JPH1070021A - Composite magnetic member and manufacture thereof - Google Patents

Composite magnetic member and manufacture thereof

Info

Publication number
JPH1070021A
JPH1070021A JP8225036A JP22503696A JPH1070021A JP H1070021 A JPH1070021 A JP H1070021A JP 8225036 A JP8225036 A JP 8225036A JP 22503696 A JP22503696 A JP 22503696A JP H1070021 A JPH1070021 A JP H1070021A
Authority
JP
Japan
Prior art keywords
magnetic
ferromagnetic
less
austenite
composite magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8225036A
Other languages
Japanese (ja)
Inventor
Atsushi Sunakawa
淳 砂川
Tsutomu Inui
勉 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8225036A priority Critical patent/JPH1070021A/en
Publication of JPH1070021A publication Critical patent/JPH1070021A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type

Abstract

PROBLEM TO BE SOLVED: To provide a composite magnetic member having a ferromagnetic part having improved magnetic characteristics and nonmagnetic part in one member. SOLUTION: The composite magnetic member has a compsn. contg. C: 0.35 to 0.75wt.%, Cr: 10 to 16wt.%, Ni: 2.5wt.% or less, N: 0.04 to 0.1wt.%, one or two of Si, Al, Mn: 2wt.% or less, and Fe, the rest. and is composed of a ferromagnetic part having a max. permeability of 300μm or more and nonmagnetic part having an austenitic structure as a main and a permeability of 2 or less. A material having this compsn. is annealed to provide a ferromagnetic structure and part thereof is heated over the austenitic transform start temp. and cooled to remain a nonmagnetic austenitic structure, thereby obtaining the composite magnetic component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気目盛り等に使用
される一つの部材に強磁性部と非磁性部を設けた複合磁
性部材およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic member provided with a ferromagnetic portion and a non-magnetic portion on one member used for a magnetic scale or the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】例えば、非磁性部と強磁性部を検出して
物品の相対位置を検出する素材は、磁気目盛、あるいは
磁気スケールと呼ばれ多用されている。この磁気目盛り
を得る方法としては、特開昭62−83620号に記載
されるように、通常ではオーステナイト組織となるが、
加工によってマルテンサイト化する、いわゆる準安定オ
ーステナイト鋼に強加工を与え、強磁性を示す加工誘起
マルテンサイト組織に変態させ、次いで目盛りとなる部
分をレーザ等で加熱して、オーステナイト組織として非
磁性部を形成することによって得ていた。
2. Description of the Related Art For example, a material for detecting a relative position of an article by detecting a nonmagnetic portion and a ferromagnetic portion is called a magnetic scale or a magnetic scale and is often used. As a method for obtaining this magnetic scale, as described in JP-A-62-83620, an austenite structure is usually formed.
The so-called metastable austenitic steel, which becomes martensitic by processing, is subjected to strong working, transformed into a work-induced martensitic structure showing ferromagnetism, and then the scale is heated by a laser or the like to form a non-magnetic part as an austenitic structure. Was obtained by forming

【0003】また、本出願人等は特開平7−11397
号では、自動車の電磁弁の部品として新しい複合磁性部
材を提案し、それでは強加工を適用する準安定オーステ
ナイト鋼として最適なニッケル当量、クロム当量、平山
当量を提示し、自動車の電磁弁にとって好ましい磁気特
性が得られる最適の組成範囲を提案した。このような電
磁弁の部品として準安定オーステナイト鋼を使用した複
合磁性材料を利用すると、一つの部材に強磁性部と非磁
性部が形成できるため、気密性の確保、振動等による破
損の防止等の信頼性の確保という点で、強磁性体と非磁
性体を接合した部品よりも優れたものとなる。
[0003] The present applicant has disclosed in Japanese Patent Application Laid-Open No. Hei 7-11397.
No. 2 proposes a new composite magnetic member as a component of an automotive solenoid valve, and then presents the optimal nickel equivalent, chromium equivalent, and Hirayama equivalent as a metastable austenitic steel to which strong machining is applied. The optimal composition range that can obtain the characteristics was proposed. When a composite magnetic material using metastable austenitic steel is used as a component of such a solenoid valve, a ferromagnetic portion and a non-magnetic portion can be formed in one member, thereby ensuring airtightness, preventing damage due to vibration, etc. In terms of securing the reliability of the ferromagnetic material and the non-magnetic material, it is superior to a component in which it is joined.

【0004】[0004]

【発明が解決しようとする課題】しかし、前述したよう
な準安定オーステナイト鋼は、元々非磁性のオーステナ
イト組織であるため、強磁性部の特性を高めるために
は、高い加工率を適用する必要がある。このような強加
工を行うことは、製造工程により負荷を増大するととも
に、強加工による割れの発生等の問題が生じている。ま
た、このような強加工を行っても、最大透磁率μmが1
60程度の磁気特性しか得られないという問題があり、
最大透磁率μmが300以上のような強磁部の磁気特性
を重視する場合問題となる。
However, since the metastable austenitic steel as described above originally has a nonmagnetic austenitic structure, it is necessary to apply a high working ratio in order to enhance the characteristics of the ferromagnetic portion. is there. Performing such strong working increases the load due to the manufacturing process, and also causes problems such as generation of cracks due to strong working. Even if such a strong working is performed, the maximum magnetic permeability μm is 1
There is a problem that only about 60 magnetic properties can be obtained,
A problem arises when importance is placed on the magnetic properties of the strong magnetic portion where the maximum magnetic permeability μm is 300 or more.

【0005】本発明の目的は、一つの部材において、強
磁性部と非磁性部を有する複合磁性部材における強磁性
部の磁気特性を改善した複合磁性部材およびその製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a composite magnetic member having improved magnetic properties of a ferromagnetic portion in a composite magnetic member having a ferromagnetic portion and a non-magnetic portion, and a method of manufacturing the same. I do.

【0006】[0006]

【課題を解決するための手段】本発明者は、上述したよ
うな準安定オーステナイト鋼では、強磁性部の特性には
限界があることを見出し、新しい複合磁性部材を検討し
た。そして、通常マルテンサイトとなる合金において
も、オーステナイト変態温度以上からの冷却処理によ
り、非磁性組織であるオーステナイト組織を残留させる
ことができるという知見から、複合磁性材料としての最
適組成を検討した。
The inventor of the present invention has found that the metastable austenitic steel as described above has a limit in the properties of the ferromagnetic portion, and has studied a new composite magnetic member. The optimum composition as a composite magnetic material was investigated from the knowledge that even in an alloy that normally becomes martensite, the austenite structure, which is a nonmagnetic structure, can be left by cooling treatment from the austenite transformation temperature or higher.

【0007】その結果、通常はマルテンサイトとなり強
磁性が得られるC−Cr−Fe系合金に対して、Nを
0.04〜0.1%添加し、Niを2.5%以下に制限す
ることによって、強磁性部の特性を大きく劣化させず
に、部分的に加熱冷却して得られる残留オーステナイト
を安定化することができ、これによって部分的な非磁性
部が得られることを見出し本発明に到達した。
As a result, N is added in an amount of 0.04 to 0.1% and Ni is limited to 2.5% or less with respect to a C-Cr-Fe alloy which usually becomes martensite and has ferromagnetic properties. As a result, it is possible to stabilize the retained austenite obtained by partially heating and cooling without greatly deteriorating the characteristics of the ferromagnetic portion, thereby obtaining a partial non-magnetic portion. Reached.

【0008】すなわち本発明は、質量%でC:0.35
〜0.75%、Cr:10〜16%、Ni:2.5%以
下、N:0.04〜0.1%、Si、Al、Mnの1種も
しくは2種を2%以下含有し、残部実質的にFeからな
る組成を有し、かつ最大透磁率μmが300以上の強磁
性部と、オーステナイト組織を主体とする透磁率2以下
の非磁性部が形成された複合磁性部材である。
That is, in the present invention, C: 0.35 by mass% is used.
-0.75%, Cr: 10-16%, Ni: 2.5% or less, N: 0.04-0.1%, containing 2% or less of one or two of Si, Al, and Mn; The remainder is a composite magnetic member having a ferromagnetic part having a composition substantially composed of Fe and having a maximum magnetic permeability μm of 300 or more and a nonmagnetic part mainly composed of an austenite structure and having a magnetic permeability of 2 or less.

【0009】上述した本発明の複合磁性部材は、上述し
た組成の素材を焼鈍し、最大透磁率μmが300以上の
強磁性組織を得た後、該強磁性組織の一部をオーステナ
イト変態開始温度以上に加熱した後、冷却してオーステ
ナイト組織を残留させた非磁性部を得ることにより製造
することができる。なお、オーステナイト変態開始温度
以上に加熱した後、冷却してオーステナイト組織を残留
させる方法としては、部分的に溶融凝固させる手段をと
っても良い。
In the above-described composite magnetic member of the present invention, after a material having the above-described composition is annealed to obtain a ferromagnetic structure having a maximum magnetic permeability μm of 300 or more, a part of the ferromagnetic structure is reduced to an austenite transformation start temperature. After heating as described above, it can be manufactured by cooling to obtain a non-magnetic portion in which an austenite structure remains. In addition, as a method of heating to a temperature equal to or higher than the austenite transformation start temperature and then cooling to leave the austenite structure, a means of partially melting and solidifying may be used.

【0010】[0010]

【発明の実施の形態】上述したように、本発明は複合磁
性材料として特に優れた強磁性を有する強磁性部を得よ
うとするものである。そのために本発明においては、通
常強磁性を示すC−Cr−Fe系の合金を選択し、かつ
オーステナイト安定化元素としてNを多く添加し、Ni
の添加量を制限したものである。以下、本発明で規定す
る元素の規定理由を述べる。Niはオーステナイト組織
を安定化するものであり、本発明には欠くことのできな
い重要な元素である。しかし、Niの増加は焼鈍後の強
磁性部の磁気特性を低下させる。またNiの添加量の増
加とともに焼鈍後の耐力値が増加し、加工性を低下させ
るという問題も発生する。従って本発明においては添加
量を2.5%以下とする必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the present invention aims to obtain a ferromagnetic portion having particularly excellent ferromagnetism as a composite magnetic material. For this purpose, in the present invention, a C-Cr-Fe-based alloy which usually exhibits ferromagnetism is selected, and a large amount of N is added as an austenite stabilizing element, and Ni is added.
Is limited. Hereinafter, the reasons for defining the elements specified in the present invention will be described. Ni stabilizes the austenite structure and is an important element indispensable in the present invention. However, an increase in Ni lowers the magnetic properties of the ferromagnetic portion after annealing. In addition, with the increase in the amount of Ni added, the yield strength after annealing increases, which causes a problem that workability is reduced. Therefore, in the present invention, the amount of addition needs to be 2.5% or less.

【0011】しかし、Ni量2.5%以下とした場合、
強磁性部の磁気特性は確保できるものの、非磁性部の低
温度域に対する安定度が悪く、使用環境を制限される。
すなわち、0℃以下にまで下げると、非磁性を示すオー
ステナイト組織がα′構造に変態して磁性を有するよう
になるため、低温域での使用ができなくなるのである。
したがって、Niに換えて、オーステナイトを安定化す
る元素が必要である。その結果、本発明者は、Nを0.
04%以上添加することがオーステナイトの安定化と強
磁性部の特性確保の両立に有効に作用することを見出し
たのである。なお、Nは0.1%以上では耐食性が劣化
するため本発明におけるNの範囲を0.04〜0.1%と
した。
However, when the Ni content is 2.5% or less,
Although the magnetic properties of the ferromagnetic portion can be ensured, the stability of the non-magnetic portion in a low temperature range is poor, and the use environment is limited.
That is, when the temperature is lowered to 0 ° C. or less, the austenite structure showing non-magnetism is transformed into α ′ structure and becomes magnetic, so that it cannot be used in a low temperature range.
Therefore, an element for stabilizing austenite is required instead of Ni. As a result, the inventor has set N to 0.
It has been found that the addition of 04% or more effectively works to stabilize austenite and secure the characteristics of the ferromagnetic portion. If the N content is 0.1% or more, the corrosion resistance deteriorates, so the range of N in the present invention is set to 0.04 to 0.1%.

【0012】Cは炭化物を形成し、本発明の基本となる
C−Cr−Fe系合金の基本的な強度を確保する元素と
して重要である。また、Cはオーステナイトの安定化に
も寄与する元素である。Cが0.35%未満では、オー
ステナイト変態点以上に加熱後冷却した際、透磁率2以
下が得られ難く、また0.75%を越えると冷間での加
工が難しくなる。そのため本発明においては、Cの範囲
を0.35〜0.75%に規定した。Cのより望ましい範
囲は0.45〜0.65%である。
C forms a carbide and is important as an element for securing the basic strength of the C—Cr—Fe alloy based on which the present invention is based. Further, C is an element that also contributes to stabilization of austenite. If C is less than 0.35%, it is difficult to obtain a magnetic permeability of 2 or less when cooled after heating above the austenite transformation point, and if it exceeds 0.75%, it becomes difficult to perform cold working. Therefore, in the present invention, the range of C is set to 0.35 to 0.75%. A more desirable range for C is 0.45 to 0.65%.

【0013】Crはマトリックスに固溶すると共に、一
部は炭化物となり、本発明の機械的強度と耐食性を確保
する元素である。本発明においてCrの範囲を10〜1
6%としたのは、10%未満では耐食性が劣り、16%
以上ではフェライト組織が安定化するため、非磁性部を
形成することが困難になるためである。なお、本発明に
おいてSi、Al、Mnの一種もしくは2種以上を合計
で2%以下含んでもよい。これらの元素は、脱酸元素と
して精錬のために添加することができるものである。な
おこれらの元素は精錬過程で除去されるが、一部は残留
する。本発明においては、特に磁気特性を劣化させない
範囲として、2%以下に制限する。
[0013] Cr is a solid solution in the matrix and partly becomes a carbide, and is an element for ensuring the mechanical strength and corrosion resistance of the present invention. In the present invention, the range of Cr is 10-1.
The reason why 6% is set is that if it is less than 10%, the corrosion resistance is inferior and 16%.
In the above, the ferrite structure is stabilized, so that it is difficult to form a non-magnetic portion. In the present invention, one or more of Si, Al and Mn may be contained in a total of 2% or less. These elements can be added for refining as deoxidizing elements. Although these elements are removed during the refining process, some remain. In the present invention, the range is particularly limited to 2% or less as long as the magnetic characteristics are not deteriorated.

【0014】上述した本発明の複合磁性部材の製造方法
の特徴は、上述した組成の素材を焼鈍し、最大透磁率μ
m300以上の強磁性組織を得た後、該強磁性組織の一
部をオーステナイト変態開始温度以上に加熱した後、冷
却してオーステナイト組織を残留させ得ることである。
この方法により、従来の準安定オーステナイト鋼を使用
する場合に得られなかった最大透磁率μm300以上の
強磁性部と、オーステナイト組織を主体とする透磁率2
以下の非磁性部を併せ持つような複合磁性部材を得るこ
とができる。
A feature of the method of manufacturing a composite magnetic member according to the present invention is that a material having the above-described composition is annealed to obtain a maximum magnetic permeability μ.
After obtaining a ferromagnetic structure of m300 or more, after heating a part of the ferromagnetic structure to a temperature at or above the austenite transformation start temperature, it is possible to leave the austenite structure by cooling.
According to this method, a ferromagnetic part having a maximum magnetic permeability of 300 μm or more, which cannot be obtained when a conventional metastable austenitic steel is used, and a magnetic permeability of 2 mainly composed of an austenitic structure.
A composite magnetic member having the following non-magnetic portion can be obtained.

【0015】上述した強磁性部を得る際に行う焼鈍は、
強磁性部の製造工程において残留する歪みの開放を行う
ものであり、強磁性特性を高めるためには、非磁性部を
得る前に予め行っておく必要がある。本発明における強
磁性部の最大透磁率μm300以上は、強加工によって
強磁性を得る必要がある準安定オーステナイト鋼では得
ることのできないものである。本発明は、加熱急冷によ
り残留するオーステナイトにより非磁性部の特性を確保
するものである。このオーステナイトは、冷却速度を速
めることでより多く残留させることが可能であり、オー
ステナイトが安定して存在する温度域から急冷すること
が望ましい。実際には、空冷以上の冷却速度を確保でき
る冷却方法の適用が望ましく、水冷法あるいは油冷法を
適用することが望ましい。
The annealing performed to obtain the above ferromagnetic portion is as follows:
This is to release the residual strain in the manufacturing process of the ferromagnetic portion. In order to enhance the ferromagnetic characteristics, it is necessary to perform the process before obtaining the non-magnetic portion. The maximum permeability μm 300 or more of the ferromagnetic portion in the present invention cannot be obtained with a metastable austenitic steel which needs to obtain ferromagnetism by strong working. The present invention secures the characteristics of the non-magnetic portion by austenite remaining after heating and quenching. This austenite can be retained more by increasing the cooling rate, and it is desirable to rapidly cool from a temperature range where austenite is stably present. In practice, it is desirable to apply a cooling method capable of securing a cooling rate higher than air cooling, and it is desirable to apply a water cooling method or an oil cooling method.

【0016】また、オーステナイトを残留させる方法と
しては、レーザービームやプラズマ加熱により部分的に
溶融し凝固させる方法をとることも可能である。溶融凝
固する方法では、オーステナイトは極めて安定になり、
非磁性部の磁気特性を確保する手法としては有効であ
る。このように、本発明においては、本来強磁性のマル
テンサイト組織となる鋼を利用するため、非磁性部の確
保が重要である。非磁性部の特性は、上述した合金組成
とオーステナイトを残留するための加熱冷却処理によっ
て大きく変化する。複合磁性部材として有効な非磁性部
の磁気特性および安定性の指標として、本発明において
は、透磁率2以下と規定した。
As a method of leaving austenite, a method of partially melting and solidifying by a laser beam or plasma heating can be used. In the melt solidification method, austenite becomes extremely stable,
This is effective as a method for securing the magnetic characteristics of the non-magnetic portion. As described above, in the present invention, since a steel that originally has a ferromagnetic martensite structure is used, it is important to secure a nonmagnetic portion. The characteristics of the non-magnetic portion greatly change due to the above-described alloy composition and heating / cooling treatment for retaining austenite. In the present invention, the magnetic permeability is specified as 2 or less as an index of the magnetic properties and stability of the non-magnetic portion effective as a composite magnetic member.

【0017】(実施例)表1に示す組成の素材を、真空
溶解にて10kgの鋼塊を得た後、鍛造、熱間圧延を行
い、板圧4.0mmとした。この材料を焼鈍した後、酸
化スケールを除去し、冷間圧延により板厚1.5mmと
することにより得た。
(Embodiment) A material having the composition shown in Table 1 was vacuum-melted to obtain a 10 kg steel ingot, and then forged and hot-rolled to a sheet pressure of 4.0 mm. After annealing this material, the oxide scale was removed, and a sheet thickness of 1.5 mm was obtained by cold rolling.

【0018】[0018]

【表1】 [Table 1]

【0019】この冷間圧延材を焼鈍して強磁性体化し、
得られた試料の一部を高周波加熱によってA3変態点以
上の1150℃で1分間保持後水冷し、強磁性を有する
素材にオーステナイト組織を主体とする非磁性部を形成
した。得られた複合磁性材料の磁気特性の測定を行っ
た。強磁性部の特性はB−Hループから最大透磁率μm
と磁束密度B4000(磁化の強さ4000A/mにおける磁束密
度)で評価し、非磁性部は低温度域における安定性も含
めて−20℃の液体に24時間浸漬した冷却前後で、透
磁率計によって透磁率μを測定して評価した。また加工
性を評価するために、上述した素材を得る工程の途中の
熱間圧延後の材料から試験片を採取し、0.2%耐力を
測定した。この結果を表2に合わせて示す。
The cold-rolled material is annealed to be ferromagnetic,
A part of the obtained sample was kept at 1150 ° C. above the A3 transformation point for 1 minute by high-frequency heating and then water-cooled to form a nonmagnetic part mainly composed of austenite structure in a ferromagnetic material. The magnetic properties of the obtained composite magnetic material were measured. The characteristic of the ferromagnetic portion is the maximum permeability μm from the BH loop.
And the magnetic flux density B4000 (magnetic flux density at a magnetization strength of 4000 A / m), and the non-magnetic portion was immersed in a liquid at -20 ° C for 24 hours before and after cooling, including the stability in the low temperature range. Was measured and evaluated. In order to evaluate the workability, a test piece was taken from the material after hot rolling in the process of obtaining the above-mentioned material, and the 0.2% proof stress was measured. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示すように、Niを2.5%以下、
Nを0.04〜0.1%とした本発明の試料は、すべて強
磁性部において、最大透磁率が300を越え、4000
(A/m)における磁束密度も1(T)を越える優れた強磁
性が得られると共に、非磁性部においても−20℃の冷
却で透磁率が若干増加するが、2以上に増加することは
なく、低温域まで複合磁性材としての機能が得られるこ
とが確認できた。また、Nを0.04%未満とした比較
例の試料9においては−20℃における透磁率が2を大
きく越えており、使用温度域が制限されることがわか
る。また、Niを2.5%を越えて添加した比較例の試
料10は焼鈍後の強磁性部の最大透磁率μmが300を
下回り、また耐力値が610(N/mm2)と非常に高く
加工し難くなることがわかる。
As shown in Table 2, Ni content is not more than 2.5%,
All the samples of the present invention in which N was set to 0.04 to 0.1% had a maximum magnetic permeability exceeding 300 and 4000 in the ferromagnetic portion.
An excellent ferromagnetism with a magnetic flux density of (A / m) exceeding 1 (T) can be obtained, and the magnetic permeability in the non-magnetic portion slightly increases by cooling at -20 ° C. It was confirmed that the function as a composite magnetic material was obtained up to a low temperature range. In Sample 9 of Comparative Example in which N was less than 0.04%, the magnetic permeability at −20 ° C. greatly exceeded 2, indicating that the operating temperature range was limited. Sample 10 of the comparative example to which Ni was added in excess of 2.5% had a maximum magnetic permeability μm of the ferromagnetic portion after annealing of less than 300 and a very high proof stress value of 610 (N / mm 2 ). It turns out that processing becomes difficult.

【0022】[0022]

【発明の効果】本発明によれば、準安定オーステナイト
鋼を用いず、NiとNを適量添加したC−Cr−Fe合
金を使用することにより、強加工を行うことなく特に強
磁性部の特性に優れた複合磁性材料を得ることができ
る。したがって、従来のような極めて厳しい加工条件を
適用することがなくなり、製造上の効率向上に極めて有
効である。また、本発明においては強磁性部の磁気特性
に優れているため、磁気回路におけるポールピースのよ
うな磁路形成材料としても有効である。
According to the present invention, by using a C-Cr-Fe alloy to which Ni and N are added in an appropriate amount without using a metastable austenitic steel, the characteristics of a ferromagnetic part can be particularly improved without performing strong working. Thus, a composite magnetic material excellent in the above can be obtained. Therefore, it is no longer necessary to apply extremely strict processing conditions as in the related art, which is extremely effective in improving the efficiency in manufacturing. In the present invention, since the ferromagnetic portion has excellent magnetic properties, it is also effective as a magnetic path forming material such as a pole piece in a magnetic circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量%でC:0.35〜0.75%、C
r:10〜16%、Ni:2.5%以下、N:0.04〜
0.1%、Si、Al、Mnの1種もしくは2種を2%
以下含有し、残部実質的にFeからなる組成を有し、か
つ最大透磁率300以上の強磁性部と、オーステナイト
組織を主体とする透磁率2以下の非磁性部を併せ持つこ
とを特徴とする複合磁性部材
1. A mass% of C: 0.35 to 0.75%, C
r: 10 to 16%, Ni: 2.5% or less, N: 0.04 to
0.1%, 2% of one or two of Si, Al and Mn
A composite comprising: a ferromagnetic part having a composition substantially consisting of Fe and the balance being substantially Fe and having a maximum magnetic permeability of 300 or more and a nonmagnetic part mainly composed of an austenitic structure and having a magnetic permeability of 2 or less. Magnetic material
【請求項2】 質量%でC:0.35〜0.75%、C
r:10〜16%、Ni:2.5%以下、N:0.04〜
0.1%、Si、Al、Mnの1種もしくは2種を2%
以下含有し、残部実質的にFeからなる組成を有する素
材を焼鈍し、最大透磁率μm300以上の強磁性部を得
た後、該強磁性組織の一部をオーステナイト変態点以上
に加熱した後、冷却してオーステナイト組織を残留させ
非磁性部を得ることを特徴とする複合磁性部材の製造方
法。
2. C: 0.35 to 0.75% by mass%, C
r: 10 to 16%, Ni: 2.5% or less, N: 0.04 to
0.1%, 2% of one or two of Si, Al and Mn
After containing and annealing the material having a composition substantially consisting of Fe to obtain a ferromagnetic portion having a maximum magnetic permeability of 300 μm or more, after heating a part of the ferromagnetic structure to the austenite transformation point or more, A method for producing a composite magnetic member, comprising cooling to leave an austenitic structure to obtain a nonmagnetic portion.
JP8225036A 1996-08-27 1996-08-27 Composite magnetic member and manufacture thereof Pending JPH1070021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8225036A JPH1070021A (en) 1996-08-27 1996-08-27 Composite magnetic member and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8225036A JPH1070021A (en) 1996-08-27 1996-08-27 Composite magnetic member and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1070021A true JPH1070021A (en) 1998-03-10

Family

ID=16823056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8225036A Pending JPH1070021A (en) 1996-08-27 1996-08-27 Composite magnetic member and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1070021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077631A1 (en) * 2010-12-06 2012-06-14 日立金属株式会社 Composite magnetic material raw material and composite magnetic material
CN103320716A (en) * 2012-03-19 2013-09-25 日立金属株式会社 Raw material of composite magnetic materials and composite magnetic material making method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077631A1 (en) * 2010-12-06 2012-06-14 日立金属株式会社 Composite magnetic material raw material and composite magnetic material
JPWO2012077631A1 (en) * 2010-12-06 2014-05-19 日立金属株式会社 Composite magnetic material and composite magnetic material
CN103320716A (en) * 2012-03-19 2013-09-25 日立金属株式会社 Raw material of composite magnetic materials and composite magnetic material making method

Similar Documents

Publication Publication Date Title
JP4399751B2 (en) Composite magnetic member, method for manufacturing ferromagnetic portion of composite magnetic member, and method for forming nonmagnetic portion of composite magnetic member
JP3868019B2 (en) Composite magnetic member and manufacturing method thereof
JP2006193779A (en) Soft magnetic material
WO2019097691A1 (en) Austenitic stainless steel sheet and method for producing same
JPH0542493B2 (en)
JP4223726B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
JPH1070021A (en) Composite magnetic member and manufacture thereof
JP7475181B2 (en) Ferritic Stainless Steel
JP2682144B2 (en) Method for manufacturing soft magnetic steel
JPH0250931A (en) Manufacture of ferromagnetic ni-fe alloy and slab of the same alloy having excellent surface properties
JPH08269564A (en) Production of nonmagnetic thick stainless steel plate
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
JPH0579727B2 (en)
JP5374233B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them
JP2002180215A (en) Composite magnetic member having excellent low temperature magnetic stability and its production method
JPH108222A (en) Composite magnetic member and its production
WO2012077631A1 (en) Composite magnetic material raw material and composite magnetic material
JP4465490B2 (en) Precipitation hardened ferritic heat resistant steel
JPS61231138A (en) Low thermal expansion alloy having superior strength at high temperature
JPH04116141A (en) High-hardness and low-permeability nonmagnetic functional alloy and its production
JP2004143585A (en) Stock for composite magnetic member, composite magnetic member obtained by using the stock, method for producing the member, and motor obtained by using the member
US4585707A (en) High expansion alloy for bimetal strip
JP2002129294A (en) High saturation magnetic flux density composite magnetic member and motor using the same member
JP3179967B2 (en) Manufacturing method of composite magnetic member
JP5339009B1 (en) Composite magnetic material and composite magnetic member