JPH1068920A - Production of liquid crystal electro-optical element - Google Patents

Production of liquid crystal electro-optical element

Info

Publication number
JPH1068920A
JPH1068920A JP12898197A JP12898197A JPH1068920A JP H1068920 A JPH1068920 A JP H1068920A JP 12898197 A JP12898197 A JP 12898197A JP 12898197 A JP12898197 A JP 12898197A JP H1068920 A JPH1068920 A JP H1068920A
Authority
JP
Japan
Prior art keywords
liquid crystal
electric field
voltage
ferroelectric
ferroelectric liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12898197A
Other languages
Japanese (ja)
Other versions
JP2845236B2 (en
Inventor
Kaoru Mori
森  薫
Yuichiro Yamada
祐一郎 山田
Norio Yamamoto
典生 山本
Ichiro Kawamura
一朗 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Denso Corp
Original Assignee
Showa Shell Sekiyu KK
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK, Denso Corp filed Critical Showa Shell Sekiyu KK
Priority to JP12898197A priority Critical patent/JP2845236B2/en
Publication of JPH1068920A publication Critical patent/JPH1068920A/en
Application granted granted Critical
Publication of JP2845236B2 publication Critical patent/JP2845236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily produce a liquid crystal electro-optical element using a ferroelectric liquid crystal which shows first to third stable states according to electric fields, by heating the ferroelectric liquid crystal to change into an isotropic liquid, filling the space between substrates with the isotropic liquid, and cooling the liquid to change into a chiral smectic phase. SOLUTION: A ferroelectric liquid crystal 6 in which the molecular orientation shows different first to third stable states when no electric field is applied or an electric field in one direction or an electric field in other direction is applied, respectively, is heated to obtain an isotropic liquid. The obtd. isotropic liquid is supplied to fill the space between a pair of electrode substrates 1, 2 and cooled to obtain a chiral smectic phase of the ferroelectric liquid crystal 6. By changing the liquid crystal into an isotropic liquid, it can be easily supplied to fill between the electrode substrates 1, 2. By cooling after filling, the ferroelectric liquid crystal 6 is changed into a chiral smectic phase having desired three states. The cooling process is preferably carried out at 0.1 to 1.0 deg.C/min cooling rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶電気光学装置
の製造方法に関する。
The present invention relates to a method for manufacturing a liquid crystal electro-optical device.

【0002】[0002]

【従来の技術】液晶を用いた電気光学装置としては、D
SM形、TN形、G/H形、STN形などのネマチック
液晶を用いた電気光学装置が開発され実用化されてい
る。しかしながら、このようなネマチック液晶を用いた
ものはいずれも応答速度が数msec から数十msec と極
めて遅いという欠点を有する。
2. Description of the Related Art As an electro-optical device using a liquid crystal, D is used.
Electro-optical devices using nematic liquid crystals such as SM type, TN type, G / H type, and STN type have been developed and put into practical use. However, those using such a nematic liquid crystal have a drawback that the response speed is extremely slow, from several milliseconds to several tens of milliseconds.

【0003】このような背景の中で、高速応答性を有す
る強誘電性液晶が開発され、強誘電性液晶を用いた高速
電気光学装置が既にいくつか提案されている。例えば、
特開昭56−107216号公報に示すように、壁面の
力でねじれ構造を解き壁面と平行となった2つの分子配
向を印加電界の極性により変化させるもの、あるいは特
開昭60−195521号公報に示すように、印加電界
の極性反転時に起こる過渡的な分子散乱状態を利用した
ものがある。
Against this background, a ferroelectric liquid crystal having a high-speed response has been developed, and several high-speed electro-optical devices using the ferroelectric liquid crystal have already been proposed. For example,
As disclosed in JP-A-56-107216, a twisted structure is solved by the force of a wall surface, and two molecular orientations parallel to the wall surface are changed by the polarity of an applied electric field, or JP-A-60-195521. As shown in (1), there is one that utilizes a transient molecular scattering state that occurs when the polarity of an applied electric field is inverted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
強誘電性液晶では、無電界時における明暗コントラスト
のはっきりした安定な分子配向を実現する点、および明
確な閾値特性を出現させるという点で問題がある。本発
明者等は、このような問題について鋭意研究した結果、
後述するような構造式を有する強誘電性液晶を開発し
た。この強誘電性液晶においては、無電界時に分子配向
が第1の安定状態を示し、一方の電界方向への電界印加
時に分子配向が第1の安定状態とは異なる第2の安定状
態を示し、他方の電界方向への電界印加時に分子配向が
第1及び第2の安定状態とは異なる第3の安定状態を示
すものである。
However, the conventional ferroelectric liquid crystal has problems in that it realizes a stable molecular alignment with a clear contrast between light and dark in the absence of an electric field, and that a clear threshold characteristic appears. is there. The present inventors have conducted intensive research on such a problem,
We have developed a ferroelectric liquid crystal having the following structural formula. In this ferroelectric liquid crystal, the molecular orientation shows a first stable state when no electric field is applied, and the molecular orientation shows a second stable state different from the first stable state when an electric field is applied in one electric field direction, It shows a third stable state in which the molecular orientation is different from the first and second stable states when an electric field is applied in the other electric field direction.

【0005】本発明はこのような強誘電性液晶を用いた
液晶電気光学素子の製造を容易にすることを目的とす
る。
An object of the present invention is to facilitate the manufacture of a liquid crystal electro-optical element using such a ferroelectric liquid crystal.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明においては、上記した強誘電
性液晶を加熱し等方性液体として一対の電極基板間に充
填し、その後、冷却して強誘電性液晶をカイラルスメク
チック相にすることを特徴としている。このように強誘
電性液晶を加熱して等方性液体とすることにより、電極
基板間への充填を行いやすくすることができ、この充填
後の冷却にて、強誘電性液晶をカイラルスメクチック相
にして、上記所望の3状態を有する液晶とすることがで
きる。
In order to achieve the above object, according to the first aspect of the present invention, the ferroelectric liquid crystal is heated and filled as a isotropic liquid between a pair of electrode substrates. And cooling the ferroelectric liquid crystal into a chiral smectic phase. By heating the ferroelectric liquid crystal into an isotropic liquid in this manner, the filling between the electrode substrates can be facilitated. By cooling after the filling, the ferroelectric liquid crystal is turned into a chiral smectic phase. Thus, a liquid crystal having the desired three states can be obtained.

【0007】なお、その冷却としては、請求項2に記載
の発明のように、毎分0.1〜1.0℃の割合にて行う
ことが望ましい。
It is desirable that the cooling be performed at a rate of 0.1 to 1.0 ° C. per minute, as in the second aspect of the present invention.

【0008】[0008]

【発明の実施の形態】図1は本発明の一実施形態である
液晶電気光学装置の構造を示すものである。例えば2μ
mの間隔に隔てられ、互いに平行に配置された2枚の電
極基板1、2の間に、自発分極が少なくとも50nC/
cm2 以上の強誘電性液晶材料6を密封する。強誘電性
液晶材料としては化1に示す構造式の液晶材料(TFM
HPOBC)を挙げることができる。
FIG. 1 shows the structure of a liquid crystal electro-optical device according to an embodiment of the present invention. For example, 2μ
m, and a spontaneous polarization of at least 50 nC /
The ferroelectric liquid crystal material 6 of cm 2 or more is sealed. As the ferroelectric liquid crystal material, a liquid crystal material having a structural formula shown in Chemical Formula 1 (TFM)
HPPOBC).

【0009】[0009]

【化1】 Embedded image

【0010】〔4−(1−riluoro ethyl epty
loxycarbonyl)henyl 4’−ctyloxy iphenyl −
4−arboxylate〕 電極基板1は、図1のごとく透明状のガラスあるいは樹
脂の透明基板1cの内側表面に沿い酸化インジウムある
いは酸化すずなどの透明状の導電膜よりなる電極1aを
形成してある。もう一方の電極基板2についても同様の
構成となっている。
[0010] [4- (1- t ri f luoro m ethyl h epty
loxycarbonyl) p henyl 4'- o ctyloxy b iphenyl -
4- c arboxylate] electrode substrate 1 is formed an electrode 1a made of a transparent shaped conductive film such as along indium oxide or tin oxide on the inner surface of the transparent substrate 1c transparent like glass or resin as in Figure 1 . The other electrode substrate 2 has the same configuration.

【0011】導電膜の透明電極1a、2aの内側表面に
は、液晶分子を基板と平行にそろえるための配向処理が
施された高分子膜の配向膜1b、2bが配置されてい
る。また、このほかにも電極基板へのラビング処理、あ
るいは、表面への酸化けい素等の斜め蒸着、あるいは、
界面活性剤による処理などの一般に液晶を配向させるも
のが適用できる。
On the inner surfaces of the transparent electrodes 1a and 2a of the conductive film, there are arranged polymer film alignment films 1b and 2b that have been subjected to an alignment treatment for aligning liquid crystal molecules in parallel with the substrate. Also, in addition to this, rubbing treatment on the electrode substrate, or oblique deposition of silicon oxide or the like on the surface, or
In general, those which align liquid crystals, such as treatment with a surfactant, can be applied.

【0012】この電極基板1、2は液晶が一方向に並ぶ
ように平行に組み合わされる。その後、化1式の強誘電
性液晶材料を加熱して等方性液体として、毛細管現象を
利用して電極基板1、2間に注入した後、液晶セル全体
を毎分0.1〜1.0℃にて徐冷し、カイラルスメクチ
ックC相まで冷却する。このような冷却の結果、カイラ
ルスメクチックC相となった強誘電性液晶分子20は、
液晶分子自身の大きな分極と液晶の持つ秩序のため図2
(a)のように配向する。
The electrode substrates 1 and 2 are combined in parallel so that liquid crystals are arranged in one direction. Thereafter, the ferroelectric liquid crystal material of the formula (1) is heated and injected as an isotropic liquid between the electrode substrates 1 and 2 by utilizing the capillary phenomenon. Cool slowly at 0 ° C. and cool to chiral smectic C phase. As a result of such cooling, the ferroelectric liquid crystal molecules 20 that have become the chiral smectic C phase are:
Figure 2 due to the large polarization of the liquid crystal molecules themselves and the order of the liquid crystal
Orientation is performed as shown in FIG.

【0013】なお、電極基板1、2の外側の偏光板4、
5は直交するよう配置されている。さらに、この偏光板
の偏光子(P)と無電界時の液晶分子長軸方向が0゜
(180゜)の角度をなすようにする。透明電極1a、
2aには駆動回路を含む外部電源3が接続されており、
液晶には、後述するような電圧波形が印加されるように
なっている。
The polarizers 4 outside the electrode substrates 1 and 2
5 are arranged orthogonally. Further, the direction of the long axis of the liquid crystal molecules in the absence of an electric field is set to an angle of 0 ° (180 °) with the polarizer (P) of the polarizing plate. Transparent electrode 1a,
An external power supply 3 including a drive circuit is connected to 2a.
A voltage waveform as described later is applied to the liquid crystal.

【0014】次に、上記装置の作動を図2(a)、
(b)、(c)を用いて説明する。ここで、各左図は装
置の平面方向の図、各右図は側面方向の図を示す。無電
界時、基板1、2間の液晶分子20は、スメクチック層
10の法線方向にそろい、図2(a)に示す配向状態を
示す。このとき、液晶分子の自発分極は本装置(セル)
の上半分で左方向(または右方向)、下半分で右方向
(または左方向)を向き、即ち、強誘電性液晶分子が動
くコーン上で説明すれば(図2(a)右図)、セルの上
半分では、分子がコーンの上方(または下方)、下半分
ではコーンの下方(または上方)に位置し、セル厚方向
での自発分極の積算値はゼロになる。
Next, the operation of the above device will be described with reference to FIG.
This will be described with reference to (b) and (c). Here, each left drawing shows a plan view of the apparatus, and each right drawing shows a side view. At the time of no electric field, the liquid crystal molecules 20 between the substrates 1 and 2 are aligned in the normal direction of the smectic layer 10 and show the alignment state shown in FIG. At this time, the spontaneous polarization of the liquid crystal molecules is
The left half (or right) in the upper half and the right (or left) in the lower half, that is, on a cone on which ferroelectric liquid crystal molecules move (FIG. 2 (a) right), In the upper half of the cell, the molecule is located above (or below) the cone, and in the lower half, below (or above) the cone, the integrated value of the spontaneous polarization in the cell thickness direction becomes zero.

【0015】次に、紙面表側から裏側へ液晶分子が回転
するのに十分な電界を印加すると、液晶分子の自発分極
方向30が電界方向40にそろう。これに伴い、液晶分
子は図2(b)のように再配向する。このとき、液晶分
子は層法線方向に対しチルト角θをなす。ちなみに化1
式の強誘電性液晶材料のチルト角は70℃から110℃
の温度範囲内で10℃から31℃を示す。
Next, when an electric field sufficient to rotate the liquid crystal molecules from the front side to the back side of the paper is applied, the spontaneous polarization direction 30 of the liquid crystal molecules is aligned with the electric field direction 40. Along with this, the liquid crystal molecules are realigned as shown in FIG. At this time, the liquid crystal molecules form a tilt angle θ with respect to the layer normal direction. By the way 1
The tilt angle of the ferroelectric liquid crystal material of the formula is from 70 ° C. to 110 ° C.
10 ° C to 31 ° C within the temperature range of

【0016】次に、紙面裏側から表側へ液晶分子が回転
するのに十分な電界を印加すると、自発分極30は、電
界方向40にそろう。これに伴い、液晶分子は図2
(c)のように再配向する。このとき、液晶分子は層法
線方向から−θのチルト角をなす。このように印加電界
の極性と大きさにより液晶の光学軸を3状態に変化させ
ることができる。
Next, when an electric field sufficient to rotate the liquid crystal molecules from the back side to the front side of the paper is applied, the spontaneous polarization 30 is aligned with the electric field direction 40. As a result, the liquid crystal molecules are
Reorient as shown in (c). At this time, the liquid crystal molecules form a tilt angle of -θ from the normal direction of the layer. In this way, the optical axis of the liquid crystal can be changed into three states depending on the polarity and magnitude of the applied electric field.

【0017】このような3状態を有する液晶を、一対の
偏光板4、5間に挟むことにより、電気光学装置として
用いることができる。例えば、図2(a)に示すよう
に、偏光板の偏光子(P)と液晶分子長軸方向が0°の
角度をなすように設置する。この状態で偏光子(P)を
通り抜けた直線偏光は、液晶を通り抜けるが検光子
(A)で遮られ、暗状態となる。
By sandwiching such a liquid crystal having three states between a pair of polarizing plates 4 and 5, the liquid crystal can be used as an electro-optical device. For example, as shown in FIG. 2A, the polarizer (P) of the polarizer and the liquid crystal molecule major axis direction are arranged so as to form an angle of 0 °. In this state, the linearly polarized light that has passed through the polarizer (P) passes through the liquid crystal but is blocked by the analyzer (A), and becomes a dark state.

【0018】また、紙面表側から裏側へ電界を印加した
図2(b)の場合、偏光子(P)を通り抜けた光は、液
晶の持つ複屈折効果により一般に楕円偏光となる。この
光の成分は、検光子(A)を通り抜けるため、明状態と
なる。また、紙面裏側から表側へ電界を印加した図2
(c)の場合、偏光子(P)を通り抜けた光は、液晶の
持つ複屈折効果により一般に楕円偏光となる。この光の
成分も、検光子(A)を通り抜けるため、明状態とな
る。
In the case of FIG. 2B in which an electric field is applied from the front side to the back side of the paper, the light passing through the polarizer (P) is generally elliptically polarized due to the birefringence effect of the liquid crystal. Since this light component passes through the analyzer (A), it becomes a bright state. FIG. 2 shows an electric field applied from the back side to the front side.
In the case of (c), the light that has passed through the polarizer (P) generally becomes elliptically polarized light due to the birefringence effect of the liquid crystal. Since this light component also passes through the analyzer (A), it becomes a bright state.

【0019】次に、本装置の電圧−透過率曲線について
説明する。偏光子(P)の偏光軸と無電界時の分子長軸
方向が0°となるように設置し、閾値としては輝度が相
対的に10%変化する時の電圧とする。図3は測定に用
いた電圧波形を示し、印加パルス幅は1msec であり、
一定の周期で繰り返し印加されている。この時の光学応
答を図4に示す。無電界時は暗状態であるが、電圧が印
加されている間は明状態となっていることがわかる。
Next, a voltage-transmittance curve of the present apparatus will be described. The polarizer (P) is set so that the polarization axis of the polarizer (P) and the direction of the molecular major axis in the absence of an electric field are at 0 °, and the threshold is a voltage at which the luminance changes relatively by 10%. FIG. 3 shows the voltage waveform used for the measurement, the applied pulse width is 1 msec,
It is applied repeatedly at a constant cycle. The optical response at this time is shown in FIG. It can be seen that the state is dark when there is no electric field, but is bright when voltage is applied.

【0020】この電界が印加されている時の光透過率を
電圧に対しプロットしたものを図5に示す。電圧を0
(V)から増加して行くと、閾値1をすぎ急激に暗状態
から明状態へと変化するが、その後一定になる。次に、
電圧を減少させて行くと、電圧増加時の閾値1をすぎて
から、閾値2で明状態から暗状態へと変化している。
FIG. 5 shows a plot of light transmittance versus voltage when the electric field is applied. Voltage 0
As the voltage increases from (V), the threshold value 1 is exceeded, and the state rapidly changes from a dark state to a bright state, but thereafter becomes constant. next,
As the voltage is decreased, the state changes from the bright state to the dark state at the threshold 2 after the threshold 1 at the time of the voltage increase has passed.

【0021】さらに、電圧を減少させて行くと、再び閾
値3をすぎ、暗状態から明状態へ変化するが、その後一
定になる。次に、電圧を増加させて行くと、電圧減少時
の閾値3をすぎてから、閾値4で明状態から暗状態へと
変化していることがわかる。このように、明確な閾値
と、大きなヒステリシスが存在する。次に、化1式の強
誘電性液晶材料を用いての、本装置の応答速度の温度依
存性を測定した。応答速度の定義としては電圧印加後、
光透過率が90%まで変化するのに要する時間とした。
測定電圧波形としては、10Hzの方形波で電圧は30
(V)である。図6に応答速度の温度依存性を示す。μ
sec 域の高速応答を示している。
When the voltage is further reduced, the threshold value 3 is passed again, and the state changes from the dark state to the bright state, but thereafter becomes constant. Next, as the voltage is increased, it can be seen that the state changes from the bright state to the dark state at the threshold 4 after passing the threshold 3 at the time of the voltage decrease. Thus, there is a clear threshold and a large hysteresis. Next, the temperature dependence of the response speed of the device using the ferroelectric liquid crystal material of Formula 1 was measured. The response speed is defined as
It was the time required for the light transmittance to change to 90%.
The measured voltage waveform is a 10 Hz square wave with a voltage of 30
(V). FIG. 6 shows the temperature dependence of the response speed. μ
This shows a fast response in the sec range.

【0022】さらに、液晶分子の配向性については、無
電界時に従来の強誘電性液晶で観察されたツイスト状態
は観察されず、安定な1つの配向状態のみ観察された。
一度冷却して結晶状態にした後、温度を上昇させてカイ
ラルスメクチックC相としても前のカイラルスメクチッ
クC相の配向が再現できる。なお、上記実施形態におい
ては、偏光板の偏光子(P)と無電界時の分子長軸方向
とが0°(180°)の角度をなす構成としたが、例え
ば、22.5°、45°、もしくは90°の角度をなす
構成のものとしても良く、例えば22.5°の場合、電
界印加時、一方の電界方向で暗状態を示し、もう一方の
電界方向で明状態を示し、無電界時にはその中間状態を
示すこととなる。
Further, regarding the orientation of the liquid crystal molecules, the twisted state observed in the conventional ferroelectric liquid crystal in the absence of an electric field was not observed, but only one stable alignment state was observed.
Once cooled and brought into a crystalline state, the temperature is raised and the orientation of the previous chiral smectic C phase can be reproduced as the chiral smectic C phase. In the above embodiment, the polarizer (P) of the polarizing plate and the molecular major axis direction in the absence of an electric field make an angle of 0 ° (180 °). However, for example, 22.5 °, 45 ° ° or 90 °. For example, in the case of 22.5 °, when an electric field is applied, one of the electric field directions indicates a dark state, the other electric field direction indicates a bright state, and In the case of an electric field, the intermediate state is shown.

【0023】この構成(22.5°)で、三状態の分子
配向を三角波電圧に対する透過率と分極反転電流により
確認した。測定に用いた電圧波形は、±30(V)、1
0(Hz)の三角波電圧である。この波形を印加した時の
2つの温度における透過率と分極反転電流を図7及び図
8に示す。図中の(a)は印加電圧波形、(b)は透過
率、(c)は分極反転電流波形を示す。透過率(b)に
ついては、マイナス域での暗状態、0ボルト域での中間
明状態、プラス域での明状態とはっきり現れている。分
極反転電流(c)については、前記の状態変化に対応し
て分極反転電流波形のピークがそれぞれ現れていること
がわかる。
With this configuration (22.5 °), the molecular orientation in three states was confirmed by the transmittance with respect to the triangular wave voltage and the polarization reversal current. The voltage waveform used for the measurement is ± 30 (V), 1
It is a triangular wave voltage of 0 (Hz). FIGS. 7 and 8 show transmittance and polarization reversal current at two temperatures when this waveform is applied. In the figure, (a) shows the applied voltage waveform, (b) shows the transmittance, and (c) shows the domain-inverted current waveform. The transmittance (b) clearly appears as a dark state in a minus range, an intermediate bright state in a 0 volt range, and a bright state in a plus range. Regarding the polarization inversion current (c), it can be seen that the peaks of the polarization inversion current waveform appear respectively in accordance with the state change.

【0024】また、電極基板1、2において、図9に示
すように、各々ストライプ状の透明電極1a、2aを複
数本平行に形成し、これら基板1と基板2の電極が互い
に直交するように配置し、電極にはダイナミックに駆動
が行えるような回路を含む外部電源を接続してマトリッ
クス形表示装置を形成して、前記の電圧−透過率曲線で
示したヒステリシス特性を利用した駆動を行うこともで
きる。
As shown in FIG. 9, a plurality of stripe-shaped transparent electrodes 1a and 2a are formed in parallel on each of the electrode substrates 1 and 2 so that the electrodes of the substrate 1 and the substrate 2 are orthogonal to each other. A matrix type display device is formed by arranging and connecting an external power supply including a circuit that can be dynamically driven to the electrodes, and driving using the hysteresis characteristic shown by the voltage-transmittance curve is performed. Can also.

【0025】ここで、ダイナミック駆動法の線順次方法
について説明する。一例として、1/3バイアス法を図
10を用いて説明する。Xは線順次走査される電極(走
査電極)を、Yは信号電圧が印加される電極(信号電
極)を示す。○印の所が表示させる点(選択点)を示
し、印のない所は、表示を保持する点(非選択点)を示
す。走査電極において選択される電極には+2Vを印加
し、非選択される電極には0Vを印加する。信号電極側
においては選択電極に−1Vを、非選択電極には+1V
を印加する。このように選択点には3Vの電圧が印加さ
れることとなり、それ以外の非選択点に−1Vか+1V
が印加されることとなる。
Here, the line sequential method of the dynamic driving method will be described. As an example, the 1/3 bias method will be described with reference to FIG. X indicates an electrode (scanning electrode) scanned line-sequentially, and Y indicates an electrode (signal electrode) to which a signal voltage is applied. A mark indicates a point to be displayed (selected point), and a mark without a mark indicates a point to maintain the display (non-selected point). A voltage of +2 V is applied to an electrode selected as a scanning electrode, and a voltage of 0 V is applied to a non-selected electrode. On the signal electrode side, -1 V is applied to the selected electrode, and +1 V is applied to the non-selected electrode.
Is applied. As described above, a voltage of 3V is applied to the selected point, and -1V or + 1V is applied to the other non-selected points.
Is applied.

【0026】このようにダイナミック駆動を行う場合、
非選択点にもバイアス電圧が印加されるため、非選択点
に印加される電圧閾域以下である事が必要となる。ま
た、非選択点に印加される電圧を図5の閾値1と閾値2
の間にとり、暗表示させる点には閾値2から3の間の電
圧をとり、明表示させる点に印加する電圧を閾値1より
高くとるようにすれば、コントラスト比が高く、表示保
持も可能なダイナミック駆動が容易にできる。
When performing the dynamic driving as described above,
Since the bias voltage is also applied to the non-selected points, it is necessary that the bias voltage is lower than the voltage threshold applied to the non-selected points. Further, the voltages applied to the non-selected points are set to the threshold 1 and the threshold 2 shown in FIG.
If a voltage between the thresholds 2 and 3 is set at a point for dark display and a voltage applied to a point for bright display is set higher than the threshold 1, the contrast ratio is high and the display can be held. Dynamic driving can be easily performed.

【0027】なお、本発明は背面からの照明によって表
示する透過型に限らず、全面からの光を反射する反射型
にも適用できる。ところで、本発明の装置に用いる大き
な自発分極を有する液晶材料としては、次の構造式のも
の(TFMNPOBC)を用いることもできる。
The present invention can be applied not only to the transmission type in which the display is made by illumination from the back, but also to the reflection type in which light from the entire surface is reflected. By the way, as the liquid crystal material having a large spontaneous polarization used in the device of the present invention, one having the following structural formula (TFMNPOBC) can be used.

【0028】[0028]

【化2】 Embedded image

【0029】〔4−(1−riluoro ethyl onyl
oxy carbonyl)henyl 4’−ctyloxy iphenyl −
4−arboxylate〕 この液晶材料に三角波電圧(±30V、10Hz)を印加
したときの透過率特性及び分極反転電流特性を図11に
示し、前述の液晶材料と同様の3状態を示している。
[0029] [4- (1- t ri f luoro m ethyl n onyl
oxy carbonyl) p henyl 4'- o ctyloxy b iphenyl -
4- c arboxylate] shows the transmission characteristics and polarization inversion current characteristics of the liquid crystal material to a triangular wave voltage (± 30 V, 10 Hz) upon application of a 11 shows the same three states and the liquid crystal material described above.

【0030】また、他の大きな自発分極を有する液晶材
料としては、次の構造式のもの(MHPOBC)を用い
ることもできる。
Further, as another liquid crystal material having a large spontaneous polarization, one having the following structural formula (MHPOBC) can be used.

【0031】[0031]

【化3】 Embedded image

【0032】〔4−(1−ethyl eptyloxy carbony
l )henyl 4’−ctyloxyiphenyl −4−arbox
ylate〕 この液晶材料に同じく上記三角波電圧を印加したときの
透過率特性及び分極反転電流特性を図12に示し、前述
の3状態が得られている。次に、上記3つの液晶材料に
ついて、透過率の3状態が出現する自発分極Psの値を
調べたのが図13である。3種類の液晶とも、50数
(nC/cm2 )以上の大きな自発分極を持つとき3状
態を示している。なお、自発分極の測定法は、一般的な
三角波法を用いた。
[0032] [4- (1- m ethyl h eptyloxy carbony
l) p henyl 4'- o ctyloxy b iphenyl -4- c arbox
ylate] FIG. 12 shows transmittance characteristics and polarization reversal current characteristics when the above-mentioned triangular wave voltage is similarly applied to this liquid crystal material, and the above three states are obtained. Next, FIG. 13 shows the values of the spontaneous polarization Ps at which the three states of the transmittance appear for the above three liquid crystal materials. All three types of liquid crystals show three states when they have a large spontaneous polarization of 50 or more (nC / cm 2 ) or more. Note that a general triangular wave method was used as a method for measuring spontaneous polarization.

【0033】さらに、上記3つの液晶材料に加えて他の
液晶材料としては、次の構造式のもの(TFMHB2F
DB)を用いることができる。
Further, in addition to the above three liquid crystal materials, another liquid crystal material has the following structural formula (TFMHB2F
DB) can be used.

【0034】[0034]

【化4】 Embedded image

【0035】〔4−(1−riluoro ethyl epty
loxy carbonyl )−4’−iphenylluoro −4
ecyloxy enzoate 〕 この化合物の相転移を示差熱分折(DSC)と偏光顕微
鏡下のテクスチャー観察により測定した結果次の様にな
った。 ここで、Cry;結晶相、SmC* ;カイラルスメクチッ
クC相(強誘電性液晶相)、SmA;スメクチックA
相、I:等方性液体相を示す。
[0035] [4- (1- t ri f luoro m ethyl h epty
loxy carbonyl) -4'- b iphenyl 2 - f luoro -4
- d ecyloxy b enzoate] became a phase transition of the compound differential heat content folding (DSC) results as measured by texture observation under a polarizing microscope in the following manner. Here, Cry; crystal phase, SmC * ; chiral smectic C phase (ferroelectric liquid crystal phase), SmA; smectic A
Phase, I: Indicates an isotropic liquid phase.

【0036】この化合物の強誘電性スメクチック相での
自発分極を一般的な三角波法を用いて測定したところ、
図14に示す特性が得られた。また、前述の3状態の出
現は強誘電性スメクチック相全域に渡り、即ち、自発分
極の大きさでは4〔nC/cm2 〕程度から80〔nC
/cm2 〕程度の範囲に渡っている。なお、図15は5
5℃で三角波電圧(a)を印加した時の透過率特性
(b)及び分極反転特性(c)を示したものであり、前
述の3状態を示していることがわかる。
The spontaneous polarization of this compound in the ferroelectric smectic phase was measured using a general triangular wave method.
The characteristics shown in FIG. 14 were obtained. The appearance of the above three states extends over the entire ferroelectric smectic phase, that is, the magnitude of spontaneous polarization is about 4 [nC / cm 2 ] to 80 [nC
/ Cm 2 ]. FIG.
It shows the transmittance characteristic (b) and the polarization reversal characteristic (c) when the triangular wave voltage (a) is applied at 5 ° C., and it can be seen that the above three states are shown.

【0037】また、強誘電性スメクチック相温度範囲の
室温化及びその拡大のため上記4種類の化合物のうち、
TFMHPOBC、MHPOBC、TFMHB2FDB
の3種類を次に示す比率で混合し、 TFMHPOBC …… 20% MHPOBC …… 46% TFMHB2FDB …… 34% 相転移を示差熱分折(DSC)と偏光顕微鏡により測定
したところ次の結果が得られた。
In order to raise the temperature range of the ferroelectric smectic phase to room temperature and to expand the temperature range, of the above four compounds,
TFMHPOBC, MHPOBC, TFMHB2FDB
The following three types were mixed at the following ratios, and TFHPOBC 20% MHPOBC 46% TFMHB2FDB 34% The phase transition was measured by differential thermal analysis (DSC) and a polarizing microscope to obtain the following results. Was.

【0038】 この混合物を液晶セルに封入し、三角波電圧を印加した
ときの透過率特性及び分極反転電流を測定し、前記3状
態の出現を調べたところ、強誘電性スメクチック相温度
範囲全域で前記3状態が観察された。
[0038] The mixture was sealed in a liquid crystal cell, and the transmittance characteristics and the polarization reversal current when a triangular wave voltage was applied were measured, and the appearance of the three states was examined. As a result, the three states were observed over the entire ferroelectric smectic phase temperature range. Was observed.

【0039】また、図16は本発明の他の実施形態であ
る液晶電気光学装置の構造を示すものである。本実施形
態においては、例えば2μmの間隔に隔てられ、互いに
平行に配置された2枚の電極基板1、2の間に、自発分
極が少なくとも50nC/cm2 以上の強誘電性液晶材
料に二色性色素を溶解したもの6’を密封している。強
誘電性液晶材料としては、例えば前述の4つの液晶材料
(TFMHPOBC、TFMNPOBC、MHPOB
C、TFMHB2FDB)を挙げることができる。ま
た、二色性色素としては、例えば三井東圧社製S−33
4(アゾ系黒色二色性色素)を用いており、そして強誘
電性液晶を等方性液体相に加熱し、2wt%の前記二色
性色素を添加し、溶解している。その後、毛細管減少を
利用して電極基板1、2間に注入した後、液晶セル全体
を毎分0.1〜1.0℃にて徐冷し、カイラルスメクチ
ックC相まで冷却する。このような冷却の結果、カイラ
ルスメクチックC相となった強誘電性液晶分子20は、
液晶分子自身の大きな分極と液晶の持つ秩序のため図1
7(a)のように配向する。
FIG. 16 shows the structure of a liquid crystal electro-optical device according to another embodiment of the present invention. In the present embodiment, a two-color ferroelectric liquid crystal material having a spontaneous polarization of at least 50 nC / cm 2 is provided between two electrode substrates 1 and 2 spaced apart from each other by, for example, 2 μm. 6 ′ in which a sex dye is dissolved is sealed. As the ferroelectric liquid crystal material, for example, the above-mentioned four liquid crystal materials (TFMPOBC, TFMNPOBC, MHPOB)
C, TFMHB2FDB). Examples of the dichroic dye include, for example, S-33 manufactured by Mitsui Toatsu.
No. 4 (azo black dichroic dye) is used, and the ferroelectric liquid crystal is heated to an isotropic liquid phase, and 2 wt% of the dichroic dye is added and dissolved. Thereafter, the liquid crystal cell is injected between the electrode substrates 1 and 2 using capillary reduction, and then the entire liquid crystal cell is gradually cooled at a rate of 0.1 to 1.0 ° C. per minute to be cooled to a chiral smectic C phase. As a result of such cooling, the ferroelectric liquid crystal molecules 20 that have become the chiral smectic C phase are:
Figure 1 due to the large polarization of the liquid crystal molecules themselves and the order of the liquid crystal
Orientation is performed as shown in FIG.

【0040】なお、本実施形態においては、電極基板2
の外側にのみ偏光板5が配置されている。さらに、この
偏光板の偏光子(P)と無電界時の液晶分子長軸方向が
0°(180°)の角度をなすようにする。透明電極1
a、2aには駆動回路を含む外部電源3が接続されてお
り、液晶に前述したような電圧波形が印加されるように
なっている。
In this embodiment, the electrode substrate 2
The polarizing plate 5 is arranged only on the outside. Furthermore, the direction of the long axis of the liquid crystal molecules in the absence of an electric field is set to an angle of 0 ° (180 °) with the polarizer (P) of the polarizing plate. Transparent electrode 1
An external power supply 3 including a drive circuit is connected to a and 2a so that the above-described voltage waveform is applied to the liquid crystal.

【0041】次に上記構成になる装置の作動を図17
(a)、(b)、(c)を用いて説明する。ここで、各
左図は装置の平面方向の図、各右図は側面方向の図を示
す。無電界時、基板1、2間の液晶分子20は、スメク
チック層10の法線方向にそろい、図17(a)に示す
配向状態を示す。このとき、液晶分子の自発分極は本装
置(セル)の上半分で左方向(または右方向)、下半分
で右方向(または左方向)を向き、即ち、強誘電性液晶
分子が動くコーン上で説明すれば(図17(a)右
図)、セルの上半分では、分子がコーンの上方(または
下方)、下半分ではコーンの下方(または上方)に位置
し、セル厚方向での自発分極の積算値はゼロになる。こ
のとき、二色性色素21は液晶分子20の中に分散した
形になり、液晶分子20の長軸方向と同一方向を向く事
になる。
Next, the operation of the apparatus having the above-described structure will be described with reference to FIG.
A description will be given using (a), (b), and (c). Here, each left drawing shows a plan view of the apparatus, and each right drawing shows a side view. At the time of no electric field, the liquid crystal molecules 20 between the substrates 1 and 2 are aligned in the normal direction of the smectic layer 10 and show the alignment state shown in FIG. At this time, the spontaneous polarization of the liquid crystal molecules is directed leftward (or rightward) in the upper half of the device (cell) and rightward (or leftward) in the lower half, that is, on the cone on which the ferroelectric liquid crystal molecules move. (FIG. 17 (a) right), the molecule is located above (or below) the cone in the upper half of the cell, and below (or above) the cone in the lower half, and spontaneously spontaneously in the cell thickness direction. The integrated value of the polarization becomes zero. At this time, the dichroic dye 21 is dispersed in the liquid crystal molecules 20 and faces in the same direction as the major axis direction of the liquid crystal molecules 20.

【0042】次に、紙面表側から裏側へ液晶分子が回転
するのに十分な電界を印加すると、液晶分子の自発分極
方向30が電界方向40にそろう。これに伴い、液晶分
子は図17(b)のように再配向する。このとき、液晶
分子は層法線方向に対しチルト角θをなす。ちなみに化
1式の強誘電性液晶材料に2色性色素を溶解したものの
チルト角は70℃から110℃の温度範囲内で10°か
ら31°を示す。この場合も、二色性色素21は、液晶
分子20の動きに従って動く。
Next, when an electric field sufficient to rotate the liquid crystal molecules from the front side to the back side of the paper is applied, the spontaneous polarization direction 30 of the liquid crystal molecules is aligned with the electric field direction 40. Along with this, the liquid crystal molecules are realigned as shown in FIG. At this time, the liquid crystal molecules form a tilt angle θ with respect to the layer normal direction. Incidentally, a dichroic dye dissolved in a ferroelectric liquid crystal material represented by Chemical Formula 1 has a tilt angle of 10 ° to 31 ° within a temperature range of 70 ° C to 110 ° C. Also in this case, the dichroic dye 21 moves according to the movement of the liquid crystal molecules 20.

【0043】次に、紙面裏側から表側へ液晶分子が回転
するのに十分な電界を印加すると、自発分極30は、電
界方向40にそろう。これに伴い、液晶分子は図2
(c)のように再配向する。このとき、液晶分子は層法
線方向から−θのチルト角をなす。この場合も、二色性
色素21は、液晶分子20の動きに従って動く。このよ
うに印加電界の極性と大きさにより液晶の光学軸を3状
態に変化させることができる。
Next, when an electric field sufficient to rotate the liquid crystal molecules from the back side to the front side is applied, the spontaneous polarization 30 is aligned with the electric field direction 40. As a result, the liquid crystal molecules are
Reorient as shown in (c). At this time, the liquid crystal molecules form a tilt angle of -θ from the normal direction of the layer. Also in this case, the dichroic dye 21 moves according to the movement of the liquid crystal molecules 20. In this way, the optical axis of the liquid crystal can be changed into three states depending on the polarity and magnitude of the applied electric field.

【0044】このような3状態を有する液晶に偏光板5
を付設することにより、電気光学装置として用いること
ができる。例えば、図17(a)に示すように、偏光板
の偏光子(P)と液晶分子長軸方向が0°の角度をなす
ように配置する。この状態で偏光子(P)を通り抜けた
直線偏光はその偏光方向が二色性色素の吸収軸と一致
し、吸収されるため、暗状態となる。
A polarizing plate 5 is provided on the liquid crystal having such three states.
Can be used as an electro-optical device. For example, as shown in FIG. 17A, the polarizer (P) of the polarizing plate is arranged such that the major axis direction of the liquid crystal molecules forms an angle of 0 °. In this state, the linearly polarized light that has passed through the polarizer (P) is in a dark state because its polarization direction coincides with the absorption axis of the dichroic dye and is absorbed.

【0045】また、紙面表側から裏側へ電界を印加した
図17(b)の場合、及び紙面裏側から表側へ電界を印
加した図17(c)の場合、偏光子(P)通り抜けた直
線偏光は、その偏光方向と、二色性色素の吸収軸が一致
しないため、光が透過し、明状態となる。なお、偏光板
5は電極基板1の外側に付設しても良い。なお、本実施
形態における光学応答、光透過率、応答速度の温度依存
性、および液晶分子の配向性等については、前記の実施
形態と実質的に同一である。
Further, in the case of FIG. 17 (b) in which an electric field is applied from the front side to the back side of the paper and in the case of FIG. 17 (c) in which an electric field is applied from the back side of the paper, the linearly polarized light passing through the polarizer (P) is Since the polarization direction of the light does not coincide with the absorption axis of the dichroic dye, light is transmitted and a bright state is obtained. The polarizing plate 5 may be provided outside the electrode substrate 1. Note that the optical response, the light transmittance, the temperature dependency of the response speed, the orientation of the liquid crystal molecules, and the like in this embodiment are substantially the same as those in the above embodiment.

【0046】なお、本実施形態においては、偏光板の偏
光子(P)と無電界時の分子長軸方向(二色性色素分子
長軸方向)とが0°(180°)の角度をなす構成とし
たが、例えば、45°、もしくは90°の角度をなす構
成のものとしても良く、例えば90°の場合電界印加
時、一方の電界方向で暗状態を示し、もう一方の電界方
向で明状態を示し、無電界時にはその中間状態を示し2
段階の階調表示が可能となる。
In this embodiment, the polarizer (P) of the polarizing plate and the direction of the long axis of the molecule when no electric field is applied (the long axis of the dichroic dye molecules) form an angle of 0 ° (180 °). Although the configuration is described, for example, the configuration may be such that an angle of 45 ° or 90 ° is formed. State when no electric field is applied.
It is possible to perform gradation display in stages.

【0047】また、二色性色素は、アゾ系の二色性色素
に限らず、耐光性の良好なアントラキノン系の二色性色
素も用いることができる。
The dichroic dye is not limited to an azo dichroic dye, and an anthraquinone dichroic dye having good light resistance can also be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す液晶電気光学装置の
構成図である。
FIG. 1 is a configuration diagram of a liquid crystal electro-optical device according to an embodiment of the present invention.

【図2】(a)、(b)、(C)は図1に示す装置にお
ける液晶分子の配向状態を示す図である。
2 (a), 2 (b), and 2 (C) are diagrams showing alignment states of liquid crystal molecules in the device shown in FIG.

【図3】液晶の電圧と透過率の関係の測定に用いる電圧
波形図である。
FIG. 3 is a voltage waveform diagram used for measuring the relationship between the liquid crystal voltage and the transmittance.

【図4】液晶に図3の電圧を印加したときの透過率の変
化を示す図である。
FIG. 4 is a diagram showing a change in transmittance when the voltage shown in FIG. 3 is applied to a liquid crystal.

【図5】液晶の電圧と透過率の関係を示す図である。FIG. 5 is a diagram showing a relationship between a voltage of a liquid crystal and a transmittance.

【図6】液晶の応答速度と温度との関係を示す特性図で
ある。
FIG. 6 is a characteristic diagram showing the relationship between the response speed of liquid crystal and temperature.

【図7】三角波電圧に対する透過率と分極反転電流を示
す図である。
FIG. 7 is a diagram showing transmittance and polarization inversion current with respect to a triangular wave voltage.

【図8】図7に示すものとは異なる温度における三角波
電圧に対する透過率と分極反転電流を示す図である。
FIG. 8 is a diagram showing transmittance and polarization reversal current with respect to a triangular wave voltage at a temperature different from that shown in FIG. 7;

【図9】本発明の液晶電気光学装置の他の構成を示す図
である。
FIG. 9 is a diagram showing another configuration of the liquid crystal electro-optical device of the present invention.

【図10】ダイナミック駆動法の説明に供する説明図で
ある。
FIG. 10 is an explanatory diagram for explaining a dynamic driving method.

【図11】他の液晶材料における三角波電圧に対する透
過率と分極反転電流を示す図である。
FIG. 11 is a diagram showing transmittance and polarization reversal current with respect to a triangular wave voltage in another liquid crystal material.

【図12】さらに他の液晶材料における三角波電圧に対
する透過率と分極反転電流を示す図である。
FIG. 12 is a diagram showing transmittance and polarization reversal current with respect to a triangular wave voltage in still another liquid crystal material.

【図13】3つの液晶材料に対する透過率の3状態が出
現する自発分極の値を示す図である。
FIG. 13 is a diagram showing spontaneous polarization values at which three states of transmittance appear for three liquid crystal materials.

【図14】さらに他の液晶材料における自発分極の温度
依存性を示す図である。
FIG. 14 is a diagram showing the temperature dependence of spontaneous polarization in still another liquid crystal material.

【図15】図14に示す液晶における三角波電圧に対す
る透過率と分極反転電流を示す図である。
15 is a diagram showing transmittance and polarization reversal current with respect to a triangular wave voltage in the liquid crystal shown in FIG.

【図16】本発明の他の実施形態を示す液晶電気光学装
置の構成図である。
FIG. 16 is a configuration diagram of a liquid crystal electro-optical device according to another embodiment of the present invention.

【図17】図16に示す装置における液晶分子の配向状
態を示す図である。
FIG. 17 is a view showing an alignment state of liquid crystal molecules in the device shown in FIG.

【符号の説明】[Explanation of symbols]

1、2…電極基板、1a、2a…透明電極、1b、2b
…配向膜、1c、2c…透明基板、4、5…偏光板、
6、6’…強誘電性液晶、10…スメクチック層、20
…液晶分子、21…二色性色素、30…自発分極方向、
40…電界方向、50…偏光方向。
1, 2, ... electrode substrate, 1a, 2a ... transparent electrode, 1b, 2b
... Orientation films, 1c, 2c ... Transparent substrates, 4, 5 ... Polarizing plates,
6, 6 ': ferroelectric liquid crystal, 10: smectic layer, 20
... liquid crystal molecules, 21 ... dichroic dye, 30 ... spontaneous polarization direction,
40: electric field direction, 50: polarization direction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 典生 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 河村 一朗 東京都千代田区丸の内二丁目7番3号 昭 和シェル石油株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Norio Yamamoto, Inventor 1-1-1, Showa-cho, Kariya, Aichi Prefecture Inside Denso Corporation (72) Inventor Ichiro Kawamura 2-7-3, Marunouchi, Chiyoda-ku, Tokyo Showa Shell Petroleum Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無電界時に分子配向が第1の安定状態を
示し、一方の電界方向への電界印加時に分子配向が前記
第1の安定状態とは異なる第2の安定状態を示し、他方
の電界方向への電界印加時に分子配向が前記第1及び第
2の安定状態とは異なる第3の安定状態を示す強誘電性
液晶(6)を、一対の電極基板(1、2)間に有してな
る液晶電気光学素子の製造方法において、 前記強誘電性液晶を加熱し等方性液体として前記一対の
電極基板間に充填し、その後、冷却して前記強誘電性液
晶をカイラルスメクチック相にすることを特徴とする液
晶電気光学装置の製造方法。
1. A molecular orientation shows a first stable state when no electric field is applied, a molecular orientation shows a second stable state different from the first stable state when an electric field is applied in one electric field direction, and A ferroelectric liquid crystal (6) having a third stable state in which the molecular orientation is different from the first and second stable states when an electric field is applied in the direction of the electric field is provided between the pair of electrode substrates (1, 2). In the method for producing a liquid crystal electro-optical element, the ferroelectric liquid crystal is heated and filled between the pair of electrode substrates as an isotropic liquid, and then cooled to turn the ferroelectric liquid crystal into a chiral smectic phase. A method of manufacturing a liquid crystal electro-optical device.
【請求項2】 前記冷却を毎分0.1〜1.0℃の割合
にて行うことを特徴とする請求項1に記載の液晶電気光
学装置の製造方法。
2. The method according to claim 1, wherein the cooling is performed at a rate of 0.1 to 1.0 ° C./min.
JP12898197A 1988-03-24 1997-05-19 Manufacturing method of liquid crystal electro-optical element Expired - Fee Related JP2845236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12898197A JP2845236B2 (en) 1988-03-24 1997-05-19 Manufacturing method of liquid crystal electro-optical element

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7021288 1988-03-24
JP12267988 1988-05-19
JP63-70212 1988-05-19
JP63-122679 1988-05-19
JP12898197A JP2845236B2 (en) 1988-03-24 1997-05-19 Manufacturing method of liquid crystal electro-optical element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30961588A Division JP2728095B2 (en) 1988-03-24 1988-12-07 Liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPH1068920A true JPH1068920A (en) 1998-03-10
JP2845236B2 JP2845236B2 (en) 1999-01-13

Family

ID=27300269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12898197A Expired - Fee Related JP2845236B2 (en) 1988-03-24 1997-05-19 Manufacturing method of liquid crystal electro-optical element

Country Status (1)

Country Link
JP (1) JP2845236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542083B1 (en) * 1999-12-29 2006-01-12 엘지.필립스 엘시디 주식회사 method for fabricating ferroelectric liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542083B1 (en) * 1999-12-29 2006-01-12 엘지.필립스 엘시디 주식회사 method for fabricating ferroelectric liquid crystal display device

Also Published As

Publication number Publication date
JP2845236B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
JP2982330B2 (en) Liquid crystal display device
KR101073781B1 (en) Liquid crystal display device
JP2728095B2 (en) Liquid crystal electro-optical device
US5825447A (en) Liquid crystal device with a bistable chiral smectic liquid crystal having a phase transition series lacking a cholesteric phase #16
JPH0644120B2 (en) Liquid crystal display element
JP2647828B2 (en) Liquid crystal device manufacturing method
JP2845236B2 (en) Manufacturing method of liquid crystal electro-optical element
JPS6337186A (en) Liquid crystal composition
JPH1067987A (en) Liquid crystal electrooptical device
JP2845237B2 (en) Liquid crystal display
JPH08211393A (en) Production of liquid crystal electro-optical element
JPS6337187A (en) Liquid crystal display device
JPH08234173A (en) Liquid crystal electro-optical device
JP2001316667A (en) Liquid crystal display element
JPH09297306A (en) Liquid crystal display element and its production
JPH08234174A (en) Liquid crystal display device
US5844653A (en) Liquid crystal mixture
JPS63256688A (en) Liquid crystal composition
JP3180171B2 (en) Ferroelectric liquid crystal device
JPH0210323A (en) Ferroelectric liquid crystal display element
JP3910438B2 (en) Liquid crystal optical element
JPS61153623A (en) Liquid crystal electrooptical device
JP3416374B2 (en) Liquid crystal alignment treatment method, liquid crystal element manufacturing method, and liquid crystal element
JPH0756545B2 (en) Driving method of liquid crystal matrix display panel
JPH02151684A (en) Ferroelectric liquid crystal composition and liquid crystal display device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050218

LAPS Cancellation because of no payment of annual fees