is caused.

【0004】[0004]

【課題を解決するための手段】本発明は上述の問題点を
解消し、冷媒液体の気化による蒸発ガスの発生を防止し
た極低温ケーブルの端末構造を提供するもので、その特
徴は、極低温ケーブルの導体を極低温部から常温部に引
出す導体引出し棒に、絶縁被覆層及びストレスコーンを
設けた極低温ケーブルの端末構造において、上記導体引
出し棒を冷却する冷媒液体を、該冷媒液体より沸点の低
いガスで加圧する極低温ケーブルの端末構造にある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a terminal structure of a cryogenic cable in which the generation of evaporative gas due to the vaporization of refrigerant liquid is provided. In a terminal structure of a cryogenic cable, in which an insulating coating layer and a stress cone are provided on a conductor drawing rod for drawing a cable conductor from a cryogenic part to a room temperature part, a refrigerant liquid for cooling the conductor drawing rod has a boiling point higher than the refrigerant liquid. The terminal structure of a cryogenic cable pressurized with a gas having a low temperature.

【0005】[0005]

【発明の実施の形態】図1は本発明の極低温ケーブルの
端末構造の具体例の縦断面図である。なお、図面におい
て図2(イ)と同一符号は同一部位をあらわしている。
極低温ケーブル本体1の導体2は上記極低温ケーブル本
体1の端部を覆うFRP套管1Aを貫通して導体引出し
棒3と接続されている。該導体引出し棒3は真空断熱層
7で囲われた容器内の冷媒液体層8及び冷媒ガス層9を
通り、鉛直方向に延びてフランジ12を貫通して碍子1
0内部に充填されたSF6等の流体絶縁層11を経て外
部に引出されている。上記導体引出し棒3は冷媒液体層
8の液面付近から流体絶縁層11の途中まで絶縁被覆層
4が施されており、さらに上記絶縁被覆層4の両端部付
近にはストレスコーン5、6が装着されている。
FIG. 1 is a longitudinal sectional view of a specific example of a terminal structure of a cryogenic cable according to the present invention. In the drawings, the same reference numerals as those in FIG. 2A denote the same parts.
The conductor 2 of the cryogenic cable main body 1 penetrates the FRP sleeve 1A that covers the end of the cryogenic cable main body 1, and is connected to the conductor drawing rod 3. The conductor extraction rod 3 extends vertically through the refrigerant liquid layer 8 and the refrigerant gas layer 9 in the container surrounded by the vacuum insulation layer 7, penetrates through the flange 12, and
0 is drawn out through a fluid insulating layer 11 such as SF6 filled inside. The conductor withdrawal rod 3 is provided with an insulating coating layer 4 from near the liquid surface of the refrigerant liquid layer 8 to the middle of the fluid insulating layer 11, and stress cones 5 and 6 are provided near both ends of the insulating coating layer 4. It is installed.

【0006】本発明の端末構造においては、上記冷媒ガ
ス層9にガス加圧装置13が接続されており、該加圧装
置13を通じてガスを供給して冷媒液体層8を加圧す
る。加圧するのに使用するガスとしては液体窒素より沸
点の低い、例えばヘリウム、水素、ネオン等が用いられ
る。このようにガスにて液体窒素等を加圧することによ
り、例えば液体窒素の圧力が2気圧になれば、沸点は大
気圧の約77Kから約84Kに上昇する。従って液体窒
素の温度が84Kに達するまでは蒸発が起らず、ガスの
発生がなくなる。
In the terminal structure of the present invention, a gas pressurizing device 13 is connected to the refrigerant gas layer 9, and gas is supplied through the pressurizing device 13 to pressurize the refrigerant liquid layer 8. As a gas used for pressurization, helium, hydrogen, neon, or the like having a lower boiling point than liquid nitrogen is used. By pressurizing liquid nitrogen or the like with a gas as described above, for example, when the pressure of liquid nitrogen becomes 2 atm, the boiling point increases from the atmospheric pressure of about 77K to about 84K. Therefore, no evaporation occurs until the temperature of the liquid nitrogen reaches 84 K, and no gas is generated.

【0007】又侵入熱やジュール熱が長時間発生する場
合は、液体窒素等の冷媒液体の温度は徐々に上昇し、い
ずれはその圧力での沸点に達する。従って、図1に示す
ように冷媒液体層8に熱交換部15を介して冷凍機14
を取付け、熱交換部15を通じて冷媒液体層8を冷却
し、その冷凍機14の能力を侵入熱やジュール熱と同等
にすれば、冷媒液体層8の温度上昇は起らず、気化によ
る蒸発ガスはなくなる。
[0007] When the intrusion heat or Joule heat is generated for a long time, the temperature of the refrigerant liquid such as liquid nitrogen gradually rises, and eventually reaches the boiling point at that pressure. Therefore, as shown in FIG.
If the refrigerant liquid layer 8 is cooled through the heat exchange section 15 and the capacity of the refrigerator 14 is made equal to the intrusion heat or Joule heat, the temperature of the refrigerant liquid layer 8 does not rise, and the evaporative gas Is gone.

【0008】[0008]

【発明の効果】以上説明したように、本発明の極低温ケ
ーブルの端末構造によれば、冷媒液体の気化による蒸発
ガスの発生はなく、これによる絶縁性能の低下もなくな
って信頼性の高い端末部が得られる。
As described above, according to the terminal structure of the cryogenic cable of the present invention, there is no generation of evaporative gas due to the vaporization of the refrigerant liquid, and there is no decrease in insulation performance due to this. Part is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の極低温ケーブルの端末構造の具体例の
縦断面図である。
FIG. 1 is a longitudinal sectional view of a specific example of a terminal structure of a cryogenic cable according to the present invention.

【図2】図2(イ)は従来の極低温ケーブルの端末構造
の一例の縦断面図、図2(ロ)は問題点の説明図であ
る。
FIG. 2A is a longitudinal sectional view of an example of a conventional cryogenic cable terminal structure, and FIG. 2B is an explanatory diagram of a problem.

【符号の説明】[Explanation of symbols]

1 極低温ケーブル本体 2 ケーブル導体 3 導体引出し棒 4 絶縁被覆層 5、6 ストレスコーン 7 真空遮断層 8 冷媒液体層 9 冷媒ガス層 10 碍子 11 流体絶縁層 12 フランジ 13 ガス加圧装置 14 冷凍機 15 熱交換部 DESCRIPTION OF SYMBOLS 1 Cryogenic cable main body 2 Cable conductor 3 Conductor lead-out rod 4 Insulation coating layer 5, 6 Stress cone 7 Vacuum barrier layer 8 Refrigerant liquid layer 9 Refrigerant gas layer 10 Insulator 11 Fluid insulation layer 12 Flange 13 Gas pressurizer 14 Refrigerator 15 Heat exchange section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社内 (72)発明者 下之園 隆明 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeo Nagaya 20-1 Kitakanyama, Odaka-cho, Midori-ku, Nagoya-shi, Aichi Prefecture Inside Chubu Electric Power Co., Inc. (72) Inventor Takaaki Shimonosono Midori-ku, Nagoya-shi, Aichi Otakamachi character Kita-Kanzan 20 No. 1 Chubu Electric Power Co., Inc.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 極低温ケーブルの導体を極低温部から常
温部に引出す導体引出し棒に、絶縁被覆層及びストレス
コーンを設けた極低温ケーブルの端末構造において、上
記導体引出し棒を冷却する冷媒液体を該冷媒液体より沸
点の低いガスで加圧することを特徴とする極低温ケーブ
ルの端末構造。
1. A refrigerant liquid for cooling a conductor of a cryogenic cable in a terminal structure of the cryogenic cable, wherein an insulating coating layer and a stress cone are provided on a conductor drawing rod for drawing a conductor of the cryogenic cable from a cryogenic part to a room temperature part. Cryogenic cable is pressurized with a gas having a lower boiling point than the refrigerant liquid.
JP24415696A 1996-08-26 1996-08-26 Terminal structure of cryogenic cable Expired - Fee Related JP3181513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24415696A JP3181513B2 (en) 1996-08-26 1996-08-26 Terminal structure of cryogenic cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24415696A JP3181513B2 (en) 1996-08-26 1996-08-26 Terminal structure of cryogenic cable

Publications (2)

Publication Number Publication Date
JPH1070828A true JPH1070828A (en) 1998-03-10
JP3181513B2 JP3181513B2 (en) 2001-07-03

Family

ID=17114603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24415696A Expired - Fee Related JP3181513B2 (en) 1996-08-26 1996-08-26 Terminal structure of cryogenic cable

Country Status (1)

Country Link
JP (1) JP3181513B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087761A1 (en) * 2005-02-15 2006-08-24 Sumitomo Electric Industries, Ltd. End structure of superconducting cable
WO2011004955A1 (en) * 2009-07-10 2011-01-13 Ls Cable Ltd. Termination structure for superconducting cable
WO2011152344A1 (en) * 2010-05-31 2011-12-08 古河電気工業株式会社 Terminal connecting section for very-low temperature cable
JP2012217334A (en) * 2011-03-31 2012-11-08 Furukawa Electric Co Ltd:The Terminal connection part for cryogenic cable

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087761A1 (en) * 2005-02-15 2006-08-24 Sumitomo Electric Industries, Ltd. End structure of superconducting cable
EP1850436A1 (en) * 2005-02-15 2007-10-31 Sumitomo Electric Industries, Ltd. End structure of superconducting cable
US7729731B2 (en) * 2005-02-15 2010-06-01 Sumitomo Electric Industries, Ltd. Terminal structure of superconducting cable
EP1850436A4 (en) * 2005-02-15 2011-04-13 Sumitomo Electric Industries End structure of superconducting cable
WO2011004955A1 (en) * 2009-07-10 2011-01-13 Ls Cable Ltd. Termination structure for superconducting cable
US8912446B2 (en) 2009-07-10 2014-12-16 Ls Cable Ltd. Termination structure for superconducting cable
WO2011152344A1 (en) * 2010-05-31 2011-12-08 古河電気工業株式会社 Terminal connecting section for very-low temperature cable
JP5089822B2 (en) * 2010-05-31 2012-12-05 古河電気工業株式会社 Termination connection for cryogenic cable
CN102884693A (en) * 2010-05-31 2013-01-16 古河电气工业株式会社 Terminal connecting section for very-low temperature cable
JP2012217334A (en) * 2011-03-31 2012-11-08 Furukawa Electric Co Ltd:The Terminal connection part for cryogenic cable

Also Published As

Publication number Publication date
JP3181513B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
KR100642538B1 (en) Terminal structure of extreme-low temperature equipment
RU2562618C2 (en) Device with at least one superconducting cable
US3609206A (en) Evaporative cooling system for insulated bus
US8134072B2 (en) System having a superconductive cable
KR20080102157A (en) Multi-bath apparatus and method for cooling superconductors
US3835239A (en) Current feeding arrangement for electrical apparatus having low temperature cooled conductors
US3522361A (en) Electrical installation for parallel-connected superconductors
JP3181513B2 (en) Terminal structure of cryogenic cable
US6640552B1 (en) Cryogenic superconductor cooling system
JP3779168B2 (en) Terminal structure of cryogenic equipment
US20100071927A1 (en) Electrical connection structure for a superconductor element
JP5191800B2 (en) Cooling vessel and superconducting device
JP2009289624A (en) Gas insulated electric appliance
US3792220A (en) Device for connecting extreme low temperature cable with normal temperature electric apparatus
JP2007066819A (en) Terminal connection part of superconducting power transmission cable
US3067279A (en) Cooling means for conducting parts
US10218165B2 (en) Termination for a superconductive cable
KR20170049891A (en) Terminal device for superconducting cable
JP2005341737A (en) Terminal structure of superconducting apparatus
JP2005341767A (en) Terminal structure of superconducting cable
JP3181483B2 (en) Terminal structure of cryogenic cable
JPH1070827A (en) Terminal structure for cryogenic cable
KR101011004B1 (en) Current Lead for High Voltage Superconducting Machine
KR101720752B1 (en) Recovery system for superconducting fault current limiter
JP2002075082A (en) Superconducting system for electric energy transmission and transformation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees