JPH1070342A - Surface emission semiconductor laser - Google Patents

Surface emission semiconductor laser

Info

Publication number
JPH1070342A
JPH1070342A JP9216694A JP21669497A JPH1070342A JP H1070342 A JPH1070342 A JP H1070342A JP 9216694 A JP9216694 A JP 9216694A JP 21669497 A JP21669497 A JP 21669497A JP H1070342 A JPH1070342 A JP H1070342A
Authority
JP
Japan
Prior art keywords
quantum well
layer
semiconductor laser
lattice constant
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9216694A
Other languages
Japanese (ja)
Other versions
JP3033717B2 (en
Inventor
Jiyon Maagatsutoroido Ian
イアン・ジョン・マーガットロイド
Toshihiko Makino
俊彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP21669497A priority Critical patent/JP3033717B2/en
Publication of JPH1070342A publication Critical patent/JPH1070342A/en
Application granted granted Critical
Publication of JP3033717B2 publication Critical patent/JP3033717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface emission optical quantum well semiconductor laser which operates in the wavelength band of 1.3 to 1.55μm. SOLUTION: In a surface emission semiconductor laser element having a III-V compound semiconductor layer including an active layer consisting of a quantum well layer and a barrier layer on an InP substrate, the lattice constant of a quantum well layer is larger than the lattice constant of InP and the lattice constant of a barrier layer is smaller than the lattice constant of InP. Furthermore, a quantum well layer and a barrier layer are constituted of GaInAsP or AlGaInAs. Thereby, a surface emission quantum well semiconductor laser of high performance which operates in the wavelength band of 1.3 to 1.55μm can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光通信および光情報
処理用の光源として使われる量子井戸構造を用いた面発
光半導体レーザに関する
The present invention relates to a surface emitting semiconductor laser using a quantum well structure used as a light source for optical communication and optical information processing.

【0002】[0002]

【従来の技術】半導体レーザ素子の特性として望ましい
ことは、閾値電流密度が低いこと、閾値電流密度の温度
依存性が小さいこと、変調周波数が高いこと、および波
長チャーピングが小さいことなどである。これらの特性
は、通常30nmよりも薄い層からなる活性層を有する
量子井戸半導体レーザ素子によって向上する。
2. Description of the Related Art Desirable characteristics of a semiconductor laser device include a low threshold current density, a small temperature dependence of the threshold current density, a high modulation frequency, and a small wavelength chirping. These characteristics are improved by a quantum well semiconductor laser device having an active layer usually made of a layer thinner than 30 nm.

【0003】量子井戸半導体レーザ素子の活性層は、量
子井戸と称す小さいエネルギーバンドギャップをもつ層
と、バリア層と称す大きいエネルギーバンドギャップを
もつ層から構成されている。かかる量子井戸活性層にお
いては、電子と正孔は量子井戸に閉じ込められ、量子力
学に従った挙動をする。
An active layer of a quantum well semiconductor laser device is composed of a layer having a small energy band gap called a quantum well and a layer having a large energy band gap called a barrier layer. In such a quantum well active layer, electrons and holes are confined in the quantum well and behave according to quantum mechanics.

【0004】量子井戸半導体レーザ素子の特性は、量子
井戸の格子定数をバリア層の格子定数より大きくし、量
子井戸に歪を導入することにより向上する。その理由
は、価電子帯の重い正孔は有効質量が薄膜層に垂直な方
向で軽くなり価電子帯の基底量子準位を形成することに
なるからである。その結果、量子井戸層内では電子と重
い正孔との間の光学遷移が促進される。電子と重い正孔
とはほぼ等しい有効質量をもつためにレーザ発振に必要
な反転分布の形成が容易となるからである。なお、量子
井戸層の歪の大きさと層の厚さは、歪により転移が誘起
されないように、ある臨界膜厚値以内になければならな
い。
The characteristics of a quantum well semiconductor laser device are improved by making the lattice constant of the quantum well larger than the lattice constant of the barrier layer and introducing strain into the quantum well. The reason for this is that the heavy holes in the valence band have their effective mass lightened in the direction perpendicular to the thin film layer and form a ground quantum level in the valence band. As a result, an optical transition between electrons and heavy holes is promoted in the quantum well layer. This is because electrons and heavy holes have substantially the same effective mass, so that it is easy to form a population inversion necessary for laser oscillation. It should be noted that the magnitude of the strain and the thickness of the quantum well layer must be within a certain critical film thickness value so that no dislocation is induced by the strain.

【0005】また、従来の歪量子井戸半導体レーザ素子
として例えば図1(a)に示すものが知られている。こ
の従来の歪量子井戸半導体レーザ素子においては、n型
GaAs基板1上に、n型GaAsバッファ層2および
n型Ga0.6 Al0.4 Asクラッド層3が順次積層さ
れ、次いで0.2μm厚さでAl成分が40%から0%
まで連続的に変化する傾斜領域5と6を両側に持ち、こ
れを挟んで歪を有する4nm厚さのGa 0.63In0.37
s量子井戸層4からなる活性層が積層され、さらに傾斜
領域6の上にp型Ga0.6 Al0.4 Asクラッド層7お
よびp型GaAsPキャップ層が順次積層され、最後
に、n型電極9およびp型電極10が蒸着された構造と
なっている。
A conventional strained quantum well semiconductor laser device
For example, the one shown in FIG. This
In the conventional strained quantum well semiconductor laser device of
On a GaAs substrate 1, an n-type GaAs buffer layer 2 and
n-type Ga0.6Al0.4As clad layers 3 are sequentially laminated
Then, at a thickness of 0.2 μm, the Al component is reduced from 40% to 0%.
Up and down on both sides.
4 nm thick Ga with strain 0.63In0.37A
An active layer composed of the s quantum well layer 4 is stacked, and is further inclined.
P-type Ga on the region 60.6Al0.4As clad layer 7
And a p-type GaAsP cap layer are sequentially stacked, and finally
A structure in which an n-type electrode 9 and a p-type electrode 10 are deposited
Has become.

【0006】この量子井戸半導体レーザ素子は発振波長
が9.9ppmであり、閾値電流密度は195Acm-2
であった。第1図(b)は第1図(a)に対応するバン
ドギャップの伝導帯側を示している。
This quantum well semiconductor laser device has an oscillation wavelength of 9.9 ppm and a threshold current density of 195 Acm −2.
Met. FIG. 1B shows the conduction band side of the band gap corresponding to FIG. 1A.

【0007】[0007]

【発明が解決しようとする課題】しかしながら従来の歪
量子井戸半導体レーザ素子では、光ファイバ通信におい
て重要な波長である1.3μm乃至1.55μmの発振
を得ることができない。1.3μmまたはこれより長い
波長の発振をGa1-X InX Asの活性層より得るため
には、エネルギーバンドギャップの大きさから、X≧
0.5のIn組成でなければならない。しかしながらこ
のような高いXのGa1-X InX Asでは格子定数が大
きくなり、第1図(a)に示した従来の歪量子井戸レー
ザの量子井戸層4に適用せんとすると量子井戸層に臨界
値以上の大きな歪が生じ、それに伴う転位の発生により
レーザ特性が劣化するという問題がある。
However, the conventional strained quantum well semiconductor laser device cannot obtain an oscillation of 1.3 to 1.55 μm which is an important wavelength in optical fiber communication. In order to obtain an oscillation having a wavelength of 1.3 μm or longer from the active layer of Ga 1-x In x As, from the magnitude of the energy band gap, X ≧
It must have an In composition of 0.5. However, in such a high X Ga 1-x In x As, the lattice constant becomes large, and if it is not applied to the quantum well layer 4 of the conventional strained quantum well laser shown in FIG. There is a problem that a large strain equal to or more than the critical value is generated, and the laser characteristics are degraded due to the generation of dislocations.

【0008】また、1.3乃至1.55μmのいわゆる
通信波長帯においては、2次元的な配列が可能な面発光
レーザが望まれているが、面発光レーザでは上述の状況
に加えて、端面出射型のレーザと比較すると高多層の量
子井戸構造を実現することが必要となるため、この波長
帯において面発光レーザを実現することはより困難であ
るとされていた。
In the so-called communication wavelength band of 1.3 to 1.55 μm, a surface emitting laser capable of two-dimensional arrangement is desired. It has been considered that it is more difficult to realize a surface emitting laser in this wavelength band because it is necessary to realize a high-layer quantum well structure as compared with an emission laser.

【0009】[0009]

【課題を解決するための手段】本発明は以上のような点
に鑑みてなされたもので、その目的とするところは、光
通信において重要な波長帯である1.3μm〜1.55
μmの長波長帯で発振する高性能な面発光半導体レーザ
素子を提供することにあり、その要旨は、InP基板上
に、量子井戸層とバリア層からなる活性層を含む3−5
族化合物半導体層を有する面発光半導体レーザ素子にお
いて、量子井戸層はその格子定数がInPの格子定数よ
りも大きく、バリア層はその格子定数がInPの格子定
数よりも小さく構成されており、かつ、量子井戸層、バ
リア層はGaInAsPまたはAlGaInAsにより
構成されていることを特徴とする面発光半導体レーザ素
子である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to provide a wavelength band of 1.3 μm to 1.55 which is an important wavelength band in optical communication.
It is an object of the present invention to provide a high-performance surface emitting semiconductor laser device that oscillates in a long wavelength band of μm.
In a surface emitting semiconductor laser device having a group III compound semiconductor layer, the quantum well layer has a lattice constant larger than the lattice constant of InP, the barrier layer has a lattice constant smaller than the lattice constant of InP, and The surface emitting semiconductor laser device is characterized in that the quantum well layer and the barrier layer are made of GaInAsP or AlGaInAs.

【0010】即ち、量子井戸層の格子定数をInP基板
の格子定数よりも大きく、バリア層の格子定数をInP
基板の格子定数よりも小さくし、かつ、量子井戸層、バ
リア層を構成する材料としてGaInAsPまたはAl
GaInAsを採用することにより、各量子井戸層の膜
厚を低閾値電流、低チャーピングなどの効果が得られる
膜厚(2.5〜30nm)とし、かつ、量子井戸中の価
電子帯における重い正孔の膜面に垂直方向の有効質量が
小さくなり、低キャリアにて反転分布がおこり、実用可
能な注入電流でレーザ発振が可能となるように量子井戸
層中に圧縮歪が印加された量子井戸構造を、光通信にお
いて重要な波長帯である1.3〜1.55μmにおいて
面発光レーザとして実現することが可能となることを見
いだしたものである。
That is, the lattice constant of the quantum well layer is larger than that of the InP substrate, and the lattice constant of the barrier layer is InP.
GaInAsP or Al which is smaller than the lattice constant of the substrate and is used as a material for forming the quantum well layer and the barrier layer.
By employing GaInAs, the thickness of each quantum well layer is set to a thickness (2.5 to 30 nm) at which effects such as low threshold current and low chirping can be obtained, and heavy in the valence band in the quantum well. Quantum in which a compressive strain is applied to the quantum well layer so that the effective mass in the direction perpendicular to the film surface of the hole becomes small, population inversion occurs at a low carrier, and laser oscillation becomes possible with a practical injection current. It has been found that the well structure can be realized as a surface emitting laser in a wavelength band of 1.3 to 1.55 μm which is important in optical communication.

【0011】[0011]

【発明の実施の態様】本発明の特徴は、InP基板上に
形成された、垂直キャビティーを構成する活性層構造に
あり、例えば垂直キャビティー両端に設ける反射鏡構造
や、レーザ駆動のための電極構造など、活性層構造以外
の部分については周知の面発光レーザと同様の構造を採
用することができるので、ここでは本発明の要点である
活性層構造について詳述する。
A feature of the present invention lies in an active layer structure forming a vertical cavity formed on an InP substrate, for example, a reflecting mirror structure provided at both ends of the vertical cavity and a laser driving structure for driving a laser. Since the structure other than the active layer structure such as the electrode structure can be the same as that of a well-known surface emitting laser, the active layer structure which is the main point of the present invention will be described in detail.

【0012】本発明における活性層は各層の厚さ2.5
〜30nmである(n−1)層のバリア層で交互に隔て
られた各層の厚さ2.5〜30nmのn層の量子井戸層
から構成されている。この場合には活性層の両側面は量
子井戸層になるが、(n+1)層のバリア層を配して、
活性層の両側面をバリア層にしてもよい。量子井戸層の
組成は、第2図における発振波長1.3μmに相当する
等バンドギャップ線C線上にあり、かつ、格子定数がI
nP基板よりも大きいPT間のTに近い組成、GaX1
1-X1AsY11-Y1とする。
In the present invention, the active layer has a thickness of 2.5
Each layer is composed of n-thick quantum well layers having a thickness of 2.5 to 30 nm and alternately separated by (n-1) barrier layers having a thickness of 〜30 nm. In this case, both sides of the active layer are quantum well layers, but (n + 1) barrier layers are arranged.
Both sides of the active layer may be barrier layers. The composition of the quantum well layer is on the equiband gap line C corresponding to the oscillation wavelength of 1.3 μm in FIG. 2, and the lattice constant is I
A composition close to T between PTs larger than the nP substrate, Ga X1 I
n 1 -X1 As Y1 P 1 -Y1 .

【0013】各量子井戸層の厚みには上限値があり、そ
の値は歪の誘起する転位の発生によって決まり、組成T
に対しては20〜30nmである。
The thickness of each quantum well layer has an upper limit, which is determined by the occurrence of strain-induced dislocations.
Is 20 to 30 nm.

【0014】バリア層の組成は、バンドギャップが量子
井戸層のバンドギャップよりも大きく、かつ、格子定数
がInPの格子定数よりも大きくなる組成を選択する。
即ち、図2において斜線が入っていない領域で、等バン
ドギャップ線Cよりも左側の組成から選択する。
The composition of the barrier layer is selected so that the band gap is larger than the band gap of the quantum well layer and the lattice constant is larger than the lattice constant of InP.
That is, in the region where no oblique line is shown in FIG.

【0015】この場合、歪によりバンドギャップが狭く
なることによる長波長化と、電子の量子閉じ込めによる
短波長化の影響を受けるために、発振波長は1.3μm
から若干ずれることになる。発振波長を1.3μmに厳
密に一致させるには、上記の歪によるバンドギャップ縮
小の効果と量子閉じ込め効果によるバンドギャップ拡大
の効果とを勘案して組成を第2図のC線から多少ずらし
て調整すればよい。
In this case, the oscillation wavelength is 1.3 μm because the wavelength is increased by the narrowing of the band gap due to the strain and the wavelength is shortened by the quantum confinement of electrons.
Will be slightly off. In order to make the oscillation wavelength exactly coincide with 1.3 μm, the composition is slightly shifted from the line C in FIG. 2 in consideration of the effect of band gap reduction due to the above-described strain and the effect of band gap expansion due to the quantum confinement effect. Adjust it.

【0016】このように構成することで、通信波長とし
て重要な1.3μm帯で発振し、低閾値密度、低チャー
ピングが実現できる活性層構造を、量子井戸層およびバ
リア層の層数が数百まで、歪の誘起する転位を生じるこ
となく成長させることが可能となり、このことにより、
垂直キャビティをもつ面発光レーザを1.3μm帯で実
現することが可能となる。
With this configuration, an active layer structure that oscillates in the 1.3 μm band, which is important as a communication wavelength, and can realize low threshold density and low chirping, has several quantum well layers and barrier layers. It is possible to grow up to a hundred without strain-induced dislocations,
A surface emitting laser having a vertical cavity can be realized in the 1.3 μm band.

【0017】なお、活性層の平均格子定数は、量子井戸
層とバリア層の厚みと組成を調整することによってIn
Pの格子定数に等しくすることができる。また、本発明
の面発光半導体レーザは、量子井戸層、バリア層をAl
GaInAsで構成することもできる。ここで、量子井
戸層をAlGaInAsとする場合は、3図における
L’線(InPとの格子定数線)よりもInAsよりの
領域、即ち3図中の斜線領域からバンドギャップ波長
1.3μmの組成を選択すれば良く、バリア層をAlG
aInAsとする場合は、3図におけるL’線のGaA
sまたはAlAsよりの領域、即ち3図中の斜線の無い
領域からバンドギャップ波長が、1.3μm以下の組成
を選択すればよい。
The average lattice constant of the active layer can be adjusted by adjusting the thickness and composition of the quantum well layer and the barrier layer.
It can be equal to the lattice constant of P. In the surface emitting semiconductor laser of the present invention, the quantum well layer and the barrier layer are made of Al.
It can also be composed of GaInAs. Here, when the quantum well layer is made of AlGaInAs, the composition having a band gap wavelength of 1.3 μm from the region of InAs rather than the L ′ line (lattice constant line with InP) in FIG. 3, that is, the shaded region in FIG. And the barrier layer is made of AlG
In the case of aInAs, GaAs of the L ′ line in FIG.
A composition having a band gap wavelength of 1.3 μm or less may be selected from a region of s or AlAs, that is, a region without oblique lines in FIG.

【0018】これにより、量子井戸層、バリア層ともに
GaInAsPとするタイプ、量子井戸をGaInAs
Pとし、バリア層をAlGaInAsとするタイプ、量
子井戸をAlGaInAsとし、バリア層をGaInA
sPとするタイプ、量子井戸、バリア層ともにAlGa
InAsとするタイプの4つのタイプの面発光レーザを
実現することができる。
Thus, the quantum well layer and the barrier layer are made of GaInAsP, and the quantum well is made of GaInAs.
P, a barrier layer of AlGaInAs, a quantum well of AlGaInAs, and a barrier layer of GaInA.
The type of the sP, the quantum well, and the barrier layer are AlGa.
Four types of surface emitting lasers of the type of InAs can be realized.

【0019】また、上記実施例においては、1.3μm
帯において発振する面発光半導体レーザ装置について説
明したが、1.3〜1.55μm帯においても上述と同
様にして、本発明の構成を得ることができることは当業
者に明らかである。
In the above embodiment, 1.3 μm
Although the surface emitting semiconductor laser device oscillating in the band has been described, it is apparent to those skilled in the art that the configuration of the present invention can be obtained in the 1.3 to 1.55 μm band in the same manner as described above.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
1.3〜1.55μm帯の発振波長を有し、高性能であ
る量子井戸半導体レーザが得られるという優れた効果が
ある。
As described above, according to the present invention,
There is an excellent effect that a high performance quantum well semiconductor laser having an oscillation wavelength in the 1.3 to 1.55 μm band can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来例の要部断面図(a)およびそのバンドギ
ャップの伝導帯側を示す図(b)
FIG. 1 is a sectional view of a main part of a conventional example (a) and a view showing a conduction band side of a band gap thereof (b).

【図2】GaInAsPのダイヤグラムFIG. 2 is a diagram of GaInAsP.

【図3】AlGaInAsのダイヤグラムFIG. 3 is a diagram of AlGaInAs.

【符号の説明】[Explanation of symbols]

1はn型GaAs基板 2はn型GaAsバッファ層 3はn型GaAlAsクラッド層 4はGaInAs量子井戸層 5、6は傾斜領域 7はp型GaAlAsクラッド層 8はp型GaAsキャップ層 9はn型電極 10はp型電極 1 is an n-type GaAs substrate 2 is an n-type GaAs buffer layer 3 is an n-type GaAlAs cladding layer 4 is a GaInAs quantum well layer 5, 6 is an inclined region 7 is a p-type GaAlAs cladding layer 8 is a p-type GaAs cap layer 9 is an n-type Electrode 10 is a p-type electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】InP基板上に、量子井戸層とバリア層か
らなる活性層を含む3−5族化合物半導体層を有する面
発光半導体レーザ素子において、量子井戸層はその格子
定数がInPの格子定数よりも大きく、バリア層はその
格子定数がInPの格子定数よりも小さく構成されてお
り、かつ、量子井戸層、バリア層はGaInAsPまた
はAlGaInAsにより構成されていることを特徴と
する面発光半導体レーザ素子。
In a surface emitting semiconductor laser device having a group III-V compound semiconductor layer including an active layer comprising a quantum well layer and a barrier layer on an InP substrate, the quantum well layer has a lattice constant of InP. A surface emitting semiconductor laser device characterized in that the barrier layer has a lattice constant smaller than that of InP, and the quantum well layer and the barrier layer are composed of GaInAsP or AlGaInAs. .
JP21669497A 1997-08-11 1997-08-11 Surface emitting semiconductor laser device Expired - Lifetime JP3033717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21669497A JP3033717B2 (en) 1997-08-11 1997-08-11 Surface emitting semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21669497A JP3033717B2 (en) 1997-08-11 1997-08-11 Surface emitting semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63285549A Division JP2898643B2 (en) 1988-11-11 1988-11-11 Quantum well semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH1070342A true JPH1070342A (en) 1998-03-10
JP3033717B2 JP3033717B2 (en) 2000-04-17

Family

ID=16692465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21669497A Expired - Lifetime JP3033717B2 (en) 1997-08-11 1997-08-11 Surface emitting semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3033717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018078290A (en) * 2016-10-31 2018-05-17 住友電工デバイス・イノベーション株式会社 Semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018078290A (en) * 2016-10-31 2018-05-17 住友電工デバイス・イノベーション株式会社 Semiconductor laser element

Also Published As

Publication number Publication date
JP3033717B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP3504742B2 (en) Laser diode
JPH05283791A (en) Surface emission type semiconductor laser
US4982408A (en) Variable oscillation wavelength semiconduction laser device
JP2898643B2 (en) Quantum well semiconductor laser device
JPH0856045A (en) Semiconductor laser device
JP3145718B2 (en) Semiconductor laser
JP3041381B2 (en) Quantum well semiconductor laser device
EP0528439B1 (en) Semiconductor laser
JP2812273B2 (en) Semiconductor laser
JPH08288586A (en) 2mum band semiconductor laser
JPH04350988A (en) Light-emitting element of quantum well structure
JP3033717B2 (en) Surface emitting semiconductor laser device
US4841535A (en) Semiconductor laser device
JPH09237933A (en) Semiconductor laser and manufacturing method thereof
JP2508625B2 (en) Semiconductor laser
JPH09148682A (en) Semiconductor optical device
JPH0278290A (en) Semiconductor laser device
JP3223969B2 (en) Semiconductor laser
JP2001332816A (en) Semiconductor laser element
JPH0728093B2 (en) Semiconductor laser device
JP2529854B2 (en) Infrared semiconductor laser
JP3820826B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor device
JPH0728094B2 (en) Semiconductor laser device
JPH09307183A (en) Semiconductor laser
JPH0722212B2 (en) Quantum well laser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9